gpiozero 2.0.1 Documentation
Release 2.0.1

Ben Nuttall

Feb 18, 2024

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Installing GPIO Zero
Basic Recipes

Advanced Recipes
Configuring Remote GPIO
Remote GPIO Recipes

Pi Zero USB OTG
Source/Values
Command-line Tools
Frequently Asked Questions
Backwards Compatibility
Migrating from RPi.GPIO
Contributing

Development

API - Input Devices

API - Output Devices

API - SPI Devices

API - Boards and Accessories
API - Internal Devices
API - Generic Classes

API - Device Source Tools
API - Fonts

API - Tones

API - Pi Information

API - Pins

CONTENTS

37
45
53
57
61
69
79
87
93
929
101
105
125
147
157
189
197
203
211
215
217

221

25 API - Exceptions
26 Changelog

27 License

Python Module Index

Index

239

245

255

257

259

CHAPTER
ONE

INSTALLING GPIO ZERO

GPIO Zero is installed by default in the Raspberry Pi OS' desktop image, Raspberry Pi OS? Lite image, and the
Raspberry Pi Desktop® image for PC/Mac, all available from raspberrypi.org*. Follow these guides to installing on
other operating systems, including for PCs using the remote GPIO (page 45) feature.

1.1 Raspberry Pi

GPIO Zero is packaged in the apt repositories of Raspberry Pi OS, Debian® and Ubuntu®. It is also available on
PyPI.

1.1.1 apt

First, update your repositories list:

[pi@raspberrypi:~$ sudo apt update

Then install the package for Python 3:

[pi@raspberrypi:~$ sudo apt install python3-gpiozero

or Python 2:

[pi@raspberrypi:~$ sudo apt install python-gpiozero

1.1.2 pip

If you're using another operating system on your Raspberry Pi, you may need to use pip to install GPIO Zero instead.
Install pip using get-pip® and then type:

[pi@raspberrypi:~$ sudo pip3 install gpiozero

or for Python 2:

[pi@raspberrypi:~$ sudo pip install gpiozero

To install GPIO Zero in a virtual environment, see the Development (page 101) page.

! https://www.raspberrypi.org/software/operating-systems/

2 https://www.raspberrypi.org/sof tware/operating-systems/

3 https://www.raspberrypi.org/sof tware/raspberry- pi-desktop/
4 https://www.raspberrypi.org/software/

5 https://packages.debian.org/buster/python3-gpiozero

6 https://packages.ubuntu.com/hirsute/python3- gpiozero

7 https://pypi.org/project/gpiozero/

8 https://pip.pypa.io/en/stable/installing/

https://www.raspberrypi.org/software/operating-systems/
https://www.raspberrypi.org/software/operating-systems/
https://www.raspberrypi.org/software/raspberry-pi-desktop/
https://www.raspberrypi.org/software/
https://packages.debian.org/buster/python3-gpiozero
https://packages.ubuntu.com/hirsute/python3-gpiozero
https://pypi.org/project/gpiozero/
https://pip.pypa.io/en/stable/installing/

gpiozero 2.0.1 Documentation, Release 2.0.1

1.2 PC/Mac

In order to use GPIO Zero’s remote GPIO feature from a PC or Mac, you’ll need to install GPIO Zero on that
computer using pip. See the Configuring Remote GPIO (page 45) page for more information.

1.3 Documentation

This documentation is also available for offline installation like so:

[pi@raspberrypi:~$ sudo apt install python-gpiozero-doc }

This will install the HTML version of the documentation under the /usr/share/doc/
python-gpiozero-doc/html path. To view the offline documentation you have several options:

You can open the documentation directly by visiting file:///usr/share/doc/python-gpiozero-doc/html/index.html in
your browser. However, be aware that using £i1e: // URLs sometimes breaks certain elements. To avoid this, you
can view the docs from an http: // style URL by starting a trivial HTTP server with Python, like so:

[$ python3 -m http.server —-d /usr/share/doc/python-gpiozero-doc/html }

Then visit http://localhost:8000/ in your browser.

Alternatively, the package also integrates into Debian’s doc-base’ system, so you can install one of the doc-base
clients (dochelp, dwww, dhelp, doc-central, etc.) and use its interface to locate this document.

If you want to view the documentation offline on a different device, such as an eReader, there are Epub and PDF
versions of the documentation available for download from the ReadTheDocs site'”. Simply click on the “Read the
Docs” box at the bottom-left corner of the page (under the table of contents) and select “PDF” or “Epub” from the
“Downloads” section.

9 https://wiki.debian.org/doc-base
10 https://gpiozero.readthedocs.io/

2 Chapter 1. Installing GPIO Zero

file:///usr/share/doc/python-gpiozero-doc/html/index.html
http://localhost:8000/
https://wiki.debian.org/doc-base
https://gpiozero.readthedocs.io/

CHAPTER
TWO

BASIC RECIPES

The following recipes demonstrate some of the capabilities of the GPIO Zero library. Please note that all recipes are
written assuming Python 3. Recipes may work under Python 2, but no guarantees!

2.1 Importing GPIO Zero

In Python, libraries and functions used in a script must be imported by name at the top of the file, with the exception
of the functions built into Python by default.

For example, to use the But ton (page 105) interface from GPIO Zero, it should be explicitly imported:

[from gpiozero import Button

Now But ton (page 105) is available directly in your script:

[button = Button (2)

Alternatively, the whole GPIO Zero library can be imported:

[import gpiozero

In this case, all references to items within GPIO Zero must be prefixed:

[button = gpiozero.Button (2)

2.2 Pin Numbering

This library uses Broadcom (BCM) pin numbering for the GPIO pins, as opposed to physical (BOARD) numbering.
Unlike in the RPi.GPIO'! library, this is not configurable. However, translation from other schemes can be used by
providing prefixes to pin numbers (see below).

Any pin marked “GPIO” in the diagram below can be used as a pin number. For example, if an LED was attached
to “GPIO17” you would specify the pin number as 17 rather than 11:

1T https://pypi.python.org/pypi/RPi.GPIO

https://pypi.python.org/pypi/RPi.GPIO

gpiozero 2.0.1 Documentation, Release 2.0.1

3v3

Power

GPIO2
SDA I’C

GPIO3
SCL I’C

GPIO4

Ground

GPIO17

GPIO27

GPIO22

3v3

Power

GPIO10
SPI MOSI

GPIO9
SPI MISO

GPIO11

SPI SCLK

Ground

ID SD

I*)C ID

GPIO5

GPIO6

GPIO13

GPIO19

GPI1026

Ground

All Models

®
®
Q
o
©
)
O,
©
9,
©
@

OO HE®OO®

N
~

: 100000,
0l00]:10] -

40-pin
models only

#SB Ports *

5V

Power

5V
Power
Ground
GPIO14

UARTO TXD

GPIO15

UARTO RXD

GPIO18

Ground

GPI1023

GPI1024

Ground

GPIO25

GPIO8

SPI CEO

GPIO7
SPI CE1

ID SC

I*)C ID

Ground

GPIO12

Ground

GPIO16

GPI1020

GPIO21

If you wish to use physical (BOARD) numbering you can specify the pin number as “BOARD11”. If you are familiar
with the wiringPi'? pin numbers (another physical layout) you could use “WPI0” instead. Finally, you can specify
pins as “header:number”, e.g. “J8:11” meaning physical pin 11 on header J8 (the GPIO header on modern Pis).
Hence, the following lines are all equivalent:

>>>
>>>
>>>
>>>
>>>

led
led
led
led
led

LED (17)

LED ("GPIO17")
LED ("BCM17")
LED ("BOARD11")
LED ("WPIO")

12 hitps://projects.drogon.net/raspberry-pi/wiringpi/pins/

(continues on next page)

Chapter 2. Basic Recipes

https://projects.drogon.net/raspberry-pi/wiringpi/pins/

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)
{>>> led = LED("J8:11")

Note that these alternate schemes are merely translations. If you request the state of a device on the command line,
the associated pin number will always be reported in the Broadcom (BCM) scheme:

>>> led = LED ("BOARD11")
>>> led
<gpiozero.LED object on pin GPIO17, active_high=True, is_active=False>

Throughout this manual we will use the default integer pin numbers, in the Broadcom (BCM) layout shown above.

2.3 LED

LLLLLLILINLY]]]
DSl (DISPLAY)

L L
(V43WVD) ISD

¥T0Z Id Ausqdsey &
T'TA Z I9POW Id A1iagdsey

fl

Turn an LED (page 125) on and off repeatedly:

from gpiozero import LED
from time import sleep

red = LED(17)

while True:
red.on ()
sleep (1)
red.off ()
sleep (1)

Alternatively:

from gpiozero import LED
from signal import pause

red = LED(17)

red.blink ()

(continues on next page)

2.3. LED 5

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

pause ()

Note: Reaching the end of a Python script will terminate the process and GPIOs may be reset. Keep your script
alive with signal.pause () 3. See How do I keep my script running? (page 79) for more information.

2.4 LED with variable brightness

ININENNNNNNNNNN
DSI (DISPLAY)

[&

©)

102 I|d Auaqdsey
T'TA Z I9PON Id Auisqdsey

L L
(V43WVD) ISD

fl

Any regular LED can have its brightness value set using PWM (pulse-width-modulation). In GPIO Zero, this can be
achieved using PWMLED (page 127) using values between 0 and 1:

from gpiozero import PWMLED
from time import sleep

led = PWMLED (17)

while True:
led.value = 0 # off

sleep (1)

led.value = 0.5 # half brightness
sleep (1)

led.value = 1 # full brightness
sleep (1)

Similarly to blinking on and off continuously, a PWMLED can pulse (fade in and out continuously):

from gpiozero import PWMLED
from signal import pause

led = PWMLED (17)

(continues on next page)

13 https://docs.python.org/3.9/library/signal.html#signal. pause

6 Chapter 2. Basic Recipes

https://docs.python.org/3.9/library/signal.html#signal.pause

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

led.pulse ()

pause ()

2.5 Button

TULLILTIN Y]]
DSI (DISPLAY)

L L
(V43WYD) ISD

102 |d Auvqdsey ©
e o o o o
e o o o o

]
@
w

o
o
®
3
=

<
iU
=
5]
=%
@
N)
<
i
-

fl
Check if a But t on (page 105) is pressed:

from gpiozero import Button
button = Button (2)

while True:
if button.is_pressed:
print ("Button is pressed")
else:
print ("Button is not pressed")

Wait for a button to be pressed before continuing:

from gpiozero import Button
button = Button (2)

button.wait_for_press|()
print ("Button was pressed")

Run a function every time the button is pressed:

from gpiozero import Button
from signal import pause

def say_hello():
print ("Hello!")
(continues on next page)

2.5. Button 7

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

button = Button (2)

button.when_pressed = say_hello

pause ()

Note: Note that the line button.when_pressed = say_hello does not run the function say_hello,
rather it creates a reference to the function to be called when the button is pressed. Accidental use of button.
when_pressed = say_hello () would set the when_pressed action to None'* (the return value of this
function) which would mean nothing happens when the button is pressed.

Similarly, functions can be attached to button releases:

from gpiozero import Button
from signal import pause

def say_hello():
print ("Hello!")

def say_goodbye () :
print ("Goodbye!")

button = Button (2)

button.when_pressed = say_hello
button.when_released = say_goodbye

pause ()

2.6 Button controlled LED

o g
19903

€)

. A

VRV
[

u
]
111
%
=] o]0

- U\

14 https://docs.python.org/3.9/library/constants.html#None

8 Chapter 2. Basic Recipes

https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

Turn on an LED (page 125) when a But ton (page 105) is pressed:

from gpiozero import LED, Button
from signal import pause

led = LED(17)
button = Button (2)

button.when_pressed = led.on
button.when_released = led.off

pause ()

Alternatively:

from gpiozero import LED, Button
from signal import pause

led = LED(17)
button = Button (2)

led.source = button

pause ()

2.7 Button controlled camera

Using the button press to trigger PiCamera to take a picture using button.when_pressed = camera.
capture would not work because the capture () method requires an out put parameter. However, this can be
achieved using a custom function which requires no parameters:

from gpiozero import Button
from picamera import PiCamera
from datetime import datetime
from signal import pause

button Button (2)
camera = PiCamera ()

def capture():
camera.capture (f'/home/pi/{datetime.now() :$Y-%m-%d-%$H-%M-%S}.jpg")

button.when_pressed = capture

pause ()

Another example could use one button to start and stop the camera preview, and another to capture:

from gpiozero import Button
from picamera import PiCamera
from datetime import datetime
from signal import pause

left_button = Button (2)
right_button Button (3)
camera = PiCamera ()

def capture():
camera.capture (f'/home/pi/{datetime.now() :$Y-%m-%d-%$H-3M-%S}.jpg")

(continues on next page)

2.7. Button controlled camera 9

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

left_button.when_pressed = camera.start_preview
left_button.when_released = camera.stop_preview
right_button.when_pressed = capture

pause ()

2.8 Shutdown button

The Button (page 105) class also provides the ability to run a function when the button has been held for a given
length of time. This example will shut down the Raspberry Pi when the button is held for 2 seconds:

from gpiozero import Button
from subprocess import check_call
from signal import pause

def shutdown () :
check_call(['sudo', 'poweroff'])

shutdown_btn = Button (17, hold_time=2)
shutdown_btn.when_held = shutdown

pause ()

2.9 LEDBoard

o= ¢
19903

€)

!

o
11 01
10
3po
o o o
o o o

A RARARAN)

VPR

- U\

A collection of LEDs can be accessed using LEDBoard (page 157):

from gpiozero import LEDBoard
from time import sleep
from signal import pause

leds = LEDBoard(5, 6, 13, 19, 26)
(continues on next page)

10 Chapter 2. Basic Recipes

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

leds.on ()

sleep (1)

leds.off ()

sleep (1)

leds.value = (1, 0, 1, 0, 1)
sleep (1)

leds.blink ()

pause ()

Using LEDBoard (page 157) with pwm=True allows each LED’s brightness to be controlled:

from gpiozero import LEDBoard
from signal import pause

leds = LEDBoard(5, 6, 13, 19, 26, pwm=True)
leds.value = (0.2, 0.4, 0.6, 0.8, 1.0)

pause ()

See more LEDBoard (page 157) examples in the advanced LEDBoard recipes (page 37).

2.10 LEDBarGraph

~ TR x| EEtE &
&Bx)

VRV

u
]
1111
%
L]
°p

ARAN WA YA .

:

UV

- mvUmyvy L

[l

A collection of LEDs can be treated like a bar graph using LEDBarGraph (page 160):

from gpiozero import LEDBarGraph
from time import sleep

graph = LEDBarGraph(5, 6, 13, 19, 26, 20)
graph.value = 1 # (1, 1, 1, 1, 1, 1)

sleep (1)
(continues on next page)

2.10. LEDBarGraph 11

gpiozero 2.0.1 Documentation, Release 2.0.1

graph.value = 1/2 # (1, 1, 1, 0, O,
sleep (1)

graph.value = -1/2 # (0, 0, 0, 1, 1
sleep (1)

graph.valuve = 1/4 # (1, 0, 0, 0, O,
sleep (1)

graph.value = -1 # (1, 1, 1, 1, 1,
sleep (1)

(continued from previous page)

J

Note values are essentially rounded to account for the fact LEDs can only be on or off when pwm=False (the

default).

However, using LEDBarGraph (page 160) with pwm=True allows more precise values using LED brightness:

from gpiozero import LEDBarGraph
from time import sleep

graph = LEDBarGraph(5, 6, 13, 19, 26,
graph.value = 1/10 # (0.5, 0, 0, O,
sleep (1)

graph.value = 3/10 # (1, 0.5, 0, O,
sleep (1)

graph.value = -3/10 # (0, 0, 0, 0.5,
sleep (1)

graph.value = 9/10 # (1, 1, 1, 1, O.
sleep (1)

graph.value = 95/100 # (1, 1, 1, 1,
sleep (1)

pwm=True)

0)

0)

2.11 LEDCharDisplay

LLLLLLILIN Y]]
DSI (DISPLAY)

L L
(V43WVD) ISD

¥102 Id Asqdsey 6

T'TA Z I9PO |d Auisqdsey

fl

TR R b
R Ty PRI
oo em)ll .
::.'P“'.H .
it ||
L L B

A common 7-segment display'> can be used to represent a variety of characters using LEDCharDisplay (page 162)
(which actually supports an arbitrary number of segments):

15 https://en.wikipedia.org/wiki/Seven-segment_display

12

Chapter 2. Basic Recipes

https://en.wikipedia.org/wiki/Seven-segment_display

gpiozero 2.0.1 Documentation, Release 2.0.1

from gpiozero import LEDCharDisplay
from time import sleep

display = LEDCharDisplay (21, 20, 16, 22, 23, 24, 12, dp=25)
for char in '321GO':
display.value = char
sleep (1)
display.off ()
Alternatively:
from gpiozero import LEDCharDisplay
from signal import pause
display = LEDCharDisplay (21, 20, 16, 22, 23, 24, 12, dp=25)
display.source_delay = 1
display.source = '321GO '
pause ()
See a multi-character example in the advanced recipes (page 38) chapter.
2.12 Traffic Lights
Sttt M
- A~ g . el ¢ e— b
5 .'.“.q = .‘ PR 7/.' =
\,.leﬁ 9l S3sss Masaas ||
:." iy TS e |-
e & o o o (A" v
“.: = :: © o 0 o o e o o 0 o ::

- Uy

A full traffic lights system.

il

Usinga TrafficLights (page 167) kit like Pi-Stop:

from gpiozero import TrafficLights
from time import sleep

(continues on next page)

2.12. Traffic Lights

13

gpiozero 2.0.1 Documentation, Release 2.0.1

lights = TrafficLights (2, 3, 4)
lights.green.on ()

while True:
sleep (10)
lights.green.off ()
lights.amber.on ()
sleep (1)
lights.amber.off ()
lights.red.on ()
sleep (10)
lights.amber.on ()
sleep (1)
lights.green.on()
lights.amber.off ()
lights.red.off ()

(continued from previous page)

Alternatively:

from gpiozero import TrafficLights
from time import sleep
from signal import pause

lights = TrafficLights (2, 3, 4)

def traffic_light_sequence() :
while True:

yield (0, 0, 1) # green
sleep(10)
yield (0, 1, 0) # amber
sleep (1)
yield (1, 0, 0) # red
sleep(10)
yield (1, 1, 0) # red+amber
sleep (1)

lights.source = traffic_light_sequence ()

pause ()

Using LED (page 125) components:

from gpiozero import LED
from time import sleep

red = LED(2)
amber = LED(3)
green = LED (4)

green.on ()
amber.off ()
red.off ()

while True:
sleep (10)
green.off ()
amber.on ()
sleep (1)
amber.off ()

(continues on next page)

14

Chapter 2. Basic Recipes

gpiozero 2.0.1 Documentation, Release 2.0.1

red.on ()
sleep (10)
amber.on ()
sleep (1)
green.on ()
amber.off ()
red.off ()

(continued from previous page)

2.13 Push button stop motion

Capture a picture with the camera module every time a button is pressed:

from gpiozero import Button
from picamera import PiCamera

button = Button (2)
camera = PiCamera ()

camera.start_preview ()

frame = 1

while True:
button.wait_for_press ()
camera.capture (f'/home/pi/frame{frame:03d}.jpg")
frame += 1

See Push Button Stop Motion'® for a full resource.

2.14 Reaction Game

- B POt
.... 9. 33340 B s

L 9/ 33331 B

= i tiiinod
— [S osinn o

=. 2 Exxid
RN
S NREEER L

- VU

When you see the light come on, the first person to press their button wins!

16 hitps://projects.raspberrypi.org/en/projects/push-button-stop-motion

2.13. Push button stop motion

15

https://projects.raspberrypi.org/en/projects/push-button-stop-motion

gpiozero 2.0.1 Documentation, Release 2.0.1

from gpiozero import Button, LED
from time import sleep
import random

led = LED(17)

player_1 = Button(2)
player_2 = Button(3)

time = random.uniform(5, 10)
sleep (time)
led.on ()

while True:
if player_1.is_pressed:
print ("Player 1 wins!")
break
if player_2.is_pressed:
print ("Player 2 wins!")
break

led.off ()

See Quick Reaction Game'” for a full resource.

2.15 GPIO Music Box

3 o PPN
& ek

= TR %
= i
I
- ,VU_ ,\./\./| 22332 RS- p

Each button plays a different sound!

from gpiozero import Button
import pygame.mixer

from pygame.mixer import Sound
from signal import pause

(continues on next page)

17 https://projects.raspberrypi.org/en/projects/python-quick-reaction-game

16 Chapter 2. Basic Recipes

https://projects.raspberrypi.org/en/projects/python-quick-reaction-game

gpiozero 2.0.1 Documentation, Release 2.0.1

pygame.mixer.init ()

button_sounds = {
Button (2): Sound("samples/drum_tom_mid_hard.wav"),
Button (3) : Sound("samples/drum_cymbal_open.wav"),
}

for button, sound in button_sounds.items () :
button.when_pressed = sound.play

pause ()

(continued from previous page)

See GPIO Music Box'® for a full resource.

2.16 All on when pressed

While the button is pressed down, the buzzer and all the lights come on.

FishDish (page 173):

from gpiozero import FishDish
from signal import pause

fish = FishDish ()

fish.button.when_pressed = fish.on
fish.button.when_released = fish.off

pause ()

Ryanteck TrafficHat (page 173):

from gpiozero import TrafficHat
from signal import pause

th TrafficHat ()

th.button.when_pressed = th.on
th.button.when_released = th.off

pause ()

Using LED (page 125), Buzzer (page 131), and But ton (page 105) components:

from gpiozero import LED, Buzzer, Button
from signal import pause

button = Button (2)
buzzer = Buzzer (3)
red = LED (4)

amber = LED(5)
green = LED (6)

things = [red, amber, green, buzzer]

def things_on():
for thing in things:

18 https://projects.raspberrypi.org/en/projects/gpio-music-box

(continues on next page)

2.16. All on when pressed

17

https://projects.raspberrypi.org/en/projects/gpio-music-box

gpiozero 2.0.1 Documentation, Release 2.0.1

thing.on ()
def things_off () :
for thing in things:
thing.off ()

button.when_pressed = things_on
button.when_released = things_off

pause ()

(continued from previous page)

2.17 Full color LED

DSl (DISPLAY)

L L
(V43WVD) ISD

#7102 Id Auaqdsey o
T'TA Z ISPOIN Id Auisqdsey

>

ETHERNET

ﬂ ﬂ '\! \J‘ '\j \J‘

Making colours with an RGBLED (page 128):

’ccc-w
cc:cc c:
IPPPE RS,
IPPPE A,

\V/£

bA

from gpiozero import RGBLED
from time import sleep

led = RGBLED (red=9, green=10, blue=11)

led.red = 1 # full red
sleep (1)

led.red = 0.5 # half red
sleep (1)

led.color = (0, 1, 0) # full green
sleep (1)

led.color = (1, 0, 1) # magenta
sleep (1)

led.color = (1, 1, 0) # yellow
sleep (1)

led.color = (0, 1, 1) # cyan

sleep (1)

led.color = (1, 1, 1) # white
sleep (1)

(continues on next page)

18

Chapter 2. Basic Recipes

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

led.color = (0, 0, 0) # off
sleep (1)

slowly increase intensity of blue
for n in range(100) :

led.blue = n/100

sleep(0.1)

2.18 Motion sensor

DSI (DISPLAY;

‘ ‘ ‘
IRINRRNRNNRRNND
) -

L L
(V43WYD) ISD

102 1d Auagdsey o
e o o o o
e o o o o

T'TA Z I9POW Id Ausqdsey

fl

Light an LED (page 125) when a Mot ionSensor (page 109) detects motion:

from gpiozero import MotionSensor, LED
from signal import pause

pir = MotionSensor (4)
led LED (16)

(continues on next page)

2.18. Motion sensor 19

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

pir.when_motion = led.on
pir.when_no_motion = led.off
pause ()

2.19 Light sensor

— oS! (BISFA N . 99
b e : ¥ ¥
'3_::’3 . .

10
9po

- MyvEvy ekl [REEEH FEEREN B

Have a Light Sensor (page 111) detect light and dark:

from gpiozero import LightSensor
sensor = LightSensor (18)

while True:
sensor.wait_for_light ()

print ("It's light! :)")
sensor.wait_for_dark ()
print ("It's dark : (")

Run a function when the light changes:

from gpiozero import LightSensor, LED
from signal import pause

sensor = LightSensor (18)
led = LED(16)

sensor.when_dark = led.on
sensor.when_light = led.off

pause ()

Or make a PWMLED (page 127) change brightness according to the detected light level:

20 Chapter 2. Basic Recipes

gpiozero 2.0.1 Documentation, Release 2.0.1

from gpiozero import LightSensor, PWMLED
from signal import pause

sensor = LightSensor (18)
led = PWMLED (16)

led.source = sensor

pause ()

2.20 Distance sensor

TLLLLLILILLL]]
DSI (DISPLAY)

L
(V43IWVD) 1SD

$102 Id Auagdsey o

pel
Q
w
T
o
5]
3
3
<
i
=
9]
a
©
N
<
=
i

-oouu-oouu-oouuo-oocum-uo

Note: In the diagram above, the wires leading from the sensor to the breadboard can be omitted; simply plug the
sensor directly into the breadboard facing the edge (unfortunately this is difficult to illustrate in the diagram without
the sensor’s diagram obscuring most of the breadboard!)

Have a DistanceSensor (page 113) detect the distance to the nearest object:

from gpiozero import DistanceSensor
from time import sleep

sensor = DistanceSensor (23, 24)
while True:

print ('Distance to nearest object is', sensor.distance, 'm')
sleep (1)

Run a function when something gets near the sensor:

from gpiozero import DistanceSensor, LED
from signal import pause

(continues on next page)

2.20. Distance sensor 21

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

sensor = DistanceSensor (23, 24, max_distance=1, threshold_distance=0.2)
led = LED(16)

sensor.when_in_range = led.on
sensor.when_out_of_range = led.off
pause ()

2.21 Rotary encoder

‘ ‘ ‘
ININENNNNNNNNNN
) -

DSI (DISPLAY;

N/ E
b

L L
(V43WVD) ISD

(@)
2
[
n
o
o
[0}
3
3
<
)
)
o
=
B

>
c
=
5

T'TA Z I9POIN Id Auisqdsey

ETHERNET

Note: In this recipe, I've used a common anode RGB LED. Often, Pi projects use common cathode RGB LEDs
because they’re slightly easier to think about electrically. However, in this case all three components can be found in
an illuminated rotary encoder which incorporates a common anode RGB LED, and a momentary push button. This
is also the reason for the button being wired active-low, contrary to most other examples in this documentation.

For the sake of clarity, the diagram shows the three separate components, but this same circuit will work equally well
with this commonly available illuminated rotary encoder'? instead.

Have a RotaryEncoder (page 115), an RGBLED (page 128), and But t on (page 105) act as a color picker:

from threading import Event
from colorzero import Color
from gpiozero import RotaryEncoder, RGBLED, Button

rotor = RotaryEncoder (16, 20, wrap=True, max_steps=180)
rotor.steps = -180

led = RGBLED (22, 23, 24, active_high=False)

btn = Button (21, pull_up=False)

led.color = Color ('"#£f00")

done = Event ()

def change_hue () :
(continues on next page)

19 https://shop.pimoroni.com/products/rotary-encoder-illuminated-rgb

22 Chapter 2. Basic Recipes

https://shop.pimoroni.com/products/rotary-encoder-illuminated-rgb

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)
Scale the rotor steps (-180..180) to 0..1
hue = (rotor.steps + 180) / 360
led.color = Color (h=hue, s=1, v=1)

def show_color():
print (f'Hue {led.color.hue.deg:.1f}° = {led.color.html}'")

def stop_script():
print ('Exiting')
done.set ()

print ('Select a color by turning the knob')
rotor.when_rotated = change_hue

print ('Push the button to see the HTML code for the color')
btn.when_released = show_color

print ('Hold the button to exit')

btn.when_held = stop_script

done.wait ()

2.22 Servo

Control a Servo (page 137) between its minimum, mid-point and maximum positions in sequence:

from gpiozero import Servo
from time import sleep

servo = Servo (l1l7)

while True:
servo.min ()
sleep(2)
servo.mid ()
sleep(2)
servo.max ()
sleep(2)

Use a button to control the Servo (page 137) between its minimum and maximum positions:

from gpiozero import Servo, Button

servo = Servo(l7)
btn = Button(14)

while True:
servo.min ()
btn.wait_for_press|()
servo.max ()
btn.wait_for_press/()

Automate the Servo (page 137) to continuously slowly sweep:

from gpiozero import Servo
from gpiozero.tools import sin_values
from signal import pause

servo = Servo(l7)

servo.source = sin_values /()

(continues on next page)

2.22. Servo 23

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

servo.source_delay = 0.1

pause ()

Use AngularServo (page 139) so you can specify an angle:

from gpiozero import AngularServo
from time import sleep

servo = AngularServo (17, min_angle=-90, max_angle=90)

while True:
servo.angle = —-90
sleep(2)
servo.angle = —45
sleep(2)
servo.angle = 0
sleep(2)
servo.angle = 45
sleep(2)
servo.angle = 90
sleep(2)

2.23 Motors

TLITLLLLITRLL]]
)

DS (DISPLAY)

[
(V43WvD) 1SD

ETHERNET

102 Id Auagdsey o
V..
.

T'TA Z I9POW Id Auagdsey
AAAA
AmA AAAAA

J..

fl

Spin a Mot or (page 134) around forwards and backwards:

from gpiozero import Motor
from time import sleep

motor = Motor (forward=4, backward=14)

while True:
motor.forward ()
sleep (5)
motor.backward ()
sleep (5)

24 Chapter 2. Basic Recipes

gpiozero 2.0.1 Documentation, Release 2.0.1

2.24 Robot

DSI (DISPLAY)

e o o0 e o o0
e o o0 o e .
e o 000000 ofp o
e o 000000 offe o
e o 0000 0 offe offe o
e o o000 0 ofic ofle o
e o o000 0 ol ofle o
pel
1
X
%g— e o o000 0 off ofle o
'g_(_l: ® e 0o 00000 ofle o
= 3
0 < e e o000 0 ofp o
ENNNRNENNENNNNE 3 o
< = ® o 0o 0 0 0 0 0 . .
I L ECZ) ® o 0o 0 0 0 0 0 ° o
(V43WYD) ISD N o
O o
=2
NN
< o
o
-

Make a Robot (page 176) drive around in (roughly) a square:

from gpiozero import Robot, Motor
from time import sleep

robot = Robot (left=Motor (4, 14), right=Motor (17, 18))

for i in range (4):
robot . forward ()
sleep (10)
robot.right ()
sleep (1)

Make a Robot (page 176) with a DistanceSensor (page 113) that runs away when things get within 20cm of
it:

from gpiozero import Robot, Motor, DistanceSensor

from signal import pause
(continues on next page)

2.24. Robot 25

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

sensor = DistanceSensor (23, 24, max_distance=1, threshold_distance=0.2)
robot = Robot (left=Motor (4, 14), right=Motor (17, 18))

sensor.when_in_range = robot.backward
sensor.when_out_of_range = robot.stop
pause ()

2.25 Button controlled robot

LLLLILTRINLL]]
DSI (DISPLAY)

I I
(V43WYD) ISD

pe)
o8
i)
n O
2o
o
o<l
33
33
T =<
NS
(X0
=y
N
<
=
i

Use four GPIO buttons as forward/back/left/right controls for a Robot (page 176):

from gpiozero import Robot, Motor, Button
from signal import pause

robot = Robot (left=Motor (4, 14), right=Motor (17, 18))

(continues on next page)

26 Chapter 2. Basic Recipes

gpiozero 2.0.1 Documentation, Release 2.0.1

left = Button (26)
right = Button (16)
fw = Button(21)

bw = Button (20)

fw.when_pressed = robot.forward
fw.when_released = robot.stop

left .when_pressed = robot.left
left.when_released = robot.stop

right .when_pressed = robot.right
right .when_released = robot.stop

bw.when_pressed = robot.backward
bw.when_released = robot.stop

pause ()

(continued from previous page)

2.25. Button controlled robot

27

gpiozero 2.0.1 Documentation, Release 2.0.1

2.26 Keyboard controlled robot

DSI (DISPLAY)

e o o0 e o oo
e o o o o .
® e 000000 ofb o
e 0o 00000 offe o
© o 0o 00 0 0 offs ofie o
@ oo 0o 0 0 0 ofis ofle o
e oo 0o 0 o o ofis ofle o
pel
1
X
%E— e oo 000 0 ofs ofle o
'g_(_l: ® e 0o 00000 ofle o
= =
0 < e e o000 0 ofp o
NERRRRRNRNRNNN] 3
< = ® o 0o 0 0 0 0 0 . .
I L ECZ) ® o 0o 0 0 0 0 0 ° o
(V43WYD) ISD N o
S o
=2
NN
< .
o
o

Use up/down/left/right keys to control a Robot (page 176):

import curses
from gpiozero import Robot, Motor

robot = Robot (left=Motor (4, 14), right=Motor (17, 18))

actions = {
curses.KEY_UP: robot . forward,
curses.KEY_DOWN: robot.backward,
curses.KEY_LEFT: robot.left,
curses.KEY_RIGHT: robot.right,

def main (window) :
next_key = None
while True:
curses.halfdelay (1)
(continues on next page)

28 Chapter 2. Basic Recipes

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

if next_key is None:
key = window.getch ()
else:
key = next_key
next_key = None
if key != -1:
KEY PRESSED
curses.halfdelay (3)
action = actions.get (key)
if action is not None:
action ()
next_key = key
while next_key == key:
next_key = window.getch ()
KEY RELEASED
robot.stop ()

curses.wrapper (main)

Note: This recipe uses the standard curses?’ module. This module requires that Python is running in a terminal

in order to work correctly, hence this recipe will not work in environments like IDLE.

If you prefer a version that works under IDLE, the following recipe should suffice:

from gpiozero import Robot, Motor
from evdev import InputDevice, list_devices, ecodes

robot = Robot (left=Motor (4, 14), right=Motor (17, 18))

Get the list of available input devices

devices = [InputDevice (device) for device in list_devices ()]

Filter out everything that's not a keyboard. Keyboards are defined as any
device which has keys, and which specifically has keys 1..31 (roughly Esc,
the numeric keys, the first row of QWERTY plus a few more) and which does
not have key 0 (reserved)

must_have = {i for i in range(l, 32)}
must_not_have = {0}
devices = [
dev
for dev in devices
for keys in (set (dev.capabilities() .get (ecodes.EV_KEY, []1)),)

if must_have.issubset (keys)

and must_not_have.isdisjoint (keys)
1
Pick the first keyboard
keyboard = devices[0]

keypress_actions = {
ecodes.KEY_UP: robot.forward,
ecodes.KEY_DOWN: robot.backward,
ecodes.KEY_LEFT: robot.left,
ecodes.KEY_RIGHT: robot.right,

for event in keyboard.read_loop() :
if event.type == ecodes.EV_KEY and event.code in keypress_actions:
if event.value == 1: # key pressed
keypress_actions[event.code] ()

(continues on next page)

20 https://docs.python.org/3.9/library/curses.html#module-curses

2.26. Keyboard controlled robot

29

https://docs.python.org/3.9/library/curses.html#module-curses

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

if event.value == 0: # key released
robot.stop ()

Note: This recipe uses the third-party evdev module. Install this library with sudo pip3 install evdev
first. Be aware that evdev will only work with local input devices; this recipe will not work over SSH.

2.27 Motion sensor robot

LLLLLLILLNYL]]
DSI (DISPLAY)

oo 0 00 oo o0
e o o0 o e .
e o000 000 ofp o
® o0 00000 offe o
e o0 000 0 offc offe o
e o000 0 0 oflc ofle o
e o000 0 0 ofle ofle o
e X
o
o
g-g' e o000 0 0 offis ofle o
¥ -8-2 © o 000000 ofle o
o< ® o0 00 0 0 0 oflp o
(LLLITERRLIIER] 3 -
< = e o 000000 . .
' Eg e e 000000 . .
(V43WvD) ISD N
S o
o
AN
<
=
-

Make a robot drive forward when it detects motion:

30 Chapter 2. Basic Recipes

gpiozero 2.0.1 Documentation, Release 2.0.1

from gpiozero import Robot, Motor, MotionSensor
from signal import pause

robot = Robot (left=Motor (4, 14), right=Motor (17, 18))
pir = MotionSensor (5)

pir.when_motion = robot.forward
pir.when_no_motion = robot.stop
pause ()

Alternatively:

from gpiozero import Robot, Motor, MotionSensor
from gpiozero.tools import zip_values
from signal import pause

robot = Robot (left=Motor (4, 14), right=Motor (17, 18))
pir = MotionSensor (5)

robot.source = zip_values (pir, pir)

pause ()

2.28 Potentiometer

DSl (DISPLAY) -

L L
(V43WVD) ISD

#7102 Id Auaqdsey o
2 G.19po Id Ausagdsey

MCP3008
. oo 0

LA B o e o 0
® o oo CIIIunmUmD © © O O O O O O O O 0O
® © 0 0 0 0 0 00 0SSOSO GOSN OO OGS OCOD
e o o ® © 0 0 0 0 0 0 0 0 0 0 0 0o
e o 9 ® ® 0 0 0 0 0 0 0 0 0 0 0o
H
e o e o . .
e o e o e o . .

Continually print the value of a potentiometer (values between 0 and 1) connected to a MCP 3008 (page 149) analog
to digital converter:

2.28. Potentiometer 31

gpiozero 2.0.1 Documentation, Release 2.0.1

from gpiozero import MCP3008
pot = MCP3008 (channel=0)

while True:
print (pot.value)

Present the value of a potentiometer on an LED bar graph using PWM to represent states that won’t “fill” an LED:

from gpiozero import LEDBarGraph, MCP3008
from signal import pause

graph = LEDBarGraph(5, 6, 13, 19, 26, pwm=True)
pot = MCP3008 (channel=0)

graph.source = pot

pause ()

2.29 Measure temperature with an ADC

Wire a TMP36 temperature sensor to the first channel of an MCP3008 (page 149) analog to digital converter:

from gpiozero import MCP3008
from time import sleep

def convert_temp (gen) :
for value in gen:
yield (value * 3.3 - 0.5) * 100

adc = MCP3008 (channel=0)
for temp in convert_temp (adc.values) :

print ('The temperature is', temp, 'C')
sleep (1)

32 Chapter 2. Basic Recipes

gpiozero 2.0.1 Documentation, Release 2.0.1

2.30 Full color LED controlled by 3 potentiometers

DSI (DISPLAY)

id Aluaqdsey

L L
(V43WVD) ISD

ETHERNET

27002 'd Ausaden::

TALA T I9Ro

.
.
.
. e e 0o 00 00 . e 000000 .
.
MCP3008
e o 0 e o o0
¢ s s CIIIlhlhmlmhIIIUUnmnD ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o
© 6 0o 0 0 s CIIT'=nmD 6 6 6 0 0 0 0 0 0 o
© 6 0 0 0 00 00 CI:TIuID © 6 © 0 o o o o o
© 606 0606000060000 000000000000
o0 o0
o0 o0

Wire up three potentiometers (for red, green and blue) and use each of their values to make up the colour of the
LED:

from gpiozero import RGBLED, MCP3008

led = RGBLED (red=2, green=3, blue=4)
red_pot = MCP3008 (channel=0)
green_pot = MCP3008 (channel=1)
blue_pot = MCP3008 (channel=2)

while True:
led.red = red_pot.value
led.green = green_pot.value
led.blue = blue_pot.value

Alternatively, the following example is identical, but uses the source (page 200) property rather than a while?!
loop:

from gpiozero import RGBLED, MCP3008
from gpiozero.tools import zip_values
from signal import pause

led = RGBLED (2, 3, 4)
red_pot = MCP3008 (0)

green_pot = MCP3008 (1)
blue_pot = MCP3008(2)

(continues on next page)

21 https://docs.python.org/3.9/reference/compound_stmts. html#while

2.30. Full color LED controlled by 3 potentiometers 33

https://docs.python.org/3.9/reference/compound_stmts.html#while

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

led.source = zip_values (red_pot, green_pot, blue_pot)

pause ()

2.31 Timed heat lamp

If you have a pet (e.g. a tortoise) which requires a heat lamp to be switched on for a certain amount of time each day,
you can use an Energenie Pi-mote?” to remotely control the lamp, and the TimeOfDay (page 190) class to control
the timing:

from gpiozero import Energenie, TimeOfDay
from datetime import time
from signal import pause

lamp = Energenie (1)
daytime = TimeOfDay (time (8), time (20))

daytime.when_activated = lamp.on
daytime.when_deactivated = lamp.off

pause ()

2.32 Internet connection status indicator

You can use a pair of green and red LEDs to indicate whether or not your internet connection is working. Simply use
the PingServer (page 191) class to identify whether a ping to google.com is successful. If successful, the green
LED is lit, and if not, the red LED is lit:

from gpiozero import LED, PingServer
from gpiozero.tools import negated
from signal import pause

green = LED(17)
red = LED(18)

google = PingServer ('google.com')
google.when_activated = green.on
google.when_deactivated = green.off

red.source = negated(green)

pause ()

22 https://energenie4u.co.uk/catalogue/product/ENER002-2PT

34 Chapter 2. Basic Recipes

https://energenie4u.co.uk/catalogue/product/ENER002-2PI

gpiozero 2.0.1 Documentation, Release 2.0.1

2.33 CPU Temperature Bar Graph

You can read the Raspberry Pi’s own CPU temperature using the built-in CPUTemperature (page 192) class, and
display this on a “bar graph” of LEDs:

from gpiozero import LEDBarGraph, CPUTemperature
from signal import pause

cpu = CPUTemperature (min_temp=50, max_temp=90)
leds = LEDBarGraph(2, 3, 4, 5, 6, 7, 8, pwm=True)

leds.source = cpu

pause ()

2.34 More recipes

Continue to:
* Advanced Recipes (page 37)
* Remote GPIO Recipes (page 53)

2.33. CPU Temperature Bar Graph 35

gpiozero 2.0.1 Documentation, Release 2.0.1

36 Chapter 2. Basic Recipes

CHAPTER
THREE

ADVANCED RECIPES

The following recipes demonstrate some of the capabilities of the GPIO Zero library. Please note that all recipes are
written assuming Python 3. Recipes may work under Python 2, but no guarantees!

3.1 LEDBoard

You can iterate over the LEDs in a LEDBoard (page 157) object one-by-one:

from gpiozero import LEDBoard
from time import sleep

leds = LEDBoard(5, 6, 13, 19, 26)

for led in leds:
led.on ()
sleep (1)
led.off ()

LEDBoard (page 157) also supports indexing. This means you can access the individual LED (page 125) objects
using leds [1] where 1 is an integer from O up to (not including) the number of LEDs:

from gpiozero import LEDBoard
from time import sleep

leds = LEDBoard(2, 3, 4, 5, 6, 7, 8, 9)

leds[0] .on () # first led on
sleep (1)

leds[7] .on () # last led on
sleep (1)

leds[-1].0ff () # last led off
sleep (1)

This also means you can use slicing to access a subset of the LEDs:

from gpiozero import LEDBoard
from time import sleep

leds = LEDBoard(2, 3, 4, 5, 6, 7, 8, 9)

for led in leds[3:]: # leds 3 and onward
led.on ()

sleep (1)

leds.off ()

for led in leds[:2]: # leds 0 and 1
led.on ()

(continues on next page)

37

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

sleep (1)
leds.off ()

for led in leds[::2]: # even leds (0, 2, 4...)
led.on ()

sleep (1)

leds.off ()

for led in leds[1::2]: # odd leds (1, 3, 5...)
led.on ()

sleep (1)

leds.off ()

LEDBoard (page 157) objects can have their LED objects named upon construction. This means the individual
LEDs can be accessed by their name:

from gpiozero import LEDBoard
from time import sleep

leds = LEDBoard(red=2, green=3, blue=4)

leds.red.on ()

sleep (1)
leds.green.on()
sleep (1)
leds.blue.on ()
sleep (1)

LEDBoard (page 157) objects can also be nested within other LEDBoard (page 157) objects:

from gpiozero import LEDBoard
from time import sleep

leds = LEDBoard(red=LEDBoard(top=2, bottom=3), green=LEDBoard (top=4, bottom=5))

leds.red.on () ## both reds on

sleep (1)

leds.green.on () # both greens on

sleep (1)

leds.off () # all off

sleep (1)

leds.red.top.on() # top red on

sleep (1)

leds.green.bottom.on () # bottom green on
sleep (1)

3.2 Multi-character 7-segment display

The 7-segment display demonstrated in the previous chapter is often available in multi-character variants (typically
4 characters long). Such displays are multiplexed meaning that the LED pins are typically the same as for the single
character display but are shared across all characters. Each character in turn then has its own common line which
can be tied to ground (in the case of a common cathode display) to enable that particular character. By activating
each character in turn very quickly, the eye can be fooled into thinking four different characters are being displayed
simultaneously.

In such circuits you should not attempt to sink all the current from a single character (which may have up to 8 LEDs, in
the case of a decimal-point, active) into a single GPIO. Rather, use some appropriate transistor (or similar component,
e.g. an opto-coupler) to tie the digit’s cathode to ground, and control that component from a GPIO.

38 Chapter 3. Advanced Recipes

gpiozero 2.0.1 Documentation, Release 2.0.1

TITTTCTTTETTT)
(DISPLAY)

o]
o
o
o
3
-]
N
o
=4
=

1+ A Z |9POI Id AL

This circuit demonstrates a 4-character 7-segment (actually 8-segment, with decimal-point) display, controlled by the
Pi’s GPIOs with 4 2N-3904 NPN transistors to control the digits.

Warning: You are strongly advised to check the data-sheet for your particular multi-character 7-segment display.
The pin-outs of these displays vary significantly and are very likely to be different to that shown on the breadboard
above. For this reason, the schematic for this circuit is provided below; adapt it to your particular display.

—1o-s0dv

{Grio26 p— N o

V10D v : v
Y

€910

——{v-sodv ©
=] GPI02 DAL 12C GPIO21
V,
] GPIO3 5CL1 12C GPI020 R1-R8 " \/Q
———d GPIO4 RaspberryPi GPIO16 330Q 8 O
] GPIO17 Model 2 V1.1 cpionn I A da = @
] GPi027 ID_SC 12C ID EEPROM WA — /\/\Q
s . Y A 1 .
— 0 SPIO_MOSI GPIOB SPI0_ CEON \~ 3 o
—c GPIO25
\l a V,
e Gri0 GPI024) l\/\Nv 2 1 R Q\/m
=] ID_SD 12¢ ID EEPROM GPI023 e —s Er3
—]cri0s GPIO18 PCM CLK L AMWN—— 322 O = o)
o S
05 GPIO15 UARTO_RXD m"§ @
~
GPIO13 GPIO14 UARTO. DD e /\
- 7\
{crio10 7\
o
: =

MW
R9-R12
33k0

zo1a ©

1910 \/ : \ U

Ql-Q4
2N 3904

The following code can be used to scroll a message across the display:

from itertools import cycle

from collections import deque

from gpiozero import LEDMultiCharDisplay
from signal import pause

display = LEDMultiCharDisplay (
LEDCharDisplay (22, 23, 24, 25, 21, 20, 16, dp=12), 26, 19, 13, 6)

def scroller (message, chars=4):

(continues on next page)

3.2. Multi-character 7-segment display 39

gpiozero 2.0.1 Documentation, Release 2.0.1

d = deque (maxlen=chars)
for ¢ in cycle (message):
d.append(c)
if len(d) == chars:
yield ''.join (d)
display.source_delay 0.2
display.source = scroller ('GPIO 2ERO ")
pause ()

(continued from previous page)

3.3 Who’s home indicator

Using a number of green-red LED pairs, you can show the status of who’s home, according to which IP addresses
you can ping successfully. Note that this assumes each person’s mobile phone has a reserved IP address on the home

router.

from gpiozero import PingServer, LEDBoard

from gpiozero.tools import negated

from signal import pause

status = LEDBoard (
mum=LEDBoard (red=14, green=15),
dad=LEDBoard (red=17, green=18),
alice=LEDBoard (red=21, green=22)

statuses {
PingServer ('192.168.1.5"):
PingServer ('192.168.1.6"):
PingServer ('192.168.1.7"):

status.mum,
status.dad,
status.alice,

for server, leds in statuses.items () :
leds.green.source = server
leds.green.source_delay 60

leds.red.source negated (leds.green)

pause ()

Alternatively, using the STATUS Zero” board:

from gpiozero import PingServer, StatusZero
from gpiozero.tools import negated
from signal import pause

status StatusZero ('mum', 'dad', 'alice')
statuses = {
PingServer ('192.168.1.5"):
PingServer ('192.168.1.6"):

PingServer ('192.168.1.7"):

status.mum,
status.dad,
status.alice,

for server, leds in statuses.items () :
leds.green.source server
leds.green.source_delay 60

leds.red.source negated(leds.green)

23 https://thepihut.com/status

(continues on next page)

40 Chapter 3

. Advanced Recipes

https://thepihut.com/status

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

pause ()

3.4 Travis build LED indicator

Use LEDs to indicate the status of a Travis build. A green light means the tests are passing, a red light means the
build is broken:

from travispy import TravisPy

from gpiozero import LED

from gpiozero.tools import negated
from time import sleep

from signal import pause

def build_passed(repo) :
t = TravisPy ()
r = t.repo (repo)
while True:
yield r.last_build_state == 'passed'

red = LED(12)
green = LED(16)

green.source = build_passed('gpiozero/gpiozero")
green.source_delay = 60 * 5 # check every 5 minutes

red.source = negated(green)

pause ()

Note this recipe requires travispy>*. Install with sudo pip3 install travispy.

3.5 Button controlled robot

Alternatively to the examples in the simple recipes, you can use four buttons to program the directions and add a fifth
button to process them in turn, like a Bee-Bot or Turtle robot.

from gpiozero import Button, Robot, Motor
from time import sleep
from signal import pause

robot = Robot (Motor (17, 18), Motor (22, 23))

left = Button(2)
right = Button (3)
forward = Button (4)
backward = Button (5)
go = Button (6)

instructions = []

def add_instruction (btn) :
instructions.append ({
left: (-1, 1),

right: (iL, =iy,

(continues on next page)

24 https://travispy.readthedocs.io/

3.4. Travis build LED indicator 41

https://travispy.readthedocs.io/

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

forward: (L, 4y,
backward: (-1, -1),
} [btn])

def do_instructions():
instructions.append((0, 0))
robot.source_delay = 0.5
robot.source = instructions
sleep (robot.source_delay * len(instructions))
del instructions(:]

go.when_pressed = do_instructions
for button in (left, right, forward, backward) :
button.when_pressed = add_instruction

pause ()

3.6 Robot controlled by 2 potentiometers

Use two potentiometers to control the left and right motor speed of a robot:

from gpiozero import Robot, Motor, MCP3008
from gpiozero.tools import zip_values
from signal import pause

robot = Robot (left=Motor (4, 14), right=Motor (17, 18))

left_pot = MCP3008(0)
right_pot = MCP3008 (1)

robot.source = zip_values (left_pot, right_pot)

pause ()

To include reverse direction, scale the potentiometer values from 0->1 to -1->1:

from gpiozero import Robot, Motor, MCP3008
from gpiozero.tools import scaled
from signal import pause

robot = Robot (left=Motor (4, 14), right=Motor (17, 18))

left_pot = MCP3008(0)
right_pot = MCP3008 (1)

robot.source = zip(scaled(left_pot, -1, 1), scaled(right_pot, -1, 1))

pause ()

Note: Please note the example above requires Python 3. In Python 2, zip () %° doesn’t support lazy evaluation so
the script will simply hang.

25 https://docs.python.org/3.9/library/functions.html#zip

42 Chapter 3. Advanced Recipes

https://docs.python.org/3.9/library/functions.html#zip

gpiozero 2.0.1 Documentation, Release 2.0.1

3.7 BlueDot LED

BlueDot is a Python library an Android app which allows you to easily add Bluetooth control to your Raspberry Pi
project. A simple example to control a LED using the BlueDot app:

from bluedot import BlueDot
from gpiozero import LED

bd = BlueDot ()
led = LED(17)

while True:
bd.wait_for_press()
led.on ()
bd.wait_for_release ()
led.off ()

Note this recipe requires b1uedot and the associated Android app. See the BlueDot documentation?® for installation
instructions.

3.8 BlueDot robot

You can create a Bluetooth controlled robot which moves forward when the dot is pressed and stops when it is released:

from bluedot import BlueDot
from gpiozero import Robot, Motor
from signal import pause

bd = BlueDot ()
robot = Robot (left=Motor (4, 14), right=Motor (17, 18))

def move (pos) :

if pos.top:

robot . forward (pos.distance)
elif pos.bottom:

robot .backward (pos.distance)
elif pos.left:

robot.left (pos.distance)
elif pos.right:

robot .right (pos.distance)

bd.when_pressed = move
bd.when_moved = move

bd.when_released = robot.stop

pause ()

Or a more advanced example including controlling the robot’s speed and precise direction:

from gpiozero import Robot, Motor
from bluedot import BlueDot
from signal import pause

def pos_to_values(x, Vy):
left =y if x > 0 else y + x
right = y if x < 0 else y - x
return (clamped(left), clamped(right))

(continues on next page)

26 https://bluedot.readthedocs.io/en/latest/index.html

3.7. BlueDot LED 43

https://bluedot.readthedocs.io/en/latest/index.html

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

def clamped(v) :
return max (-1, min(1l, v))

def drive():
while True:
if bd.is_pressed:
%X, vy = bd.position.x, bd.position.y
yield pos_to_values(x, V)
else:
yield (0, 0)

robot = Robot (left=Motor (4, 14), right=Motor (17, 18))
bd = BlueDot ()

robot .source = drive ()

pause ()

3.9 Controlling the Pi’s own LEDs

On certain models of Pi (specifically the model A+, B+, and 2B) it’s possible to control the power and activity LEDs.
This can be useful for testing GPIO functionality without the need to wire up your own LEDs (also useful because
the power and activity LEDs are “known good”).

Firstly you need to disable the usual triggers for the built-in LEDs. This can be done from the terminal with the
following commands:

$ echo none | sudo tee /sys/class/leds/led0O/trigger
$ echo gpio | sudo tee /sys/class/leds/ledl/trigger

Now you can control the LEDs with gpiozero like so:

from gpiozero import LED
from signal import pause

power = LED(35) # /sys/class/leds/ledl
activity = LED(47) # /sys/class/leds/led0

activity.blink ()
power.blink ()
pause ()

To revert the LEDs to their usual purpose you can either reboot your Pi or run the following commands:

$ echo mmcO | sudo tee /sys/class/leds/led0O/trigger
$ echo input | sudo tee /sys/class/leds/ledl/trigger

Note: On the Pi Zero you can control the activity LED with this recipe, but there’s no separate power LED to control
(it’s also worth noting the activity LED is active low, so set act ive_high=False when constructing your LED
component).

On the original Pi 1 (model A or B), the activity LED can be controlled with GPIO16 (after disabling its trigger as
above) but the power LED is hard-wired on.

On the Pi 3 the LEDs are controlled by a GPIO expander which is not accessible from gpiozero (yet).

44 Chapter 3. Advanced Recipes

CHAPTER
FOUR

CONFIGURING REMOTE GPIO

GPIO Zero supports a number of different pin implementations (low-level pin libraries which deal with the GPIO pins
directly). By default, the RPi.GPIO?’ library is used (assuming it is installed on your system), but you can optionally
specify one to use. For more information, see the AP/ - Pins (page 221) documentation page.

One of the pin libraries supported, pigpio*®, provides the ability to control GPIO pins remotely over the network,
which means you can use GPIO Zero to control devices connected to a Raspberry Pi on the network. You can do this
from another Raspberry Pi, or even from a PC.

See the Remote GPIO Recipes (page 53) page for examples on how remote pins can be used.

4.1 Preparing the Raspberry Pi

If you're using Raspberry Pi OS (desktop - not Lite) then you have everything you need to use the remote GPIO
feature. If you're using Raspberry Pi OS Lite, or another distribution, you’ll need to install pigpio:

[$ sudo apt install pigpio

Alternatively, pigpio is available from abyz.me.uk?’.

You'll need to enable remote connections, and launch the pigpio daemon on the Raspberry Pi.

27 https://pypi.python.org/pypi/RPi.GPIO
28 http://abyz.me.uk/rpi/pigpio/python.html
29 http://abyz.me.uk/rpi/pigpio/download.html

45

https://pypi.python.org/pypi/RPi.GPIO
http://abyz.me.uk/rpi/pigpio/python.html
http://abyz.me.uk/rpi/pigpio/download.html

gpiozero 2.0.1 Documentation, Release 2.0.1

4.1.1 Enable remote connections

On the Raspberry Pi OS desktop image, you can enable Remote GPIO in the Raspberry Pi configuration tool:

Raspberry Pi Configuration

System Interfaces | Performance | Localisation
Camera:) Enabled (=) Disabled
SSH:) Enabled (= Disabled
VNC:) Enabled (= Disabled
SPI:) Enabled (« Disabled
12C: (U Enabled («) Disabled
Serial:) Enabled (=) Disabled
1-Wire:) Enabled (= Disabled
Remote GPIO: (=) |[Enabled Disabled

Cancel OK

Alternatively, enter sudo raspi-config on the command line, and enable Remote GPIO. This is functionally
equivalent to the desktop method.

This will allow remote connections (until disabled) when the pigpio daemon is launched using systemectl (see
below). It will also launch the pigpio daemon for the current session. Therefore, nothing further is required for the
current session, but after a reboot, a systemect 1l command will be required.

4.1.2 Command-line: systemctl

To automate running the daemon at boot time, run:

[$ sudo systemctl enable pigpiod

To run the daemon once using systemctl, run:

[$ sudo systemctl start pigpiod

46 Chapter 4. Configuring Remote GPIO

gpiozero 2.0.1 Documentation, Release 2.0.1

4.1.3 Command-line: pigpiod

Another option is to launch the pigpio daemon manually:

[$ sudo pigpiod J

This is for single-session-use and will not persist after a reboot. However, this method can be used to allow connections
from a specific IP address, using the —n flag. For example:

$ sudo pigpiod -n localhost # allow localhost only
$ sudo pigpiod -n 192.168.1.65 # allow 192.168.1.65 only
$ sudo pigpiod -n localhost -n 192.168.1.65 # allow localhost and 192.168.1.65 only

Note: Note that running sudo pigpiod will not honour the Remote GPIO configuration setting (i.e. without
the —n flag it will allow remote connections even if the remote setting is disabled), but sudo systemctl en-
able pigpiodorsudo systemctl start pigpiod will notallow remote connections unless configured
accordingly.

4.2 Preparing the control computer

If the control computer (the computer you're running your Python code from) is a Raspberry Pi running Raspberry
Pi OS (or a PC running Raspberry Pi Desktop x86°"), then you have everything you need. If you’re using another
Linux distribution, Mac OS or Windows then you'll need to install the pigpio®' Python library on the PC.

4.2.1 Raspberry Pi

First, update your repositories list:

[$ sudo apt update }

Then install GPIO Zero and the pigpio library for Python 3:

[$ sudo apt install python3-gpiozero python3-pigpio J
or Python 2:
[$ sudo apt install python-gpiozero python-pigpio J

Alternatively, install with pip:

[$ sudo pip3 install gpiozero pigpio J
or for Python 2:
[$ sudo pip install gpiozero pigpio J

30 https://www.raspberrypi.org/downloads/raspberry-pi- desktop/
31 http://abyz.me.uk/rpi/pigpio/python.html

4.2. Preparing the control computer 47

https://www.raspberrypi.org/downloads/raspberry-pi-desktop/
http://abyz.me.uk/rpi/pigpio/python.html

gpiozero 2.0.1 Documentation, Release 2.0.1

4.2.2 Linux

First, update your distribution’s repositories list. For example:

[$ sudo apt update

Then install pip for Python 3:

[$ sudo apt install python3-pip

or

Python 2:

[$ sudo apt install python-pip

(Alternatively, install pip with get-pip”

?2)

Next, install GPIO Zero and pigpio for Python 3:

[$ sudo pip3 install gpiozero pigpio

or

Python 2:

[$ sudo pip install gpiozero pigpio

4.2.3 Mac OS

First, install pip. If you installed Python 3 using brew, you will already have pip. If not, install pip with get-pip**.

Next, install GPIO Zero and pigpio with pip:

[$ pip3 install gpiozero pigpio

Or

for Python 2:

[$ pip install gpiozero pigpio

4.2.4 Windows

Modern Python installers for Windows bundle pip with Python. If pip is not installed, you can follow this guide.
Next, install GPIO Zero and pigpio with pip:

[C:\Users\userl> pip install gpiozero pigpio

4.3 Environment variables

The simplest way to use devices with remote pins is to set the PTGPTO_ADDR (page 77) environment variable to the
IP address of the desired Raspberry Pi. You must run your Python script or launch your development environment
with the environment variable set using the command line. For example, one of the following:

v » v »n

PIGPIO_ADDR=192.
PIGPIO_ADDR=192.
PIGPIO_ADDR=192.
PIGPIO_ADDR=192.

168.
168.
168.
168.

I

w w w w

python3 hello.py
python3
ipython3
idle3 &

32 https://pip.pypa.io/en/stable/installing/
33 https://pip.pypa.io/en/stable/installing/
34 https://projects.raspberrypi.org/en/projects/using- pip-on-windows

48

Chapter 4. Configuring Remote GPIO

https://pip.pypa.io/en/stable/installing/
https://pip.pypa.io/en/stable/installing/
https://projects.raspberrypi.org/en/projects/using-pip-on-windows

gpiozero 2.0.1 Documentation, Release 2.0.1

If you are running this from a PC (not a Raspberry Pi) with gpiozero and the pigpio®> Python library installed, this will
work with no further configuration. However, if you are running this from a Raspberry Pi, you will also need to ensure
the default pin factory is set to Pi GPTOFactory (page 236). If RPi.GPIO?° is installed, this will be selected as the
default pin factory, so either uninstall it, or use the GPTOZERO_PIN_FACTORY (page 77) environment variable to
override it:

[$ GPIOZERO_PIN_FACTORY=pigpio PIGPIO_ADDR=192.168.1.3 python3 hello.py }

This usage will set the pin factory to Pi GPTOFactory (page 236) with a default host of 192.168.1. 3. The pin
factory can be changed inline in the code, as seen in the following sections.

With this usage, you can write gpiozero code like you would on a Raspberry Pi, with no modifications needed. For
example:

from gpiozero import LED
from time import sleep

red = LED(17)

while True:
red.on ()
sleep (1)
red.off ()
sleep (1)

When run with:

[s PIGPIO_ADDR=192.168.1.3 python3 led.py]

will flash the LED connected to pin 17 of the Raspberry Pi with the IP address 192.168.1. 3. And:

[$ PIGPIO_ADDR=192.168.1.4 python3 led.py]

will flash the LED connected to pin 17 of the Raspberry Pi with the IP address 192.168.1 .4, without any code
changes, as long as the Raspberry Pi has the pigpio daemon running.

Note: When running code directly on a Raspberry Pi, any pin factory can be used (assuming the relevant library is
installed), but when a device is used remotely, only PiGPIOFactory (page 236) can be used, as pigpio?’ is the
only pin library which supports remote GPIO.

4.4 Pin factories

An alternative (or additional) method of configuring gpiozero objects to use remote pins is to create instances of
PiGPIOFactory (page 236) objects, and use them when instantiating device objects. For example, with no envi-
ronment variables set:

from gpiozero import LED
from gpiozero.pins.pigpio import PiGPIOFactory
from time import sleep

factory = PiGPIOFactory (host='192.168.1.3")
led = LED (17, pin_factory=factory)

while True:

(continues on next page)

35 http://abyz.me.uk/rpi/pigpio/python.htm]
36 https://pypi.python.org/pypi/RPi.GPIO
37 http://abyz.me.uk/rpi/pigpio/python.htm]

4.4. Pin factories 49

http://abyz.me.uk/rpi/pigpio/python.html
https://pypi.python.org/pypi/RPi.GPIO
http://abyz.me.uk/rpi/pigpio/python.html

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)
led.on ()
sleep (1)
led.off ()
sleep (1)

This allows devices on multiple Raspberry Pis to be used in the same script:

from gpiozero import LED
from gpiozero.pins.pigpio import PiGPIOFactory
from time import sleep

factory3 = PiGPIOFactory (host='192.168.1.3")
factory4 = PiGPIOFactory (host="'192.168.1.4")
led_1 = LED(17, pin_factory=factory3)
led_2 = LED (17, pin_factory=factoryd)

while True:
led_1.on¢()
led_2.0ff ()
sleep (1)
led_1.0ff ()
led_2.on¢()
sleep (1)

You can, of course, continue to create gpiozero device objects as normal, and create others using remote pins. For
example, if run on a Raspberry Pi, the following script will flash an LED on the controller Pi, and also on another Pi
on the network:

from gpiozero import LED
from gpiozero.pins.pigpio import PiGPIOFactory
from time import sleep

remote_factory = PiGPIOFactory (host='192.168.1.3")
led_1 = LED(17) # local pin
led_2 = LED(17, pin_factory=remote_factory) # remote pin

while True:
led_1.on¢()
led_2.0ff ()
sleep (1)
led_1.0ff ()
led_2.on()
sleep (1)

Alternatively, ~when run with the environment variables GPIOZERO_PIN_FACTORY=pigpio
PIGPIO_ADDR=192.168.1. 3 set, the following script will behave exactly the same as the previous one:

from gpiozero import LED
from gpiozero.pins.rpigpio import RPiGPIOFactory
from time import sleep

local_factory = RPiGPIOFactory ()
led_1 = LED(17, pin_factory=local_factory) # local pin
led_2 = LED(17) # remote pin

while True:
led_1.on¢()
led_2.0ff ()
sleep (1)
led_1.0ff ()
led_2.on¢()

(continues on next page)

50 Chapter 4. Configuring Remote GPIO

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)
{ sleep (1)

Of course, multiple IP addresses can be used:

from gpiozero import LED
from gpiozero.pins.pigpio import PiGPIOFactory
from time import sleep

factory3 = PiGPIOFactory (host='192.168.1.3"
factory4 = PiGPIOFactory (host="'192.168.1.4

led_1 LED (17) # local pin
led_2 LED (17, pin_factory=factory3) # remote pin on one pi
led_3 = LED(17, pin_factory=factory4) # remote pin on another pi

while True:
led_1.on¢()
led_2.0ff ()
led_3.on()
sleep (1)
led_1.0ff ()
led_2.on()
led_3.0ff ()
sleep (1)

J

Note that these examples use the LED (page 125) class, which takes a pin argument to initialise. Some classes,
particularly those representing HATSs and other add-on boards, do not require their pin numbers to be specified.
However, it is still possible to use remote pins with these devices, either using environment variables, or the pin_factory
keyword argument:

import gpiozero

from gpiozero import TrafficHat

from gpiozero.pins.pigpio import PiGPIOFactory
from time import sleep

gpiozero.Device.pin_factory = PiGPIOFactory (host='192.168.1.3")
th = TrafficHat () # traffic hat on 192.168.1.3 using remote pins

This also allows you to swap between two IP addresses and create instances of multiple HATs connected to different
Pis:

import gpiozero

from gpiozero import TrafficHat

from gpiozero.pins.pigpio import PiGPIOFactory
from time import sleep

remote_factory = PiGPIOFactory (host="'192.168.1.3")
th_ 1 = TrafficHat () # traffic hat using local pins

th_2 = TrafficHat (pin_factory=remote_factory) # traffic hat on 192.168.1.3 using.
—remote pins

J

You could even use a HAT which is not supported by GPIO Zero (such as the Sense HAT>®) on one Pi, and use
remote pins to control another over the network:

from gpiozero import MotionSensor
from gpiozero.pins.pigpio import PiGPIOFactory
from sense_hat import SenseHat

(continues on next page)

38 https://www.raspberrypi.org/products/sense-hat/

4.4. Pin factories 51

https://www.raspberrypi.org/products/sense-hat/

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)
remote_factory = PiGPIOFactory (host="'192.198.1.4")

pir = MotionSensor (4, pin_factory=remote_factory) # remote motion sensor
sense = SenseHat () # local sense hat

while True:
pir.wait_for_motion ()
sense.show_message (sense.temperature)

Note that in this case, the Sense HAT code must be run locally, and the GPIO remotely.

4.5 Remote GPIO usage

Continue to:
* Remote GPIO Recipes (page 53)
» Pi Zero USB OTG (page 57)

52 Chapter 4. Configuring Remote GPIO

CHAPTER
FIVE

REMOTE GPIO RECIPES

The following recipes demonstrate some of the capabilities of the remote GPIO feature of the GPIO Zero library.
Before you start following these examples, please read up on preparing your Pi and your host PC to work with

Configuring Remote GPIO (page 45).

Please note that all recipes are written assuming Python 3. Recipes may work under Python 2, but no guarantees!

5.1 LED + Button

Let a But ton (page 105) on one Raspberry Pi control the LED (page 125) of another:

from gpiozero import Button, LED
from gpiozero.pins.pigpio import PiGPIOFactory
from signal import pause

factory = PiGPIOFactory (host='192.168.1.3")

button = Button (2)

led LED (17, pin_factory=factory)
led.source = button
pause ()

5.2 LED + 2 Buttons

The LED (page 125) will come on when both buttons are pressed:

from gpiozero import Button, LED

from gpiozero.pins.pigpio import PiGPIOFactory
from gpiozero.tools import all_values

from signal import pause

factory3 = PiGPIOFactory (host="'192.168.1.3")
factory4 = PiGPIOFactory (host='192.168.1.4")

led LED (17)
button_1 = Button(17, pin_factory=factory3)
button_2 = Button (17, pin_factory=factory4)

led.source = all_values (button_1, button_2)

pause ()

53

gpiozero 2.0.1 Documentation, Release 2.0.1

5.3 Multi-room motion alert

Install a Raspberry Pi with a MotionSensor (page 109) in each room of your house, and have an class:LED
indicator showing when there’s motion in each room:

from gpiozero import LEDBoard, MotionSensor
from gpiozero.pins.pigpio import PiGPIOFactory
from gpiozero.tools import zip_values

from signal import pause

ips = ['192.168.1.3', '192.168.1.4', '192.168.1.5', '192.168.1.6"]
remotes = [PiGPIOFactory (host=ip) for ip in ips]

leds = LEDBoard(2, 3, 4, 5) # leds on this pi

sensors = [MotionSensor (17, pin_factory=r) for r in remotes] # remote sensors
leds.source = zip_values (*sensors)
pause ()

5.4 Multi-room doorbell

Install a Raspberry Pi with a Buzzer (page 131) attached in each room you want to hear the doorbell, and use a
push But ton (page 105) as the doorbell:

from gpiozero import LEDBoard, MotionSensor
from gpiozero.pins.pigpio import PiGPIOFactory
from signal import pause

ips = ['192.168.1.3', '192.168.1.4"', '192.168.1.5', '192.168.1.6"]
remotes = [PiGPIOFactory (host=ip) for ip in ips]

button = Button (17) # button on this pi
buzzers = [Buzzer (pin, pin_factory=r) for r in remotes] # buzzers on remote pins

for buzzer in buzzers:
buzzer.source = button

pause ()

This could also be used as an internal doorbell (tell people it’s time for dinner from the kitchen).

5.5 Remote button robot

Similarly to the simple recipe for the button controlled Robot (page 176), this example uses four buttons to control
the direction of a robot. However, using remote pins for the robot means the control buttons can be separate from
the robot:

from gpiozero import Button, Robot, Motor
from gpiozero.pins.pigpio import PiGPIOFactory
from signal import pause

factory = PiGPIOFactory (host="'192.168.1.17")
robot = Robot (left=Motor (4, 14), right=Motor (17, 18),

pin_factory=factory) # remote pins

(continues on next page)

54 Chapter 5. Remote GPIO Recipes

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

local buttons
left = Button(26)
right = Button(16)
fw = Button(21)
bw = Button (20)

fw.when_pressed = robot.forward
fw.when_released = robot.stop

left.when_pressed = robot.left
left.when_released = robot.stop

right.when_pressed = robot.right
right .when_released = robot.stop

bw.when_pressed = robot.backward
bw.when_released = robot.stop

pause ()

5.6 Light sensor + Sense HAT

The Sense HAT?? (not supported by GPIO Zero) includes temperature, humidity and pressure sensors, but no light
sensor. Remote GPIO allows an external Light Sensor (page 111) to be used as well. The Sense HAT LED
display can be used to show different colours according to the light levels:

from gpiozero import LightSensor
from gpiozero.pins.pigpio import PiGPIOFactory
from sense_hat import SenseHat

remote_factory = PiGPIOFactory (host='192.168.1.4")

light = LightSensor (4, pin_factory=remote_factory) # remote motion sensor
sense = SenseHat () # local sense hat

blue = (0, 0, 255)

yellow = (255, 255, 0)

while True:
if light.value > 0.5:
sense.clear (yellow)
else:
sense.clear (blue)

Note that in this case, the Sense HAT code must be run locally, and the GPIO remotely.

39 https://www.raspberrypi.org/products/sense- hat/

5.6. Light sensor + Sense HAT 55

https://www.raspberrypi.org/products/sense-hat/

gpiozero 2.0.1 Documentation, Release 2.0.1

56 Chapter 5. Remote GPIO Recipes

CHAPTER
SIX

Pl ZERO USB OTG

The Raspberry Pi Zero*’ and Pi Zero W*! feature a USB OTG port, allowing users to configure the device as (amongst
other things) an Ethernet device. In this mode, it is possible to control the Pi Zero’s GPIO pins over USB from another
computer using the remote GPIO (page 45) feature.

6.1 GPIO expander method - no SD card required

The GPIO expander method allows you to boot the Pi Zero over USB from the PC, without an SD card. Your PC
sends the required boot firmware to the Pi over the USB cable, launching a mini version of Raspberry Pi OS and
booting it in RAM. The OS then starts the pigpio daemon, allowing “remote” access over the USB cable.

At the time of writing, this is only possible using either the Raspberry Pi Desktop x86 OS, or Ubuntu (or a derivative),
or from another Raspberry Pi. Usage from Windows and Mac OS is not supported at present.

6.1.1 Raspberry Pi Desktop x86 setup

1. Download an ISO of the Raspberry Pi Desktop OS*? from raspberrypi.org
2. Write the image to a USB stick or burn to a DVD.

3. Live boot your PC or Mac into the OS (select “Run with persistence” and your computer will be back to normal
afterwards).

6.1.2 Raspberry Pi setup (using Raspberry Pi OS)

1. Update your package list and install the usbbootgui package:

$ sudo apt update
$ sudo apt install usbbootgui

40 https://www.raspberrypi.org/products/raspberry- pi- zero/
41 https://www.raspberrypi.org/products/raspberry- pi-zero-w/
42 https://www.raspberrypi.org/downloads/raspberry- pi-desktop/

57

https://www.raspberrypi.org/products/raspberry-pi-zero/
https://www.raspberrypi.org/products/raspberry-pi-zero-w/
https://www.raspberrypi.org/downloads/raspberry-pi-desktop/

gpiozero 2.0.1 Documentation, Release 2.0.1

6.1.3 Ubuntu setup

1. Add the Raspberry Pi PPA to your system:

[$ sudo add-apt-repository ppa:rpi-distro/ppa

2. If you have previously installed gpiozero or pigpio with pip, uninstall these first:

[$ sudo pip3 uninstall gpiozero pigpio

3. Install the required packages from the PPA:

[$ sudo apt install usbbootgui pigpio python3-gpiozero python3-pigpio

6.1.4 Access the GPIOs

Once your PC or Pi has the USB Boot GUI tool installed, connecting a Pi Zero will automatically launch a prompt
to select a role for the device. Select “GPIO expansion board” and continue:

Raspberry Pi connected

- ARaspberry Pihas been connected
- Type: BCM2708

Please select the role you want it to have:

GPIO expansion board

eMMC /SD card reader

E Custom application

[] Remember selection

Cancel 0K

It will take 30 seconds or so to flash it, then the dialogue will disappear.

Raspberry Pi OS will name your Pi Zero connection usb0. On Ubuntu, this will likely be something else. You can
ping it using the address £e80 : : 1% followed by the connection string. You can look this up using i fconfig.

Set the GPTOZERO_PIN_FACTORY (page 77) and PTGPIO_ADDR (page 77) environment variables on your PC
so GPIO Zero connects to the “remote” Pi Zero:

$ export GPIOZERO_PIN_FACTORY=pigpio
$ export PIGPIO_ADDR=fe80::1%usb0

Now any GPIO Zero code you run on the PC will use the GPIOs of the attached Pi Zero:

58 Chapter 6. Pi Zero USB OTG

gpiozero 2.0.1 Documentation, Release 2.0.1

File Edit Tabs Help
aspberrypi:
aspberryp1:
spberryp1:

r at Bxfafaifoc>

led.blink()

Alternatively, you can set the pin factory in-line, as explained in Configuring Remote GPIO (page 45).

Read more on the GPIO expander in blog posts on raspberrypi.org*® and bennuttall.com*.

6.2 Legacy method - SD card required

The legacy method requires the Pi Zero to have an SD card with Raspberry Pi OS inserted.

Start by creating a Raspberry Pi OS (desktop or lite) SD card, and then configure the boot partition like so:
1. Edit config.txt and add dtoverlay=dwc?2 on a new line, then save the file.
2. Create an empty file called ssh (no file extension) and save it in the boot partition.
3. Edit cmdline.txt" andinsert modules—-load=dwc2, g_ether after rootwait.

(See guides on blog.gbaman.info* and learn.adafruit.com*® for more detailed instructions)

Then connect the Pi Zero to your computer using a micro USB cable (connecting it to the USB port, not the power
port). You'll see the indicator LED flashing as the Pi Zero boots. When it’s ready, you will be able to ping and SSH
into it using the hostname raspberrypi.local. SSH into the Pi Zero, install pigpio and run the pigpio daemon.

Then, drop out of the SSH session and you can run Python code on your computer to control devices attached to the
Pi Zero, referencing it by its hostname (or IP address if you know it), for example:

[$ =pigpio =raspberrypi.local python3 led.py

43 https://www.raspberrypi.org/blog/gpio-expander/

4 http://bennuttall.com/raspberry-pi- zero- gpio-expander/

43 http://blog.gbaman.info/?p=791

46 https://learn.adafruit.com/turning- your-raspberry- pi-zero-into-a-usb-gadget/ethernet- gadget

6.2. Legacy method - SD card required 59

https://www.raspberrypi.org/blog/gpio-expander/
http://bennuttall.com/raspberry-pi-zero-gpio-expander/
http://blog.gbaman.info/?p=791
https://learn.adafruit.com/turning-your-raspberry-pi-zero-into-a-usb-gadget/ethernet-gadget

gpiozero 2.0.1 Documentation, Release 2.0.1

60 Chapter 6. Pi Zero USB OTG

CHAPTER
SEVEN

SOURCE/VALUES

GPIO Zero provides a method of using the declarative programming paradigm to connect devices together: feeding
the values of one device into another, for example the values of a button into an LED:

LED

from gpiozero import LED, Button
from signal import pause

led = LED(17)
button = Button (2)

led.source = button

pause ()

which is equivalent to:

from gpiozero import LED, Button
from time import sleep

led = LED(17)
button = Button (2)

while True:
led.value = button.value
sleep(0.01)

except that the former is updated in a background thread, which enables you to do other things at the same time.

Every device has a value (page 199) property (the device’s current value). Input devices (like buttons) can only
have their values read, but output devices (like LEDs) can also have their value set to alter the state of the device:

>>> led = PWMLED (17)

>>> led.value # LED is initially off

0.0

>>> led.on () # LED 1s now on

>>> led.value

1.0

>>> led.value = 0 # LED is now off

J

Every device also has a va lues (page 200) property (a generator*’ continuously yielding the device’s current value).
All output devices have a souce (page 200) property which can be set to any iterator*®. The device will iterate over
the values of the device provided, setting the device’s value to each element at a rate specified in the source_delay

(page 200) property (the default is 0.01 seconds).

47 https://wiki.python.org/moin/Generators
48 https://wiki.python.org/moin/Iterator

61

https://wiki.python.org/moin/Generators
https://wiki.python.org/moin/Iterator

gpiozero 2.0.1 Documentation, Release 2.0.1

Output device Input device

The most common use case for this is to set the source of an output device to match the values of an input device,
like the example above. A more interesting example would be a potentiometer controlling the brightness of an LED:

PWM LED Potentiometer

from gpiozero import PWMLED, MCP3008
from signal import pause

led = PWMLED (17)
pot MCP3008 ()

led.source = pot

pause ()

The way this works is that the input device’s values (page 200) property is used to feed values into the output
device. Prior to v1.5, the source (page 200) had to be set directly to a device’s va lues (page 200) property:

from gpiozero import PWMLED, MCP3008
from signal import pause

led
pot

PWMLED (17)
MCP3008 ()

led.source = pot.values

pause ()

Note: Although this method is still supported, the recommended way is now to set the source (page 200) to a
device object.

It is also possible to set an output device’s source (page 200) to another output device, to keep them matching. In
this example, the red LED is set to match the button, and the green LED is set to match the red LED, so both LEDs
will be on when the button is pressed:

Green LED Red LED Button

from gpiozero import LED, Button
from signal import pause

red = LED(14)
green = LED(15)
button = Button (17)

red.source = button
green.source = red

pause ()

62 Chapter 7. Source/Values

gpiozero 2.0.1 Documentation, Release 2.0.1

7.1 Processing values

The device’s values can also be processed before they are passed to the source (page 200):

Output device Input device

For example, writing a generator function to pass the opposite of the Button value into the LED:

from gpiozero import Button, LED
from signal import pause

def opposite (device):
for value in device.values:
yield not value

led
btn

LED (4)
Button (17)

led.source = opposite (btn)

pause ()

Alternatively, a custom generator can be used to provide values from an artificial source:

Output device

For example, writing a generator function to randomly yield O or 1:

from gpiozero import LED
from random import randint
from signal import pause

def rand():
while True:

yield randint (0, 1)

led = LED(17)
led.source = rand()

pause ()

J

If the iterator is infinite (i.e. an infinite generator), the elements will be processed until the source (page 200) is

changed or set to None*’,

If the iterator is finite (e.g. a list), this will terminate once all elements are processed (leaving the device’s value at
the final element):

49 https://docs.python.org/3.9/library/constants. html#None

7.1. Processing values 63

https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

from gpiozero import LED
from signal import pause

led = LED(17)

led.source_delay = 1
led.source = [1, O, 1, 1, 1, 0, O, 1, 0, 1]
pause ()

7.2 Source Tools

GPIO Zero provides a set of ready-made functions for dealing with source/values, called source tools. These are
available by importing from gpiozero. tools (page 203).

Some of these source tools are artificial sources which require no input:

Output device

In this example, random values between O and 1 are passed to the LED, giving it a flickering candle effect:

from gpiozero import PWMLED
from gpiozero.tools import random_values
from signal import pause

led = PWMLED (4)
led.source = random_values ()
led.source_delay = 0.1

pause ()

J

Note that in the above example, source_delay (page 200) is used to make the LED iterate over the random
values slightly slower. source_delay (page 200) can be set to a larger number (e.g. 1 for a one second delay) or
set to O to disable any delay.

Some tools take a single source and process its values:

Output device Input device

In this example, the LED is lit only when the button is not pressed:

from gpiozero import Button, LED
from gpiozero.tools import negated
from signal import pause

led = LED(4)
(continues on next page)

64 Chapter 7. Source/Values

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

btn = Button (17)
led.source = negated(btn)

pause ()

Note: Note that source tools which take one or more value parameters support passing either ValuesMixin
(page 200) derivatives, or iterators, including a device’s values (page 200) property.

Input device 1
Input device 2

In this example, the LED is lit only if both buttons are pressed (like an AND gate):

Button A
Button B

Some tools combine the values of multiple sources:

Output device

from gpiozero import Button, LED
from gpiozero.tools import all_values
from signal import pause

button_a = Button (2)
button_b = Button (3)
led = LED(17)

led.source = all_values (button_a, button_b)

pause ()

Similarly, any_values () (page 207) with two buttons would simulate an OR’' gate.

While most devices have a value (page 199) range between O and 1, some have a range between -1 and 1 (e.g.
Motor (page 134), Servo (page 137) and TonalBuzzer (page 133)). Some source tools output values between
-1 and 1, which are ideal for these devices, for example passing sin_values () (page 209) in:

50 https://en.wikipedia.org/wiki/AND_gate
31 https://en.wikipedia.org/wiki/OR_gate

7.2. Source Tools 65

https://en.wikipedia.org/wiki/AND_gate
https://en.wikipedia.org/wiki/OR_gate

gpiozero 2.0.1 Documentation, Release 2.0.1

Tonal buzzer

from gpiozero import Motor, Servo, TonalBuzzer
from gpiozero.tools import sin_values
from signal import pause

motor = Motor (2, 3)
servo = Servo (4)
buzzer = TonalBuzzer (5)

motor.source = sin_values()
servo.source = motor
buzzer.source = motor

pause ()

In this example, all three devices are following the sine wave’?. The motor value ramps up from 0 (stopped) to 1 (full
speed forwards), then back down to 0 and on to -1 (full speed backwards) in a cycle. Similarly, the servo moves from
its mid point to the right, then towards the left; and the buzzer starts with its mid tone, gradually raises its frequency,
to its highest tone, then down towards its lowest tone. Note that setting source_delay (page 200) will alter the
speed at which the device iterates through the values. Alternatively, the tool cos_values () (page 208) could be
used to start from -1 and go up to 1, and so on.

7.3 Internal devices

GPIO Zero also provides several internal devices (page 189) which represent facilities provided by the operating
system itself. These can be used to react to things like the time of day, or whether a server is available on the
network. These classes include a values (page 200) property which can be used to feed values into a device’s
source (page 200). For example, a lamp connected to an Energenie (page 180) socket can be controlled by a
TimeOfDay (page 190) object so that it is on between the hours of 8am and 8pm:

Lamp Daytime

from gpiozero import Energenie, TimeOfDay
from datetime import time
from signal import pause

lamp = Energenie (1)
daytime = TimeOfDay (time (8), time (20))

daytime.when_activated = lamp.on
daytime.when_deactivated = lamp.off

pause ()

J

Using the DiskUsage (page 195) class with LEDBarGraph (page 160) can show your Pi’s disk usage percentage
on a bar graph:

32 https://en.wikipedia.org/wiki/Sine_wave

66 Chapter 7. Source/Values

https://en.wikipedia.org/wiki/Sine_wave

gpiozero 2.0.1 Documentation, Release 2.0.1

LED bar graph Disk usage

from gpiozero import DiskUsage, LEDBarGraph
from signal import pause

disk = DiskUsage ()
graph = LEDBarGraph(2, 3, 4, 5, 6, 7, 8)

graph.source = disk

pause ()

Demonstrating a garden light system whereby the light comes on if it’s dark and there’s motion is simple enough, but
it requires using the booleanized () (page 203) source tool to convert the light sensor from a float value into a
boolean:

Motion sensor

Garden light

—

from gpiozero import LED, MotionSensor, LightSensor
from gpiozero.tools import booleanized, all_values
from signal import pause

garden = LED (2)
motion = MotionSensor (4)
light = LightSensor (5)

garden.source = all_values (booleanized(light, 0, 0.1), motion)

pause ()

7.4 Composite devices

The value (page 199) of a composite device made up of the nested values of its devices. For example, the value of
a Robot (page 176) object is a 2-tuple containing its left and right motor values:

>>> from gpiozero import Robot

>>> robot = Robot (left=(14, 15), right=(17, 18))
>>> robot.value

RobotValue (left_motor=0.0, right_motor=0.0)

>>> tuple (robot.value)

(0.0, 0.0)

>>> robot.forward()

>>> tuple (robot.value)

(1.0, 1.0)

>>> robot.backward()

>>> tuple (robot.value)

(-1.0, -1.0)

>>> robot.value = (1, 1) # robot 1is now driven forwards

Use two potentiometers to control the left and right motor speed of a robot:

7.4. Composite devices 67

gpiozero 2.0.1 Documentation, Release 2.0.1

Left potentiometer

Robot

Right potentiometer

from gpiozero import Robot, Motor, MCP3008
from gpiozero.tools import zip_values
from signal import pause

robot = Robot (left=Motor (4, 14), right=Motor (17, 18))

left_pot = MCP3008(0)
right_pot = MCP3008 (1)

robot.source = zip_values (left_pot, right_pot)

pause ()

To include reverse direction, scale the potentiometer values from 0->1 to -1->1:

Left potentiometer

-
~__

Robot

Right potentiometer

from gpiozero import Robot, Motor, MCP3008
from gpiozero.tools import scaled
from signal import pause

robot = Robot (left=Motor (4, 14), right=Motor (17, 18))

left_pot = MCP3008(0)
right_pot = MCP3008 (1)

robot.source = zip(scaled(left_pot, -1, 1), scaled(right_pot, -1, 1))

pause ()

Note that this example uses the built-in z i p () > rather than the tool zip_values () (page 208)asthe scaled ()
(page 206) tool yields values which do not need converting, just zipping. Also note that this use of zip () >* will not
work in Python 2, instead use izip™>>.

53 https://docs.python.org/3.9/library/functions.html#zip
34 https://docs.python.org/3.9/library/functions.html#zip
55 https://docs.python.org/2/library/itertools.html#itertools.izip

68 Chapter 7. Source/Values

https://docs.python.org/3.9/library/functions.html#zip
https://docs.python.org/3.9/library/functions.html#zip
https://docs.python.org/2/library/itertools.html#itertools.izip

CHAPTER
EIGHT

COMMAND-LINE TOOLS

The gpiozero package contains a database of information about the various revisions of Raspberry Pi. This is queried
by the pinout command-line tool to output details of the GPIO pins available. The pintest tool is also provided
to test the operation of GPIO pins on the board.

8.1 pinout

A utility for querying GPIO pin-out information.

69

dave@amaterasu: ~

dave@amaterasu:~% pinout
Description : Raspberry Pi 3B rev 1.2
Revision : abz2e82

BCM2837

1GB

: MicroSD

USB ports : 4 (of which ® USB3)
Ethernet ports : 1 (180Mbps max. speed)
Wi-fi : True
Bluetooth :
Camera ports (CSI) : 1
Display ports (DSI): 1

00000000000000000 IS
1000000000000000000

Pi Model 3B V1.2
+-- -+
| SoC|
+-- -+

(3) (4)

(5) (8)

(7) (8) GPIO14
(9) (10) GPIO15
(11) (12) GPIO18
(13) (14)

(15) (16) GPIO23
(17) (18) GPIO24
(19) (20)

(21) (22) GPIO25
(23) (24) GpIO8

(25) (26) GPIO7

(27) (28) GPIO1

(29) (30)

(31) (32) GPIO12
(33) (34)

(35) (36) GPIO16
(37) (38) GPIO20
(39) (40) GPIO21

For further information, please refer to https://pinout.xyz/
dave@amaterasu:~5%

o Chapter8. Command-line Tools

gpiozero 2.0.1 Documentation, Release 2.0.1

8.1.1 Synopsis

[pinout [-h] [-r REVISION] [-c] [-m] [-x]

8.1.2 Description

A utility for querying Raspberry Pi GPIO pin-out information. Running pinout on its own will output a board
diagram, and GPIO header diagram for the current Raspberry Pi. It is also possible to manually specify a revision of
Pi, or (by Configuring Remote GPIO (page 45)) to output information about a remote Pi.

8.1.3 Options

-h, --help
Show a help message and exit
—r REVISION, —--revision REVISION

Specifies a particular Raspberry Pi board revision code. The default is to autodetect revision of current device
by reading /proc/cpuinfo

-c, ——color

Force colored output (by default, the output will include ANSI color codes if run in a color-capable terminal).
See also pinout —--monochrome (page 71)

-m, -—-monochrome

Force monochrome output. See also pinout —-color (page71)
-X, ——-Xyz

Open pinout.xyz® in the default web browser

8.1.4 Examples

To output information about the current Raspberry Pi:

[$ pinout J

For a Raspberry Pi model 3B, this will output something like the following:

Description : Raspberry Pi 3B rev 1.2
Revision : a02082

SoC : BCM2837

RAM : 1GB

Storage : MicroSD

USB ports : 4 (of which 0 USB3)
Ethernet ports : 1 (100Mbps max. speed)
Wi-fi : True

Bluetooth : True

Camera ports (CSI) : 1

Display ports (DSI): 1

14

| 00000000000000000000 J8 +====
| 10000000000000000000 | USB
|
|
|

Pi Model 3B V1.2 |
ID =it ====

(continues on next page)

56 https://pinout.xyz/

8.1. pinout 7

https://pinout.xyz/

gpiozero 2.0.1 Documentation, Release 2.0.1

[IS | SoC |
[1T F===rt
[10 Cl
| S|
| I
| pwr | HDMT | 0]
I I
J8:
3v3 (1) (2) 5V
GPIO2 (3) (4) 5V
GPIO3 (5) (6) GND
GPIO4 (7) (8) GPIO14
GND (9) (10) GPIO15
GPIO17 (11) (12) GPIO18
GPIO27 (13) (14) GND
GPIO22 (15) (l16) GPIO23
3v3 (17) (18) GPIO24
GPIO10 (19) (20) GND
GPIO9 (21) (22) GPIO25
GPIO11 (23) (24) GPIOS8
GND (25) (26) GPIO7
GPIOO (27) (28) GPIO1
GPIOS5 (29) (30) GND
GPIO6 (31) (32) GPIO12
GPIO13 (33) (34) GND
GPIO19 (35) (36) GPIOl6
GPIO26 (37) (38) GPIO20
GND (39) (40) GPIO21
For further information,

(continued from previous page)

please refer to https://pinout.xyz/

By default, if stdout is a console that supports color, ANSI codes will be used to produce color output. Output can
be forced to be ——monochrome (page 71):

[$ pinout —--monochrome

Or forced to be ——color (page 71), in case you are redirecting to something capable of supporting ANSI codes:

[$ pinout --color | less -SR

J

To manually specify the revision of Pi you want to query, use ——revision (page 71). The tool understands both
old-style revision codes’’ (such as for the model B):

[$ pinout -r 000d

Or new-style revision codes® (such as for the Pi Zero W):

[$ pinout -r 9000cl

57 https://www.raspberrypi.com/documentation/computers/raspberry- pi.html#raspberry- pi-revision-codes
38 https://www.raspberrypi.com/documentation/computers/raspberry- pi.html#raspberry- pi- revision-codes

72

Chapter 8. Command-line Tools

https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#raspberry-pi-revision-codes
https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#raspberry-pi-revision-codes

gpiozero 2.0.1 Documentation, Release 2.0.1

I dave@amaterasu: ~ @] = = O %

materasu:~$ pinout -r 9086cl1
Description : Raspberry PL Zero W rev 1.1
Revision 5

USB ports

Ethernet ports
Wi-fi

Bluetooth

Camera ports (CSI)
Display ports (DSI):

1000 .
PiZero W
RSN+ - - -+

3V3

GPIO2

GPIO3
GPID4 (7) GPIOD14
(18) GPIO15

GPIO17 (11) (12) GPIO18

GPID11 (23) (24) GPIOE

(25) (26) GPIOD7

GPIOO® (27) (28) GPIO1
GPIOS 97

GPID12

GPIO16
GPI(
GPIC

For further information, please refer to https://pinout.xyz/
da materasu:~$ JJ

You can also use the tool with Configuring Remote GPIO (page 45) to query remote Raspberry Pi’s:

[$ GPIOZERO_PIN_FACTORY=pigpio PIGPIO_ADDR=other_pi pinout }

Or run the tool directly on a PC using the mock pin implementation (although in this case you’ll almost certainly want
to specify the Pi revision manually):

8.1. pinout 73

gpiozero 2.0.1 Documentation, Release 2.0.1

[$ GPIOZERO_PIN_FACTORY=mock pinout -r a22042

8.2 pintest

A utility for testing the GPIO pins on a Raspberry Pi, inspired by pigpio’s gpiotest example script, and wiringPi’s
pintest utility.

New in version 2.0: The pintest utility.

74 Chapter 8. Command-line Tools

gpiozero 2.0.1 Documentation, Release 2.0.1

dave@amaterasu: ~

dave@amaterasu:~$ pintest

This program checks the board's user-accessible GPIO pins. The
board's model is: Raspberry Pi 3B rev 1.2. The following pins are
selected for testing:

GPIO12, GPIOG, GPIOZ2, GPIO18, GPIO26, GPIO26, GPIO25, GPIO19, GPIO10,
GPIOS, GPIO23, GPIO11, GPIO6, GPIO21, GPIO15, GPIOY, GPIO4, GPIOS,
GPIO13, GPIO14, GPIO16, GPIO1, GPIO17, GPIOZ27V, GPIOZ24, GPIO22, GPIOS,
GPIO3

Please ensure that nothing is connected to any of the pins listed
above for the test duration.

Proceed with test? [y/N] vy
Testing GPIO12...0k
Testing GPIOO...ok
Testing GPIOZ...o0k
Testing GPIO18...ok
Testing GPI026...0k
Testing GPIO20...o0k
Testing GPIO25...o0k
Testing GPIO19...0k
Testing GPIO10...o0k
Testing GPIO9...o0k
Testing GPIO23...0k
Testing GPIO11...0k
Testing GPIO6...ok
Testing GPIOZ21...0k
Testing GPIO15...0k
Testing GPIO7Y...ok
Testing GPIO4...ok
Testing GPIOS...ok
Testing GPIO13...0k
Testing GPIO14...0k
Testing GPIO16...0k
Testing GPIO1...o0k
Testing GPIO17...0k
Testing GPIOD27...0k
Testing GPID24...0k
Testing GPIOD22...0k
Testing GPIOS...ok
Testing GPIO3...ok
dave@amaterasu:~5% I

8.2. pintest

gpiozero 2.0.1 Documentation, Release 2.0.1

8.2.1 Synopsis

[pintest [-h] [--version] [-p PINS] [-s SKIP] [-y] [-r REVISION]

8.2.2 Description

A utility for testing the function of GPIOs on a Raspberry Pi. It is possible to damage the GPIOs on a Pi by passing
too much current (or voltage in the case of inputs) through them. The pintest utility can be used to determine if
any of the GPIOs on a Pi are broken.

The utility will test all physically exposed GPIOs (those on the main GPIO header) by default, but you may wish to
only test a subset, or to exclude certain GPIOs which can be accomplished with the pintest —--pins (page 76)
or pintest —-skip (page 76) options.

Note: You must ensure that nothing is connected to the GPIOs that you intend to test. By default, the utility will
prompt you before proceeding, repeating this warning.

In the event that any GPIO is found to be faulty, it will be reported in the output and the utility will exit with a return
code of 1. If all specified GPIOs test fine, the return code is zero.

8.2.3 Options

-h, --help

show this help message and exit
--version

Show the program’s version number and exit
-p PINS, —--pins PINS

The pin(s) to test. Can be specified as a comma-separated list of pins. Pin numbers can be given in any form
accepted by gpiozero, e.g. 14, GPIO14, BOARDS. The default is to test all pins

-s SKIP, —--skip SKIP

The pin(s) to skip testing. Can be specified as comma-separated list of pins. Pin numbers can be given in any
form accepted by gpiozero, e.g. 14, GPIO14, BOARDS. The default is to skip no pins

-y, —~yes
Proceed without prompting

—r REVISION, —-revision REVISION

Force board revision. Default is to autodetect revision of current device. You should avoid this option unless
you are very sure the detection is incorrect

8.2.4 Examples

Test all physically exposed GPIOs on the board:

[$ pintest J

Test just the I2C GPIOs without prompting:

[$ pintest —--pins 2,3 —--yes J

Exclude the SPI GPIOs from testing:

76 Chapter 8. Command-line Tools

gpiozero 2.0.1 Documentation, Release 2.0.1

[$ pintest --exclude GPIO7,GPIO8,GPI09,GPI010,GPIO11 }

Note that pin numbers can be given in any form accepted by GPIO Zero, e.g. 14, GPIO14, or BOARDS.

8.3 Environment Variables

All utilities provided by GPIO Zero accept the following environment variables:

GPIOZERO_PIN_FACTORY
The library to use when communicating with the GPIO pins. Defaults to attempting to load lgpio, then

LT3

RPi.GPIO, then pigpio, and finally uses a native Python implementation. Valid values include “Igpio”, “rpig-

LT3 9 @

pio”, “pigpio”, “native”, and “mock”. The latter is most useful on non-Pi platforms as it emulates a Raspberry
Pi model 3B (by default).

PIGPIO_ADDR
The hostname of the Raspberry Pi the pigpio library should attempt to connect to (if the pigpio pin factory is
being used). Defaults to localhost.

PIGPIO_PORT

The port number the pigpio library should attempt to connect to (if the pigpio pin factory is being used).
Defaults to 8888.

8.3. Environment Variables 77

gpiozero 2.0.1 Documentation, Release 2.0.1

78 Chapter 8. Command-line Tools

CHAPTER
NINE

FREQUENTLY ASKED QUESTIONS

9.1 How do | keep my script running?

The following script looks like it should turn an LED (page 125) on:

from gpiozero import LED

led = LED(17)
led.on ()

And it does, if you're using the Python or [Python shell, or the IDLE, Thonny or Mu editors. However, if you saved
this script as a Python file and ran it, it would flash on briefly, then the script would end and it would turn off.

The following file includes an intentional pause () to keep the script alive:

from gpiozero import LED
from signal import pause

led = LED(17)
led.on ()

pause ()

J

Now the script will stay running, leaving the LED on, until it is terminated manually (e.g. by pressing Ctrl+C).
Similarly, when setting up callbacks on button presses or other input devices, the script needs to be running for the

events to be detected:

from gpiozero import Button
from signal import pause

def hello():
print ("Hello")

button = Button (2)
button.when_pressed = hello

pause ()

39 https://docs.python.org/3.9/library/signal html#signal pause

79

https://docs.python.org/3.9/library/signal.html#signal.pause

gpiozero 2.0.1 Documentation, Release 2.0.1

9.2 What’s the difference between when_pressed, is_pressed and
wait_for_press?

gpiozero provides a range of different approaches to reading input devices. Sometimes you want to ask if a button’s
pressed, sometimes you want to do something until it’s pressed, and sometimes you want something to happen when
it’s been pressed, regardless of what else is going on.

In a simple example where the button is the only device in play, all of the options would be equally effective. But
as soon as you introduce an extra element, like another GPIO device, you might need to choose the right approach
depending on your use case.

* is_pressed (page 106) is an attribute which reveals whether the button is currently pressed by returning
True or False:

while True:
if btn.is_pressed:
print ("Pressed")
else:
print ("Not pressed")

e wait_for press () (page 106) is a method which blocks the code from continuing until the button is
pressed. Alsosee wait_for_release () (page 106):

while True:
print ("Released. Waiting for press..")
btn.wait_for_press()
print ("Pressed. Waiting for release...")
btn.wait_for_release ()

e when_pressed (page 107) is an attribute which assigns a callback function to the event of the button being
pressed. Every time the button is pressed, the callback function is executed in a separate thread. Also see
when_released (page 107):

-

def pressed() :
print ("Pressed")

def released():
print ("Released")

btn.when_pressed = pressed
btn.when_released = released

This pattern of options is common among many devices. All input devices (page 105) and internal de-
vices (page 189) have is_active, when_activated, when_deactivated, wait_for_active and
wait_for_inactive, and many provide aliases (such as “pressed” for “activated”).

Also see a more advanced approach in the Source/Values (page 61) page.

9.3 My event handler isn’t being called

When assigning event handlers, don’t call the function you’re assigning. For example:

from gpiozero import Button

def pushed() :
print ("Don't push the button!")

b = Button(17)
b.when_pressed = pushed()

80 Chapter 9. Frequently Asked Questions

gpiozero 2.0.1 Documentation, Release 2.0.1

In the case above, when assigning to when_pressed (page 107), the thing that is assigned is the result of calling the
pushed function. Because pushed doesn’t explicitly return anything, the result is None®. Hence this is equivalent
to doing:

[b.when_pressed = None J

This doesn’t raise an error because it’s perfectly valid: it’s what you assign when you don’t want the event handler to
do anything. Instead, you want to do the following:

[b.when_pressed = pushed }

This will assign the function to the event handler without calling it. This is the crucial difference between
my_function (areference to a function) and my_ function () (the result of calling a function).

Note: Note that as of v1.5, setting a callback to None®' when it was previously None® will raise a Callback—
Set ToNone (page 244) warning, with the intention of alerting users when callbacks are set to None®® accidentally.
However, if this is intentional, the warning can be suppressed. See the warnings® module for reference.

9.4 Why do | get PinFactoryFallback warnings when | import gpi-
ozero?

You are most likely working in a virtual Python environment and have forgotten to install a pin driver library like
RP1i.GPIO. GPIO Zero relies upon lower level pin drivers to handle interfacing to the GPIO pins on the Raspberry
P1i, so you can eliminate the warning simply by installing GPIO Zero’s first preference:

[$ pip install rpi.gpio }

When GPIO Zero is imported it attempts to find a pin driver by importing them in a preferred order (detailed in AP/
- Pins (page 221)). If it fails to load its first preference (RP i . GP I0) it notifies you with a warning, then falls back to
trying its second preference and so on. Eventually it will fall back all the way to the nat i ve implementation. This is
a pure Python implementation built into GPIO Zero itself. While this will work for most things it’s almost certainly
not what you want (it doesn’t support PWM, and it’s quite slow at certain things).

If you want to use a pin driver other than the default, and you want to suppress the warnings you’ve got a couple of
options:

1. Explicitly specify what pin driver you want via the GPTOZERO_PIN_FACTORY (page 77) environment vari-
able. For example:

[$ GPIOZERO_PIN_FACTORY=pigpio python3 J

In this case no warning is issued because there’s no fallback; either the specified factory loads or it fails in which
case an ImportError® will be raised.

2. Suppress the warnings and let the fallback mechanism work:

>>> import warnings
>>> warnings.simplefilter ('ignore')
>>> import gpiozero

Refer to the warnings® module documentation for more refined ways to filter out specific warning classes.

60 https://docs.python.org/3.9/library/constants.html#None

61 https://docs.python.org/3.9/library/constants.html#None

62 https://docs.python.org/3.9/library/constants.html#None

63 https://docs.python.org/3.9/library/constants.html#None

64 https://docs.python.org/3.9/library/warnings.html#module-warnings
95 https://docs.python.org/3.9/library/exceptions.html#ImportError

96 https://docs.python.org/3.9/library/warnings. html#module- warnings

9.4. Why do | get PinFactoryFallback warnings when | import gpiozero? 81

https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/warnings.html#module-warnings
https://docs.python.org/3.9/library/exceptions.html#ImportError
https://docs.python.org/3.9/library/warnings.html#module-warnings

gpiozero 2.0.1 Documentation, Release 2.0.1

9.5 How can | tell what version of gpiozero | have installed?

The gpiozero library relies on the setuptools package for installation services. You can use the setuptools
pkg_resources API to query which version of gpiozero is available in your Python environment like so:

>>> from pkg_ resources import require

>>> require('gpiozero')

[gpiozero 1.6.2 (/usr/lib/python3/dist-packages)]
>>> require('gpiozero') [0] .version

'1.6.2"

If you have multiple versions installed (e.g. from pip and apt) they will not show up in the list returned by the
pkg_resources.require () method. However, the first entry in the list will be the version that import
gpiozero will import.

If you receive the error “No module named pkg_resources”, you need to install pip. This can be done with the
following command in Raspberry Pi OS:

[$ sudo apt install python3-pip

Alternatively, install pip with get-pip®’.

9.6 Why do | get “command not found” when running pinout?

The gpiozero library is available as a Debian package for Python 2 and Python 3, but the pinout (page 69) tool cannot
be made available by both packages, so it’s only included with the Python 3 version of the package. To make sure
the pinout (page 69) tool is available, the “python3-gpiozero” package must be installed:

£$ sudo apt install python3-gpiozero

Alternatively, installing gpiozero using pip will install the command line tool, regardless of Python version:

[$ sudo pip3 install gpiozero]

or:

[$ sudo pip install gpiozero

9.7 The pinout command line tool incorrectly identifies my Rasp-
berry Pi model

If your Raspberry Pi model is new, it’s possible it wasn’t known about at the time of the gpiozero release you are using.
Ensure you have the latest version installed (remember, the pinout (page 69) tool usually comes from the Python 3
version of the package as noted in the previous FAQ).

If the Pi model you are using isn’t known to gpiozero, it may have been added since the last release. You can check
the GitHub issues®® to see if it’s been reported before, or check the commits® on GitHub since the last release to see
if it’s been added. The model determination can be found in gpiozero/pins/data.py.

67 https://pip.pypa.io/en/stable/installing/
68 https://github.com/gpiozero/gpiozero/issues
%9 https://github.com/gpiozero/gpiozero/commits/master

82 Chapter 9. Frequently Asked Questions

https://pip.pypa.io/en/stable/installing/
https://github.com/gpiozero/gpiozero/issues
https://github.com/gpiozero/gpiozero/commits/master

gpiozero 2.0.1 Documentation, Release 2.0.1

9.8 What'’s the gpiozero equivalent of GP1O.cleanup()?

Many people ask how to do the equivalent of the cleanup function from RP1i.GPIO. In gpiozero, at the end of
your script, cleanup is run automatically, restoring your GPIO pins to the state they were found.

To explicitly close a connection to a pin, you can manually call the c1ose () (page 199) method on a device object:

>>> led = LED(2)

>>> led.on ()

>>> led

<gpiozero.LED object on pin GPIO2, active_high=True, is_active=True>
>>> led.close ()

>>> led

<gpiozero.LED object closed>

This means that you can reuse the pin for another device, and that despite turning the LED on (and hence, the pin
high), after calling c1ose () (page 199) it is restored to its previous state (LED off, pin low).

Read more about Migrating from RPi.GPIO (page 93).

9.9 How do | use button.when_pressed and button.when_held to-
gether?

The Button (page 105) class provides a when_he1d (page 106) property which is used to set a callback for when
the button is held down for a set amount of time (as determined by the hold_time (page 106) property). If you
want to set when_held (page 106) as well as when_pressed (page 107), you'll notice that both callbacks will
fire. Sometimes, this is acceptable, but often you’ll want to only fire the when_pressed (page 107) callback when
the button has not been held, only pressed.

The way to achieve this is to not set a callback on when_pressed (page 107), and instead use when_released
(page 107) to work out whether it had been held or just pressed:

from gpiozero import Button
Button.was_held = False

def held (btn):
btn.was_held = True
print ("button was held not just pressed")

def released (btn) :
if not btn.was_held:
pressed ()
btn.was_held = False

def pressed():
print ("button was pressed not held")

btn = Button (2)

btn.when_held = held
btn.when_ released = released

9.8. What'’s the gpiozero equivalent of GPIO.cleanup()? 83

gpiozero 2.0.1 Documentation, Release 2.0.1

9.10 Why do | get “ImportError: cannot import name” when trying
to import from gpiozero?

It’s common to see people name their first gpiozero script gpiozero.py. Unfortunately, this will cause your script
to try to import itself, rather than the gpiozero library from the libraries path. You'll see an error like this:

Traceback (most recent call last):
File "gpiozero.py", line 1, in <module>
from gpiozero import LED
File "/home/pi/gpiozero.py", line 1, in <module>
from gpiozero import LED
ImportError: cannot import name 'LED'

Simply rename your script to something else, and run it again. Be sure not to name any of your scripts the same name
as a Python module you may be importing, such as picamera.py.

9.11 Why do | get an AttributeError trying to set attributes on a
device object?

If you try to add an attribute to a gpiozero device object after its initialization, you’ll find you can’t:

>>> from gpiozero import Button
>>> btn = Button(2)
>>> btn.label = 'alarm'
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "/usr/lib/python3/dist-packages/gpiozero/devices.py", line 118, in ___
—setattr___

self. class_ . _ name_ , name))

AttributeError: 'Button' object has no attribute 'label'

This is in order to prevent users accidentally setting new attributes by mistake. Because gpiozero provides functionality
through setting attributes via properties, such as callbacks on buttons (and often there is no immediate feedback when
setting a property), this could lead to bugs very difficult to find. Consider the following example:

from gpiozero import Button

def hello():
print ("hello")

btn = Button (2)

btn.pressed = hello

This is perfectly valid Python code, and no errors would occur, but the program would not behave as expected:
pressing the button would do nothing, because the property for setting a callback is when_pressednot pressed.
But without gpiozero preventing this non-existent attribute from being set, the user would likely struggle to see the
mistake.

If you really want to set a new attribute on a device object, you need to create it in the class before initializing your
object:

>>> from gpiozero import Button
>>> Button.label = "'
>>> btn = Button(2)
>>> btn.label = 'alarm'
>>> def press (btn):
(continues on next page)

84 Chapter 9. Frequently Asked Questions

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

print (btn.label, "was pressed")
>>> btn.when_pressed = press

9.12 Why is it called GPIO Zero? Does it only work on Pi Zero?

gpiozero works on all Raspberry Pi models, not just the Pi Zero.

The “zero” is part of a naming convention for “zero-boilerplate” education friendly libraries, which started with
Pygame Zero’’, and has been followed by NetworkZero’!, guizero’”> and more.

These libraries aim to remove barrier to entry and provide a smooth learning curve for beginners by making it easy
to get started and easy to build up to more advanced projects.

70 https://pygame-zero.readthedocs.io/en/stable/
71 https:/networkzero.readthedocs.io/en/latest/
72 https://lawsie.github.io/guizero/

9.12. Why is it called GPIO Zero? Does it only work on Pi Zero? 85

https://pygame-zero.readthedocs.io/en/stable/
https://networkzero.readthedocs.io/en/latest/
https://lawsie.github.io/guizero/

gpiozero 2.0.1 Documentation, Release 2.0.1

86 Chapter 9. Frequently Asked Questions

CHAPTER
TEN

BACKWARDS COMPATIBILITY

GPIO Zero 2.x is a new major version and thus backwards incompatible changes can be expected. We have attempted
to keep these as minimal as reasonably possible while taking advantage of the opportunity to clean up things. This
chapter documents breaking changes from version 1.x of the library to 2.x, and all deprecated functionality which
will still work in release 2.0 but is scheduled for removal in a future 2.x release.

10.1 Finding and fixing deprecated usage

As of release 2.0, all deprecated functionality will raise Deprecat ionWarning’® when used. By default, the
Python interpreter suppresses these warnings (as they’re only of interest to developers, not users) but you can easily
configure different behaviour.

The following example script uses a number of deprecated functions:

import gpiozero

board = gpiozero.pi_info()
for header in board.headers.values() :
for pin in header.pins.values():
if pin.pull_up:
print (pin.function, 'is pulled up')

Despite using deprecated functionality the script runs happily (and silently) with gpiozero 2.0. To discover what
deprecated functions are being used, we add a couple of lines to tell the warnings module that we want “default”
handling of DeprecationWarning’; “default” handling means that the first time an attempt is made to raise
this warning at a particular location, the warning’s details will be printed to the console. All future invocations from
the same location will be ignored. This saves flooding the console with warning details from tight loops. With this
change, the script looks like this:

import gpiozero

import warnings
warnings.filterwarnings ('default', category=DeprecationWarning)

board = gpiozero.pi_info()
for header in board.headers.values() :
for pin in header.pins.values():
if pin.pull_up:
print (pin.function, 'is pulled up')

And produces the following output on the console when run:

73 https://docs.python.org/3.9/library/exceptions.html#DeprecationWarning
74 https://docs.python.org/3.9/library/exceptions. html#DeprecationWarning

87

https://docs.python.org/3.9/library/exceptions.html#DeprecationWarning
https://docs.python.org/3.9/library/exceptions.html#DeprecationWarning

gpiozero 2.0.1 Documentation, Release 2.0.1

/home/dave/projects/home/gpiozero/gpio-zero/gpiozero/pins/__init___ .py:899:

DeprecationWarning: PinInfo.pull_up is deprecated; please use PinInfo.pull
warnings.warn (

/home/dave/projects/home/gpiozero/gpio-zero/gpiozero/pins/__init__ .py:889:

DeprecationWarning: PinInfo.function is deprecated; please use PinInfo.name
warnings.warn (

GPIO2 is pulled up

GPIO3 is pulled up

This tells us which pieces of deprecated functionality are being used in our script, but it doesn’t tell us where in
the script they were used. For this, it is more useful to have warnings converted into full blown exceptions. With
this change, each time a DeprecationWarning’® would have been printed, it will instead cause the script to
terminate with an unhandled exception and a full stack trace:

import gpiozero

import warnings
warnings.filterwarnings ('error', category=DeprecationWarning)

board = gpiozero.pi_info()
for header in board.headers.values() :
for pin in header.pins.values() :
if pin.pull_up:
print (pin.function, 'is pulled up')

Now when we run the script it produces the following:

Traceback (most recent call last):
File "/home/dave/projects/home/gpiozero/gpio-zero/foo.py", line 9, in <module>
if pin.pull_up:
File "/home/dave/projects/home/gpiozero/gpio-zero/gpiozero/pins/__init__ .py", -
—line 899, in pull_up
warnings.warn (
DeprecationWarning: PinInfo.pull_up is deprecated; please use PinInfo.pull

J

This tells us that line 9 of our script is using deprecated functionality, and provides a hint of how to fix it. We change
line 9 to use the “pull” attribute instead. Now we run again, and this time get the following:

Traceback (most recent call last):
File "/home/dave/projects/home/gpiozero/gpio-zero/foo.py", line 10, in <module>
print (pin.function, 'is pulled up')
File "/home/dave/projects/home/gpiozero/gpio-zero/gpiozero/pins/__init__ .py", .
—~line 889, in function
warnings.warn (
DeprecationWarning: PinInfo.function is deprecated; please use PinInfo.name

Now we can tell line 10 has a problem, and once again the exception tells us how to fix it. We continue in this fashion
until the script looks like this:

import gpiozero

import warnings
warnings.filterwarnings ('error', category=DeprecationWarning)

board = gpiozero.pi_info ()
for header in board.headers.values() :
for pin in header.pins.values() :
if pin.pull == 'up':
print (pin.name, 'is pulled up')

75 https://docs.python.org/3.9/library/exceptions.html#DeprecationWarning

88 Chapter 10. Backwards Compatibility

https://docs.python.org/3.9/library/exceptions.html#DeprecationWarning

gpiozero 2.0.1 Documentation, Release 2.0.1

The script now runs to completion, so we can be confident it’s no longer using any deprecated functionality and will
run happily even when this functionality is removed in a future 2.x release. At this point, you may wish to remove
the filterwarnings line as well (or at least comment it out).

10.2 Python 2.x support dropped

By far the biggest and most important change is that the Python 2.x series is no longer supported (in practice, this
means Python 2.7 is no longer supported). If your code is not compatible with Python 3, you should follow the porting
guide’® in the Python documentation’’.

As of GPIO Zero 2.0, the lowest supported Python version will be 3.5. This base version may advance with minor
releases, but we will make a reasonable best effort not to break compatibility with old Python 3.x versions, and to
ensure that GPIO Zero can run on the version of Python in Debian oldstable at the time of its release.

10.3 RPIO pin factory removed

The RPIO pin implementation is unsupported on the Raspberry Pi 2 onwards and hence of little practical use these
days. Anybody still relying on RPIO’s stable PWM implementation is advised to try the pigpio pin implementation
instead (also supported by GPIO Zero).

10.4 Deprecated pin-factory aliases removed

Several deprecated aliases for pin factories, which could be specified by the GPTOZERO_PIN_FACTORY (page 77)
environment variable, have been removed:

¢ “PiGPIOPin” is removed in favour of “pigpio”
* “RPiGPIOPin” is removed in favour of “rpigpio”
» “NativePin” is removed in favour of “native”

In other words, you can no longer use the following when invoking your script:

[s GPIOZERO_PIN_FACTORY=PiGPIOPin python3 my_script.py

Instead, you should use the following:

[$ GPIOZERO_PIN_FACTORY=pigpio python3 my_script.py

10.5 Keyword arguments

Many classes in GPIO Zero 1.x were documented as having keyword-only arguments in their constructors and
methods. For example, the PiLiter (page 170) was documented as having the constructor: PiLiter (*,
pwm=False, initial_value=False, pin_factory=None) implying that all its arguments were key-
word only.

However, despite being documented in this manner, this was rarely enforced as it was extremely difficult to do so
under Python 2.x without complicating the code-base considerably (Python 2.x lacked the “*” syntax to declare
keyword-only arguments; they could only be implemented via “**kwargs” arguments and dictionary manipulation).

In GPIO Zero 2.0, all such arguments are now actually keyword arguments. If your code complied with the 1.x
documentation you shouldn’t notice any difference. In other words, the following is still fine:

76 https://docs.python.org/3/howto/pyporting.html
77 https://docs.python.org/3/

10.2. Python 2.x support dropped 89

https://docs.python.org/3/howto/pyporting.html
https://docs.python.org/3/howto/pyporting.html
https://docs.python.org/3/

gpiozero 2.0.1 Documentation, Release 2.0.1

from gpiozero import Piliter

1l = PilLiter (pwm=True)

However, if you had omitted the keyword you will need to modify your code:

from gpiozero import PilLiter

1l = PiLiter (True) # this will no longer work

10.6 Robots take Motors, and PhaseEnableRobot is deprecated

The GPIO Zero 1.x API specified that a Robot (page 176) was constructed with two tuples that were in turn used to
construct two Mot or (page 134) instances. The 2.x API replaces this with simply passing in the Mot or (page 134),
or PhaseEnableMotor () (page 136) instances you wish to use as the left and right wheels.

If your current code uses pins 4 and 14 for the left wheel, and 17 and 18 for the right wheel, it may look like this:

from gpiozero import Robot

r = Robot (left=(4, 14), right=(17, 18))

This should be changed to the following:

from gpiozero import Robot, Motor

r = Robot (left=Motor (4, 14), right=Motor (17, 18))

Likewise, if you are currently using PhaseEnableRobot () (page 178) your code may look like this:

from gpiozero import PhaseEnableRobot

r = PhaseEnableRobot (left=(4, 14), right=(17, 18))

This should be changed to the following:

from gpiozero import Robot, PhaseEnableMotor

r = Robot (left=PhaseEnableMotor (4, 14),
right=PhaseEnableMotor (17, 18))

This change came about because the Mot or (page 134) class was also documented as having two mandatory param-
eters (forward and backward) and several keyword-only parameters, including the enable pin. However, enable was
treated as a positional argument for the sake of constructing Robot (page 176) which was inconsistent. Furthermore,
PhaseEnableRobot () (page 178) was more or less a redundant duplicate of Robot (page 176) but was lacking
a couple of features added to Robot (page 176) later (notable “curved” turning).

Although the new API requires a little more typing, it does mean that phase enable robot boards now inherit all the
functionality of Robot (page 176) because that’s all they use. Theoretically you could also mix and match regular
motors and phase-enable motors although there’s little sense in doing so.

The former functionality (passing tuples to the Robot (page 176) constructor) will remain as deprecated functionality
for gpiozero 2.0, but will be removed in a future 2.x release. PhaseEnableRobot () (page 178) remains as a
stub function which simply returns a Robot (page 176) instance, but this will be removed in a future 2.x release.

920 Chapter 10. Backwards Compatibility

gpiozero 2.0.1 Documentation, Release 2.0.1

10.7 PiBoardInfo, HeaderInfo, Pininfo

The PiBoardInfo (page 217) class, and the associated HeaderInfo (page 218) and PinInfo (page 219)
classes have undergone a major re-structuring. This is partly because some of the prior terminology was confusing
(e.g. the meaning of PinInfo. function (page 219) and Pin. function (page 229) clashed), and partly
because with the addition of the “Igpio” factory it’s entirely possible to use gpiozero on non-Pi boards (although at
present the pins. Ilgpio. LGPTOFactory (page 235) is still written assuming it is only ever used on a Pi).

As a result the following classes, methods, and attributes are deprecated (not yet removed, but will be in a future
release within the 2.x series):

e Factory.pi_info is deprecated in favour of Factory.board info (page 227) which returns a
BoardInfo instead of PiBoardInfo (page 217) (which is now a subclass of the former).

e PinInfo.pull_up (page 219) is deprecated in favour of PinInfo.pull (page 219).
e PinInfo. function (page 219) is deprecated in favour of PinInfo.name (page 219).

e BoardInfo.physical_pins(), BoardInfo.physical_pin(), and BoardInfo.
pulled_up (), are all deprecated in favour of a combination of the new BoardInfo.find_pin () and
the attributes mentioned above.

* PiPin.number is deprecated in favour of Pin.info.name.

10.7. PiBoardinfo, HeaderInfo, PinIinfo 91

gpiozero 2.0.1 Documentation, Release 2.0.1

92 Chapter 10. Backwards Compatibility

CHAPTER
ELEVEN

MIGRATING FROM RPL.GPIO

If you are familiar with the RPi.GPIO’® library, you will be used to writing code which deals with pins and the state
of pins. You will see from the examples in this documentation that we generally refer to things like LEDs and Buttons
rather than input pins and output pins.

GPIO Zero provides classes which represent devices, so instead of having a pin number and telling it to go high, you
have an LED and you tell it to turn on, and instead of having a pin number and asking if it’s high or low, you have a
button and ask if it’s pressed. There is also no boilerplate code to get started — you just import the parts you need.

GPIO Zero provides many device classes, each with specific methods and properties bespoke to that device. For
example, the functionality for an HC-SR04 Distance Sensor can be found in the DistanceSensor (page 113)
class.

As well as specific device classes, we provide base classes InputDevice (page 121) and OutputDevice
(page 144). One main difference between these and the equivalents in RPi.GPIO is that they are classes, not func-
tions, which means that you initialize one to begin, and provide its pin number, but then you never need to use the
pin number again, as it’s stored by the object.

GPIO Zero was originally just a layer on top of RPi.GPIO, but we later added support for various other underlying
pin libraries. RPi.GPIO is currently the default pin library used. Read more about this in Changing the pin factory
(page 223).

11.1 Output devices

Turning an LED on in RPi.GPIO"’:

import RPi.GPIO as GPIO

GPIO.setmode (GPIO.BCM)
GPIO.setwarnings (False)

GPIO.setup (2, GPIO.OUT)

GPIO.output (2, GPIO.HIGH)

Turning an LED on in GPIO Zero:

from gpiozero import LED
led = LED(2)

led.on ()

The LED (page 125) class also supports threaded blinking through the b1ink () (page 126) method.

78 https://pypi.org/project/RPi.GPIO/
79 https://pypi.org/project/RPi.GPIO/

93

https://pypi.org/project/RPi.GPIO/
https://pypi.org/project/RPi.GPIO/

gpiozero 2.0.1 Documentation, Release 2.0.1

OutputDevice (page 144) is the base class for output devices, and can be used in a similar way to output devices
in RPi.GPIO.

See a full list of supported output devices (page 125). Other output devices have similar property and method names.
There is commonality in naming at base level, such as OutputDevice.is_active, which is aliased in a device
class, such as LED. is_1it (page 126).

11.2 Input devices

Reading a button press in RPi.GPIO®:

import RPi.GPIO as GPIO

GPIO.setmode (GPIO.BCM)
GPIO.setwarnings (False)

GPIO.setup (4, GPIO.IN, GPIO.PUD_UP)

if not GPIO.input (4):
print ("button is pressed")

Reading a button press in GPIO Zero:

from gpiozero import Button
btn = Button (4)

if btn.is_pressed:
print ("button is pressed")

J

Note that in the RPi.GPIO example, the button is set up with the option GPIO.PUD_UP which means “pull-up”,
and therefore when the button is not pressed, the pin is high. When the button is pressed, the pin goes low, so the
condition requires negation (1f not). If the button was configured as pull-down, the logic is reversed and the
condition would become if GPIO.input (4):

import RPi.GPIO as GPIO

GPIO.setmode (GPIO.BCM)
GPIO.setwarnings (False)

GPIO.setup (4, GPIO.IN, GPIO.PUD_DOWN)

if GPIO.input (4):
print ("button is pressed")

J

In GPIO Zero, the default configuration for a button is pull-up, but this can be configured at initialization, and the
rest of the code stays the same:

from gpiozero import Button
btn = Button (4, pull_up=False)

if btn.is_pressed:
print ("button is pressed")

RPi.GPIO also supports blocking edge detection.
Wait for a pull-up button to be pressed in RPi.GPIO:

80 https://pypi.org/project/RPi.GPIO/

94 Chapter 11. Migrating from RPi.GPIO

https://pypi.org/project/RPi.GPIO/

gpiozero 2.0.1 Documentation, Release 2.0.1

import RPi.GPIO as GPIO

GPIO.setmode (GPIO.BCM)
GPIO.setwarnings (False)

GPIO.setup(4, GPIO.IN, GPIO.PUD_UP)

GPIO.wait_for_edge (4, GPIO.FALLING) :
print ("button was pressed")

The equivalent in GPIO Zero:

from gpiozero import Button
btn = Button (4)

btn.wait_for_press()
print ("button was pressed")

Again, if the button is pulled down, the logic is reversed. Instead of waiting for a falling edge, we’re waiting for a
rising edge:

import RPi.GPIO as GPIO

GPIO.setmode (GPIO.BCM)
GPIO.setwarnings (False)

GPIO.setup (4, GPIO.IN, GPIO.PUD_UP)

GPIO.wait_for_edge (4, GPIO.FALLING) :
print ("button was pressed")

Again, in GPIO Zero, the only difference is in the initialization:

from gpiozero import Button
btn = Button (4, pull_up=False)

btn.wait_for_press()
print ("button was pressed")

RPi.GPIO has threaded callbacks. You create a function (which must take one argument), and pass it in to
add_event_detect, along with the pin number and the edge direction:

import RPi.GPIO as GPIO

GPIO.setmode (GPIO.BCM)
GPIO.setwarnings (False)

def pressed(pin):
print ("button was pressed")

def released(pin):
print ("button was released")

GPIO.setup (4, GPIO.IN, GPIO.PUD_UP)

GPIO.add_event_detect (4, GPIO.FALLING, pressed)
GPIO.add_event_detect (4, GPIO.RISING, released)

J

In GPIO Zero, you assign the when_pressed (page 107) and when_released (page 107) properties to set up
callbacks on those actions:

11.2. Input devices 95

gpiozero 2.0.1 Documentation, Release 2.0.1

from gpiozero import Button

def pressed():
print ("button was pressed")

def released() :
print ("button was released")

btn = Button (4)

btn.when_pressed = pressed
btn.when_released = released

when_held (page 100) is also provided, where the length of time considered a “hold” is configurable.

The callback functions don’t have to take any arguments, but if they take one, the button object is passed in, allowing
you to determine which button called the function.

InputDevice (page 121) is the base class for input devices, and can be used in a similar way to input devices in
RPi.GPIO.

See a full list of input devices (page 105). Other input devices have similar property and method names. There is
commonality in naming at base level, such as TnputDevice. is_active (page 122), which is aliased in a device
class, such as Button. is_pressed (page 106) and Light Sensor. light_detected (page 112).

11.3 Composite devices, boards and accessories

Some devices require connections to multiple pins, for example a distance sensor, a combination of LEDs or a HAT.
Some GPIO Zero devices comprise multiple device connections within one object, such as RGBLED (page 128),
LEDBoard (page 157), DistanceSensor (page 113), Motor (page 134) and Robot (page 176).

With RPi.GPIO, you would have one output pin for the trigger, and one input pin for the echo. You would time
the echo and calculate the distance. With GPIO Zero, you create a single DistanceSensor (page 113) object,
specifying the trigger and echo pins, and you would read the DistanceSensor.distance (page 114) property
which automatically calculates the distance within the implementation of the class.

The Motor (page 134) class controls two output pins to drive the motor forwards or backwards. The Robot
(page 176) class controls four output pins (two motors) in the right combination to drive a robot forwards or back-
wards, and turn left and right.

The LEDBoard (page 157) class takes an arbitrary number of pins, each controlling a single LED. The resulting
LEDBoard (page 157) object can be used to control all LEDs together (all on / all off), or individually by index.
Also the object can be iterated over to turn LEDs on in order. See examples of this (including slicing) in the advanced
recipes (page 37).

11.4 PWM (Pulse-width modulation)

Both libraries support software PWM control on any pin. Depending on the pin library used, GPIO Zero can also
support hardware PWM (using RPIOPin or PiGPIOPin).

A simple example of using PWM is to control the brightness of an LED.
In RPi.GPIO®:

import RPi.GPIO as GPIO
from time import sleep

(continues on next page)

81 https://pypi.org/project/RPi.GPIO/

96 Chapter 11. Migrating from RPi.GPIO

https://pypi.org/project/RPi.GPIO/

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

GPIO.setmode (GPIO.BCM)
GPIO.setwarnings (False)

GPIO.setup (2, GPIO.OUT)
pwm = GPIO.PWM(2, 100)
pwm.start (0)

for dc in range(101):
pwm.changeDutyCycle (dc)
sleep(0.01)

In GPIO Zero:

from gpiozero import PWMLED
from time import sleep

led = PWMLED (2)
for b in range(101) :

led.value = b / 100.0
sleep(0.01)

J

PWMLED (page 127) has a b1ink () (page 127) method which can be used the same was as LED (page 125)’s
blink () (page 126) method, but its PWM capabilities allow for fade_in and fade_out options to be provided.
There is also the pulse () (page 127) method which provides a neat way to have an LED fade in and out repeatedly.

Other devices can make use of PWM, such as motors (for variable speed) and servos. See the Mot or (page 134),
Servo (page 137) and AngularServo (page 139) classes for information on those. Motor (page 134) and
Robot (page 176) default to using PWM, but it can be disabled with pwm=False at initialization. Servos cannot
be used without PWM. Devices containing LEDs default to not using PWM, but pwm=True can be specified and
any LED objects within the device will be initialized as PWMLED (page 127) objects.

11.5 Cleanup

Pin state cleanup is explicit in RPi.GPIO, and is done manually with GPIO. cleanup () butin GPIO Zero, cleanup
is automatically performed on every pin used, at the end of the script. Manual cleanup is possible by use of the
close () (page 199) method on the device.

Note that cleanup only occurs at the point of normal termination of the script. If the script exits due to a program
error, cleanup will not be performed. To ensure that cleanup is performed after an exception is raised, the exception
must be handled, for example:

from gpiozero import Button
btn = Button (4)

while True:
try:
if btn.is_pressed:
print ("Pressed")
except KeyboardInterrupt:
print ("Ending program")

Read more in the relevant FAQ: What's the gpiozero equivalent of GPIO.cleanup()? (page 83)

11.5. Cleanup 97

gpiozero 2.0.1 Documentation, Release 2.0.1

11.6 Pi Information

RPi.GPIO provides information about the Pi you’re using. The equivalent in GPIO Zero is the function pi_info ()
(page 217):

>>> from gpiozero import pi_info

>>> pi = pi_info()

>>> pi

PiBoardInfo (revision='a02082', model='3B', pcb_revision='1.2"', released='2016Q1"', .
—soc="BCM2837"', manufacturer='Sony', memory=1024, storage='MicroSD', usb=4,.
—ethernet=1, wifi=True, bluetooth=True, csi=1, dsi=1, headers=..., board=...)

>>> pi.soc

'BCM2837"

>>> pi.wifi

True

Read more about what Pi BoardInfo (page 217) provides.

11.7 More

GPIO Zero provides more than just GPIO device support, it includes some support for SPI devices (page 147) including
a range of analog to digital converters.

Device classes which are compatible with other GPIO devices, but have no relation to GPIO pins, such as CPUTem—
perature (page 192), TimeOfDay (page 190), PingServer (page 191) and LoadAverage (page 193) are
also provided.

GPIO Zero features support for multiple pin libraries. The default is to use RP1i . GP IO to control the pins, but you
can choose to use another library, such as pigpi o, which supports network controlled GPIO. See Changing the pin
Jactory (page 223) and Configuring Remote GPIO (page 45) for more information.

It is possible to run GPIO Zero on your PC, both for remote GPIO and for testing purposes, using Mock pins
(page 225).

Another feature of this library is configuring devices to be connected together in a logical way, for example in one
line you can say that an LED and button are “paired”, i.e. the button being pressed turns the LED on. Read about
this in Source/Values (page 61).

11.8 FAQs

Note the following FAQs which may catch out users too familiar with RPi.GPIO:
e How do I keep my script running? (page 79)
» Why do I get PinFactoryFallback warnings when I import gpiozero? (page 81)
* What's the gpiozero equivalent of GPIO.cleanup()? (page 83)

98 Chapter 11. Migrating from RPi.GPIO

CHAPTER
TWELVE

CONTRIBUTING

Contributions to the library are welcome! Here are some guidelines to follow.

12.1 Suggestions

Please make suggestions for additional components or enhancements to the codebase by opening an issue®” explaining
your reasoning clearly.

12.2 Bugs

Please submit bug reports by opening an issue® explaining the problem clearly using code examples.

12.3 Documentation

The documentation source lives in the docs®* folder. Contributions to the documentation are welcome but should be
easy to read and understand.

12.4 Commit messages and pull requests

Commit messages should be concise but descriptive, and in the form of a patch description, i.e. instructional not past
tense (“Add LED example” not “Added LED example™).

Commits which close (or intend to close) an issue should include the phrase “fix #123” or “close #123” where #123
is the issue number, as well as include a short description, for example: “Add LED example, close #123”, and pull
requests should aim to match or closely match the corresponding issue title.

Copyrights on submissions are owned by their authors (we don’t bother with copyright assignments), and we assume
that authors are happy for their code to be released under the project’s license (page 255). Do feel free to add your
name to the list of contributors in README . rst at the top level of the project in your pull request! Don’t worry
about adding your name to the copyright headers in whatever files you touch; these are updated automatically from
the git metadata before each release.

82 https://github.com/gpiozero/gpiozero/issues/new
83 https://github.com/gpiozero/gpiozero/issues/new
84 https://github.com/gpiozero/gpiozero/tree/master/docs

99

https://github.com/gpiozero/gpiozero/issues/new
https://github.com/gpiozero/gpiozero/issues/new
https://github.com/gpiozero/gpiozero/tree/master/docs

gpiozero 2.0.1 Documentation, Release 2.0.1

12.5 Backwards compatibility

Since this library reached v1.0 we aim to maintain backwards-compatibility thereafter. Changes which break
backwards-compatibility will not be accepted.

12.6 Python 2/3

The library is 100% compatible with both Python 2.7 and Python 3 from version 3.2 onwards. Since Python 2 is now
past its end-of-life®, the 1.6.2 release (2021-03-18) is the last to support Python 2.

85 http://legacy.python.org/dev/peps/pep-0373/

100 Chapter 12. Contributing

http://legacy.python.org/dev/peps/pep-0373/

CHAPTER
THIRTEEN

DEVELOPMENT

The main GitHub repository for the project can be found at:
https://github.com/gpiozero/gpiozero

For anybody wishing to hack on the project, we recommend starting off by getting to grips with some simple de-
vice classes. Pick something like LED (page 125) and follow its heritage backward to DigitalOutputDevice
(page 141). Follow that back to OutputDevice (page 144) and you should have a good understanding of simple
output devices along with a grasp of how GPIO Zero relies fairly heavily upon inheritance to refine the functionality

of devices. The same can be done for input devices, and eventually more complex devices (composites and SPI
based).

13.1 Development installation

If you wish to develop GPIO Zero itself, we recommend obtaining the source by cloning the GitHub repository and
then use the “develop” target of the Makefile which will install the package as a link to the cloned repository allowing
in-place development (it also builds a tags file for use with vim/emacs with Exuberant’s ctags utility). The following
example demonstrates this method within a virtual Python environment:

$ sudo apt install lsb-release build-essential git exuberant-ctags \
virtualenvwrapper python-virtualenv python3-virtualenv \
python-dev python3-dewv

After installing virtualenvwrapper youll need to restart your shell before commands like mkvirtualenv
will operate correctly. Once you’ve restarted your shell, continue:

$ cd

$ mkvirtualenv -p /usr/bin/python3 gpiozero

$ workon gpiozero

(gpiozero) $ git clone https://github.com/gpiozero/gpiozero.git
(gpiozero) $ cd gpiozero

(gpiozero) $ make develop

You will likely wish to install one or more pin implementations within the virtual environment (if you don’t, GPIO
Zero will use the “native” pin implementation which is usable at this stage, but doesn’t support facilities like PWM):

[(gpiozero) $ pip install rpi.gpio pigpio }

If you are working on SPI devices you may also wish to install the spidev package to provide hardware SPI capa-
bilities (again, GPIO Zero will work without this, but a big-banging software SPI implementation will be used instead
which limits bandwidth):

[(gpiozero) $ pip install spidev }

To pull the latest changes from git into your clone and update your installation:

101

https://github.com/gpiozero/gpiozero

gpiozero 2.0.1 Documentation, Release 2.0.1

$ workon gpiozero
(gpiozero) $ cd ~/gpiozero
(gpiozero) $ git pull
(gpiozero) $ make develop

To remove your installation, destroy the sandbox and the clone:

(gpiozero) $ deactivate
$ rmvirtualenv gpiozero
$ rm —-rf ~/gpiozero

13.2 Building the docs

If you wish to build the docs, you'll need a few more dependencies. Inkscape is used for conversion of SVGs to
other formats, Graphviz is used for rendering certain charts, and TeX Live is required for building PDF output. The
following command should install all required dependencies:

$ sudo apt install texlive-latex-recommended texlive-latex-extra \
texlive—-fonts-recommended texlive-xetex graphviz inkscape \
python3-sphinx python3-sphinx-rtd-theme latexmk xindy

Once these are installed, you can use the “doc” target to build the documentation:

$ workon gpiozero
(gpiozero) $ cd ~/gpiozero
(gpiozero) $ make doc

The HTML output is written to build/html while the PDF output goes to build/latex.

13.3 Test suite

If you wish to run the GPIO Zero test suite, follow the instructions in Development installation (page 101) above and
then make the “test” target within the sandbox. You'll also need to install some pip packages:

$ workon gpiozero

(gpiozero) $ pip install coverage mock pytest
(gpiozero) $ cd ~/gpiozero

(gpiozero) $ make test

The test suite expects pins 22 and 27 (by default) to be wired together in order to run the “real” pin tests. The pins
used by the test suite can be overridden with the environment variables GPTOZERO_TEST_P IN (defaults to 22) and
GPIOZERO_TEST_INPUT_PIN (defaults to 27).

Warning: When wiring GPIOs together, ensure a load (like a 1KQ resistor) is placed between them. Failure to
do so may lead to blown GPIO pins (your humble author has a fried GPIO27 as a result of such laziness, although
it did take many runs of the test suite before this occurred!).

The test suite is also setup for usage with the tox utility, in which case it will attempt to execute the test suite with
all supported versions of Python. If you are developing under Ubuntu you may wish to look into the Dead Snakes
PPA®® in order to install old/new versions of Python; the tox setup should work with the version of tox shipped with
Ubuntu Xenial, but more features (like parallel test execution) are available with later versions.

On the subject of parallel test execution, this is also supported in the tox setup, including the “real” pin tests (a
file-system level lock is used to ensure different interpreters don’t try to access the physical pins simultaneously).

86 https://launchpad.net/~deadsnakes/%2Barchive/ubuntu/ppa

102 Chapter 13. Development

https://launchpad.net/~deadsnakes/%2Barchive/ubuntu/ppa
https://launchpad.net/~deadsnakes/%2Barchive/ubuntu/ppa

gpiozero 2.0.1 Documentation, Release 2.0.1

For example, to execute the test suite under tox, skipping interpreter versions which are not installed:

[$ tox -s }

To execute the test suite under all installed interpreter versions in parallel, using as many parallel tasks as there are
CPUgs, then displaying a combined report of coverage from all environments:

$ tox —-p auto -s
$ coverage combine --rcfile coverage.cfg
$ coverage report —--rcfile coverage.cfg

13.4 Mock pins

The test suite largely depends on the existence of the mock pin factory MockFactory (page 237), which is also
useful for manual testing, for example in the Python shell or another REPL. See the section on Mock pins (page 225)
in the API - Pins (page 221) chapter for more information.

13.4. Mock pins 103

gpiozero 2.0.1 Documentation, Release 2.0.1

104 Chapter 13. Development

CHAPTER
FOURTEEN

API - INPUT DEVICES

These input device component interfaces have been provided for simple use of everyday components. Components
must be wired up correctly before use in code.

Note: All GPIO pin numbers use Broadcom (BCM) numbering by default. See the Pin Numbering (page 3) section
for more information.

14.1 Regular Classes

The following classes are intended for general use with the devices they represent. All classes in this section are
concrete (not abstract).

14.1.1 Button

class gpiozero.Button (*args, **kwargs)

Extends DigitalInputDevice (page 119) and represents a simple push button or switch.

Connect one side of the button to a ground pin, and the other to any GPIO pin. Alternatively, connect one
side of the button to the 3V3 pin, and the other to any GPIO pin, then set pull_up to Fa1se®” in the Button
(page 105) constructor.

The following example will print a line of text when the button is pushed:

from gpiozero import Button

button = Button (4)
button.wait_for_press|()
print ("The button was pressed!")

Parameters

e pin (int® or str®) - The GPIO pin which the button is connected to. See Pin
Numbering (page 3) for valid pin numbers. If this is None” a GPTODeviceError
(page 241) will be raised.

s pull_up (bool’! or None)-If True’ (the default), the GPIO pin will be pulled
high by default. In this case, connect the other side of the button to ground. If False”,
the GPIO pin will be pulled low by default. In this case, connect the other side of the
button to 3V3. If None®*, the pin will be floating, so it must be externally pulled up or
down and the act ive_state parameter must be set accordingly.

* active_state (bool”® or None) — See description under TnputDevice
(page 121) for more information.

105

https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool

gpiozero 2.0.1 Documentation, Release 2.0.1

» bounce_time (float’ or None)-If None? (the default), no software bounce
compensation will be performed. Otherwise, this is the length of time (in seconds) that
the component will ignore changes in state after an initial change.

* hold_time (float’®) — The length of time (in seconds) to wait after the button is
pushed, until executing the when_he1d (page 106) handler. Defaults to 1.

* hold_repeat (hoo1”) —If True!®, the when_held (page 106) handler will be
repeatedly executed as long as the device remains active, every hold_time seconds. If
False!?! (the default) the when_ held (page 106) handler will be only be executed
once per hold.

* pin_factory (Factory (page 226) or None) — See APl - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

wait_for_press (timeout=None)
Pause the script until the device is activated, or the timeout is reached.
Parameters

timeout (floa or None) — Number of seconds to wait before proceeding. If
this is None'% (the default), then wait indefinitely until the device is active.

thZ

wait_for_release (timeout=None)
Pause the script until the device is deactivated, or the timeout is reached.
Parameters

timeout (floa or None) — Number of seconds to wait before proceeding. If
this is None!% (the default), then wait indefinitely until the device is inactive.

tl()4

property held_time
The length of time (in seconds) that the device has been held for. This is counted from the first exe-
cution of the when_held (page 106) event rather than when the device activated, in contrast to ac—
tive_time (page 201). If the device is not currently held, this is None'%.

property hold_repeat
If True'”, when_held (page 106) will be executed repeatedly with ho1d_t ime (page 106) seconds
between each invocation.

property hold_time

The length of time (in seconds) to wait after the device is activated, until executing the when_held
(page 106) handler. If hold repeat (page 106) is True, this is also the length of time between
invocations of when_held (page 106).

property is_held
When True'!%, the device has been active for at least ho1d_t ime (page 106) seconds.

property is_pressed

109 110

Returns True'” if the device is currently active and False' W otherwise. This property is usually
derived from value (page 106). Unlike value (page 106), this is always a boolean.

property pin

The Pin (page 227) that the device is connected to. This will be None!!! if the device has been closed

(seethe close () (page 199) method). When dealing with GPIO pins, query pin.number to discover
the GPIO pin (in BCM numbering) that the device is connected to.

property pull_up
If True''?, the device uses a pull-up resistor to set the GPIO pin “high” by default.

property value
Returns 1 if the button is currently pressed, and O if it is not.

106

Chapter 14. API - Input Devices

https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#True

gpiozero 2.0.1 Documentation, Release 2.0.1

when_held

The function to run when the device has remained active for hol1d_t ime (page 106) seconds.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated will be passed as that parameter.

Set this property to None''? (the default) to disable the event.

when_pressed

The function to run when the device changes state from inactive to active.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated it will be passed as that parameter.

Set this property to None''* (the default) to disable the event.

when_released

The function to run when the device changes state from active to inactive.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that deactivated it will be passed as that parameter.

Set this property to None'!” (the default) to disable the event.

87 https://docs.python.org/3.9/library/constants. html#False
88 https://docs.python.org/3.9/library/functions.html#int
89 https://docs.python.org/3.9/library/stdtypes.html#str

90 https://docs.python.org/3.9/library/constants.html#None
91 https://docs.python.org/3.9/library/functions.html#bool
92 https://docs.python.org/3.9/library/constants. html#True
93 https://docs.python.org/3.9/library/constants.html#False
94 https://docs.python.org/3.9/library/constants.html#None
95 https://docs.python.org/3.9/library/functions.html#bool
96 https://docs.python.org/3.9/library/functions.html#float
97 https://docs.python.org/3.9/library/constants.html#None
98 https://docs.python.org/3.9/library/functions.html#float
99 https://docs.python.org/3.9/library/functions.html#bool
100 https://docs.python.org/3.9/library/constants.html#True
101 https://docs.python.org/3.9/library/constants. html#False
102 hitps://docs.python.org/3.9/library/functions.html#float
103 https://docs.python.org/3.9/library/constants.html#None
104 hitps://docs.python.org/3.9/library/functions.html#float
105 https://docs.python.org/3.9/library/constants.html#None
106 https://docs.python.org/3.9/library/constants.html#None
107 https://docs.python.org/3.9/library/constants.html#True
108 hitps://docs.python.org/3.9/library/constants.html#True
109 https://docs.python.org/3.9/library/constants.html#True
110 https://docs.python.org/3.9/library/constants. html#False
11 hitps://docs.python.org/3.9/library/constants.html#None
112 https://docs.python.org/3.9/library/constants.html#True
113 https://docs.python.org/3.9/library/constants.html#None
114 https://docs.python.org/3.9/library/constants.html#None
115 https://docs.python.org/3.9/library/constants.html#None

14.1. Regular Classes

107

https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

14.1.2 LineSensor (TRCT5000)

class gpiozero.LineSensor (*args, **kwargs)

Extends SmoothedInputDevice (page 120) and represents a single pin line sensor like the TCRTS000
infra-red proximity sensor found in the CamJam #3 EduKit''®,

A typical line sensor has a small circuit board with three pins: VCC, GND, and OUT. VCC should be connected
to a 3V3 pin, GND to one of the ground pins, and finally OUT to the GPIO specified as the value of the pin
parameter in the constructor.

The following code will print a line of text indicating when the sensor detects a line, or stops detecting a line:

.
from gpiozero import LineSensor

from signal import pause

sensor = LineSensor (4)

N

sensor.when_line = lambda: print ('Line detected')
sensor.when_no_line = lambda: print ('No line detected')
pause ()
.

Parameters

s pin (int'" or str'')—The GPIO pin which the sensor is connected to. See Pin
Numbering (page 3) for valid pin numbers. If this is None!!'” a GPTODeviceError
(page 241) will be raised.

» pull_up (bool'” or None) - See description under TnputDevice (page 121)
for more information.

* active_state (bool'?! or None) — See description under ITnputDevice
(page 121) for more information.

* queue_len (int'??)—Thelength of the queue used to store values read from the sensor.
This defaults to 5.

» sample_rate (float'?®)—The number of values to read from the device (and append
to the internal queue) per second. Defaults to 100.

» threshold (float'?*)—Defaults to 0.5. When the average of all values in the internal
queue rises above this value, the sensor will be considered “active” by the is_active
(page 121) property, and all appropriate events will be fired.

» partial (bool'?) — When False!? (the default), the object will not return a value
for is_active (page 121) until the internal queue has filled with values. Only set this
to True'?” if you require values immediately after object construction.

* pin_factory (Factory (page 226) or None) — See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

wait_for_line (timeout=None)
Pause the script until the device is deactivated, or the timeout is reached.
Parameters

timeout (floa or None) — Number of seconds to wait before proceeding. If
this is None'?? (the default), then wait indefinitely until the device is inactive.

t128

wait_for_ no_1line (fimeout=None)
Pause the script until the device is activated, or the timeout is reached.
Parameters

timeout (float'’ or None)- Number of seconds to wait before proceeding. If
this is None'?! (the default), then wait indefinitely until the device is active.

108

Chapter 14. API - Input Devices

http://camjam.me/?page_id=1035
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

property pin

The Pin (page 227) that the device is connected to. This will be None!3? if the device has been closed
(seethe close () (page 199) method). When dealing with GPIO pins, query pin.number to discover
the GPIO pin (in BCM numbering) that the device is connected to.

property value

Returns a value representing the average of the queued values. This is nearer O for black under the sensor,
and nearer 1 for white under the sensor.

when_line
The function to run when the device changes state from active to inactive.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that deactivated it will be passed as that parameter.

Set this property to None'?? (the default) to disable the event.
when_no_line
The function to run when the device changes state from inactive to active.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated it will be passed as that parameter.

Set this property to None'** (the default) to disable the event.

14.1.3 MotionSensor (D-SUN PIR)

class gpiozero.MotionSensor (*args, **kwargs)

Extends SmoothedInputDevice (page 120) and represents a passive infra-red (PIR) motion sensor like
the sort found in the CamJam #2 EduKit',

A typical PIR device has a small circuit board with three pins: VCC, OUT, and GND. VCC should be connected
to a 5V pin, GND to one of the ground pins, and finally OUT to the GPIO specified as the value of the pin
parameter in the constructor.

The following code will print a line of text when motion is detected:

from gpiozero import MotionSensor

pir = MotionSensor (4)
pir.wait_for_motion ()
print ("Motion detected!")

116 http://camjam.me/?page_id=1035

117 https://docs.python.org/3.9/library/functions. html#int
118 https://docs.python.org/3.9/library/stdtypes. html#str

119 https://docs.python.org/3.9/library/constants.html#None
120 https://docs.python.org/3.9/library/functions.html#bool
121 https://docs.python.org/3.9/library/functions.html#bool
122 https://docs.python.org/3.9/library/functions. html#int
123 https://docs.python.org/3.9/library/functions.html#float
124 https://docs.python.org/3.9/library/functions.html#float
125 https://docs.python.org/3.9/library/functions.html#bool
126 https://docs.python.org/3.9/library/constants. html#False
127 https://docs.python.org/3.9/library/constants.html#True
128 https://docs.python.org/3.9/library/functions.html#float
129 https://docs.python.org/3.9/library/constants.html#None
130 https://docs.python.org/3.9/library/functions.html#float
131 https://docs.python.org/3.9/library/constants.html#None
132 https://docs.python.org/3.9/library/constants.html#None
133 https://docs.python.org/3.9/library/constants.html#None
134 https://docs.python.org/3.9/library/constants.html#None

14.1. Regular Classes 109

https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None
http://camjam.me/?page_id=623

gpiozero 2.0.1 Documentation, Release 2.0.1

Parameters

£136 137 _

* pin (in or str
Numbering (page 3) for valid pin numbers. If this is None
(page 241) will be raised.

The GPIO pin which the sensor is connected to. See Pin
138 a GPIODeviceError

s pull_up (bool'*® or None) - See description under TnputDevice (page 121)
for more information.

* active_state (bool'¥ or None) — See description under InputDevice
(page 121) for more information.

* queue_len (int'*")—Thelength of the queue used to store values read from the sensor.
This defaults to 1 which effectively disables the queue. If your motion sensor is particularly
“twitchy” you may wish to increase this value.

+ sample_rate (f1oat'*)—The number of values to read from the device (and append
to the internal queue) per second. Defaults to 10.

» threshold (float'*) - Defaults to 0.5. When the average of all values in the internal
queue rises above this value, the sensor will be considered “active” by the is_active
(page 121) property, and all appropriate events will be fired.

» partial (bool'*) - When False!® (the default), the object will not return a value
for is_active (page 121) until the internal queue has filled with values. Only set this
to True ' if you require values immediately after object construction.

* pin_factory (Factory (page 226) or None) — See APl - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

wait_for_motion (fimeout=None)
Pause the script until the device is activated, or the timeout is reached.
Parameters

timeout (floa or None) — Number of seconds to wait before proceeding. If
this is None'*® (the default), then wait indefinitely until the device is active.

t]47

wait_for_no_motion (fimeout=None)

Pause the script until the device is deactivated, or the timeout is reached.

Parameters
timeout (float'® or None)— Number of seconds to wait before proceeding. If
this is None %Y (the default), then wait indefinitely until the device is inactive.

property motion_detected

151

Returns True'”! if the value (page 121) currently exceeds t hreshold (page 121) and False'?

otherwise.

property pin

The Pin (page 227) that the device is connected to. This will be None!5? if the device has been closed

(seethe close () (page 199) method). When dealing with GPIO pins, query pin . number to discover
the GPIO pin (in BCM numbering) that the device is connected to.

property value

With the default queue_len of 1, this is effectively boolean where 0 means no motion detected and 1
means motion detected. If you specify a queue_len greater than 1, this will be an averaged value where
values closer to 1 imply motion detection.

when_motion
The function to run when the device changes state from inactive to active.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated it will be passed as that parameter.

110

Chapter 14. API - Input Devices

https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

Set this property to None'>* (the default) to disable the event.
when_no_motion

The function to run when the device changes state from active to inactive.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that deactivated it will be passed as that parameter.

Set this property to None '3 (the default) to disable the event.

14.1.4 LightSensor (LDR)

class gpiozero.LightSensor (*args, **kwargs)
Extends SmoothedInputDevice (page 120) and represents a light dependent resistor (LDR).
Connect one leg of the LDR to the 3V3 pin; connect one leg of a 1puF capacitor to a ground pin; connect the

other leg of the LDR and the other leg of the capacitor to the same GPIO pin. This class repeatedly discharges

the capacitor, then times the duration it takes to charge (which will vary according to the light falling on the
LDR).

The following code will print a line of text when light is detected:

from gpiozero import LightSensor

ldr = LightSensor (18)
ldr.wait_for_light ()
print ("Light detected!")

Parameters

e pin (int"™® or str'®7) - The GPIO pin which the sensor is attached to. See Pin
Numbering (page 3) for valid pin numbers. If this is None!® a GPTODeviceError
(page 241) will be raised.

» queue_len (int'"?)—Thelength of the queue used to store values read from the circuit.
This defaults to 5.

* charge_time_limit (float'®") - If the capacitor in the circuit takes longer than
this length of time to charge, it is assumed to be dark. The default (0.01 seconds) is
appropriate for a 1uF capacitor coupled with the LDR from the CamJam #2 EduKit'®!.
You may need to adjust this value for different valued capacitors or LDRs.

135 http://camjam.me/?page_id=623

136 https://docs.python.org/3.9/library/functions. html#int
137 https://docs.python.org/3.9/library/stdtypes.html#str

138 https://docs.python.org/3.9/library/constants.html#None
139 https://docs.python.org/3.9/library/functions.html#bool
140 https://docs.python.org/3.9/library/functions.html#bool
141 https://docs.python.org/3.9/library/functions. html#int
142 https://docs.python.org/3.9/library/functions.html#float
143 https://docs.python.org/3.9/library/functions.html#float
144 https://docs.python.org/3.9/library/functions.html#bool
145 https://docs.python.org/3.9/library/constants.html#False
146 https://docs.python.org/3.9/library/constants.html#True
147 https://docs.python.org/3.9/library/functions.html#float
148 https://docs.python.org/3.9/library/constants.html#None
149 https://docs.python.org/3.9/library/functions.html#float
150 https://docs.python.org/3.9/library/constants.html#None
151 https://docs.python.org/3.9/library/constants.html#True
152 https://docs.python.org/3.9/library/constants. html#False
153 https://docs.python.org/3.9/library/constants.html#None
154 https://docs.python.org/3.9/library/constants.html#None
155 https://docs.python.org/3.9/library/constants.html#None

14.1. Regular Classes 111

https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/functions.html#float
http://camjam.me/?page_id=623

gpiozero 2.0.1 Documentation, Release 2.0.1

» threshold (float'%?) - Defaults to 0.1. When the average of all values in the internal
queue rises above this value, the area will be considered “light”, and all appropriate events
will be fired.

» partial (hool'%®) — When False!'® (the default), the object will not return a value
for is_active (page 121) until the internal queue has filled with values. Only set this
to True' if you require values immediately after object construction.

* pin_factory (Factory (page 226) or None) — See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

wait_for_dark (timeout=None)
Pause the script until the device is deactivated, or the timeout is reached.

Parameters

timeout (float!'®® or None) - Number of seconds to wait before proceeding. If
this is None'%’ (the default), then wait indefinitely until the device is inactive.

wait_for_light (timeout=None)
Pause the script until the device is activated, or the timeout is reached.
Parameters

timeout (float!® or None) — Number of seconds to wait before proceeding. If
this is None'® (the default), then wait indefinitely until the device is active.

property light_detected

Returns True!”

otherwise.

property pin

The Pin (page 227) that the device is connected to. This will be None!”? if the device has been closed
(seethe close () (page 199) method). When dealing with GPIO pins, query pin . number to discover

the GPIO pin (in BCM numbering) that the device is connected to.

property value
Returns a value between 0 (dark) and 1 (light).

when_dark
The function to run when the device changes state from active to inactive.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function

accepts a single mandatory parameter, the device that deactivated it will be passed as that parameter.
Set this property to None'”? (the default) to disable the event.

when_light

The function to run when the device changes state from inactive to active.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function

accepts a single mandatory parameter, the device that activated it will be passed as that parameter.

Set this property to None'”* (the default) to disable the event.

112

Chapter 14. API - Input Devices

if the value (page 121) currently exceeds t hreshold (page 121) and False!”!

https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

14.1.5 DistanceSensor (HC-SR04)

class gpiozero.DistanceSensor (*args, **kwargs)

Extends SmoothedInputDevice (page 120) and represents an HC-SR04 ultrasonic distance sensor, as
found in the CamJam #3 EduKit!”>.

The distance sensor requires two GPIO pins: one for the trigger (marked TRIG on the sensor) and another
for the echo (marked ECHO on the sensor). However, a voltage divider is required to ensure the 5V from the
ECHO pin doesn’t damage the Pi. Wire your sensor according to the following instructions:

1. Connect the GND pin of the sensor to a ground pin on the Pi.

2. Connect the TRIG pin of the sensor a GPIO pin.

3. Connect one end of a 330Q resistor to the ECHO pin of the sensor.

4. Connect one end of a 470Q resistor to the GND pin of the sensor.

5. Connect the free ends of both resistors to another GPIO pin. This forms the required voltage divider'’®.
6. Finally, connect the VCC pin of the sensor to a 5V pin on the Pi.

Alternatively, the 3V3 tolerant HC-SRO4P sensor (which does not require a voltage divider) will work with
this class.

Note: If you do not have the precise values of resistor specified above, don’t worry! What matters is the ratio
of the resistors to each other.

You also don’t need to be absolutely precise; the voltage divider'”’ given above will actually output ~3V (rather
than 3.3V). A simple 2:3 ratio will give 3.333V which implies you can take three resistors of equal value, use
one of them instead of the 330Q resistor, and two of them in series instead of the 470Q resistor.

The following code will periodically report the distance measured by the sensor in cm assuming the TRIG pin

is connected to GPIO17, and the ECHO pin to GPIO18:

-

from time import sleep

sleep (1)

from gpiozero import DistanceSensor

sensor = DistanceSensor (echo=18, trigger=17)
while True:
print ('Distance: ', sensor.distance * 100)

Note: For improved accuracy, use the pigpio pin driver rather than the default RPi.GPIO driver (pigpio uses
DMA sampling for much more precise edge timing). This is particularly relevant if you're using Pi 1 or Pi

156 https://docs.python.org/3.9/library/functions.html#int
157 https://docs.python.org/3.9/library/stdtypes. html#str

158 https://docs.python.org/3.9/library/constants.html#None
159 https://docs.python.org/3.9/library/functions.html#int
160 https://docs.python.org/3.9/library/functions.html#float
161 http://camjam.me/?page_id=623

162 https://docs.python.org/3.9/library/functions.html#float
163 https://docs.python.org/3.9/library/functions.html#bool
164 https://docs.python.org/3.9/library/constants. html#False
165 https://docs.python.org/3.9/library/constants.html#True
166 https://docs.python.org/3.9/library/functions.html#float
167 https://docs.python.org/3.9/library/constants.html#None
168 https://docs.python.org/3.9/library/functions.html#float
169 https://docs.python.org/3.9/library/constants.html#None
170 https://docs.python.org/3.9/library/constants.html#True
171 https://docs.python.org/3.9/library/constants. html#False
172 https://docs.python.org/3.9/library/constants.html#None
173 https://docs.python.org/3.9/library/constants.html#None
174 https://docs.python.org/3.9/library/constants.html#None

14.1. Regular Classes

113

http://camjam.me/?page_id=1035
https://en.wikipedia.org/wiki/Voltage_divider
https://en.wikipedia.org/wiki/Voltage_divider

gpiozero 2.0.1 Documentation, Release 2.0.1

Zero. See Changing the pin factory (page 223) for further information.

Parameters

echo (int'™® or str'””)—The GPIO pin which the ECHO pin is connected to. See
Pin Numbering (page 3) for valid pin numbers. If thisis None'® a GPTODeviceError
(page 241) will be raised.

trigger (int'®! or str!®?) - The GPIO pin which the TRIG pin is connected
to. See Pin Numbering (page 3) for valid pin numbers. If this is None'®? a GPTODe~
viceError (page 241) will be raised.

queue_len (int'®)—The length of the queue used to store values read from the sensor.
This defaults to 9.

max_distance (float'®®) - The value (page 115) attribute reports a normalized
value between 0 (too close to measure) and 1 (maximum distance). This parameter spec-
ifies the maximum distance expected in meters. This defaults to 1.

threshold_distance (float'%) - Defaults to 0.3. This is the distance (in meters)
that will trigger the in_range and out_of_range events when crossed.

partial (bool'®") — When False!8® (the default), the object will not return a value
for is_active (page 121) until the internal queue has filled with values. Only set this
to True'® if you require values immediately after object construction.

pin_factory (Factory (page 226) or None) — See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

wait_for_in_range (timeout=None)

Pause the script until the device is deactivated, or the timeout is reached.

Parameters

timeout (float!”’ or None)— Number of seconds to wait before proceeding. If
this is None'?! (the default), then wait indefinitely until the device is inactive.

wait_for_out_of_range (fimeout=None)

Pause the script until the device is activated, or the timeout is reached.

Parameters

timeout (float!'”> or None) - Number of seconds to wait before proceeding. If

this is None'?? (the default), then wait indefinitely until the device is active.

property distance

Returns the current distance measured by the sensor in meters. Note that this property will have a value

between 0 and max_distance (page 114).

property echo

Returns the Pin (page 227) that the sensor’s echo is connected to. This is simply an alias for the usual

pin (page 123) attribute.

property max_distance

The maximum distance that the sensor will measure in meters. This value is specified in the constructor
and is used to provide the scaling for the value (page 121) attribute. When distance (page 114) is

equal to max_distance (page 114), value (page 121) will be 1.

property threshold_distance

The distance, measured in meters, that will trigger the when_in_range (page 115) and
when_out_of_range (page 115) events when crossed. This is simply a meter-scaled variant of

the usual threshold (page 121) attribute.

114

Chapter 14. API - Input Devices

https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

property trigger
Returns the Pin (page 227) that the sensor’s trigger is connected to.

property value
Returns a value between 0, indicating the reflector is either touching the sensor or is sufficiently near
that the sensor can’t tell the difference, and 1, indicating the reflector is at or beyond the specified
max_distance.

when_in_range
The function to run when the device changes state from active to inactive.
This can be set to a function which accepts no (mandatory) parameters, or a Python function which

accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that deactivated it will be passed as that parameter.

Set this property to None'“* (the default) to disable the event.
when_out_of_range
The function to run when the device changes state from inactive to active.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated it will be passed as that parameter.

Set this property to None'?’ (the default) to disable the event.

14.1.6 RotaryEncoder

class gpiozero.RotaryEncoder (*args, **kwargs)

Represents a simple two-pin incremental rotary encoder!”® device.

These devices typically have three pins labelled “A”, “B”, and “C”. Connect A and B directly to two GPIO
pins, and C (“common”) to one of the ground pins on your Pi. Then simply specify the A and B pins as the
arguments when constructing this classs.

For example, if your encoder’s A pin is connected to GPIO 21, and the B pin to GPIO 20 (and presumably
the C pin to a suitable GND pin), while an LED (with a suitable 300Q2 resistor) is connected to GPIO 5, the
following session will result in the brightness of the LED being controlled by dialling the rotary encoder back
and forth:

175 http://camjam.me/?page_id=1035

176 https://en.wikipedia.org/wiki/Voltage_divider

177 https://en.wikipedia.org/wiki/Voltage_divider

178 https://docs.python.org/3.9/library/functions. html#int
179 https://docs.python.org/3.9/library/stdtypes.html#str

180 https://docs.python.org/3.9/library/constants.html#None
181 https://docs.python.org/3.9/library/functions. html#int
182 https://docs.python.org/3.9/library/stdtypes. html#str

183 https://docs.python.org/3.9/library/constants.html#None
184 https://docs.python.org/3.9/library/functions.html#int
185 https://docs.python.org/3.9/library/functions.html#float
186 https://docs.python.org/3.9/library/functions.html#float
187 https://docs.python.org/3.9/library/functions.html#bool
188 https://docs.python.org/3.9/library/constants. html#False
189 https://docs.python.org/3.9/library/constants.html#True
190 https://docs.python.org/3.9/library/functions.html#float
191 https://docs.python.org/3.9/library/constants.html#None
192 https://docs.python.org/3.9/library/functions.html#float
193 https://docs.python.org/3.9/library/constants.html#None
194 https://docs.python.org/3.9/library/constants.html#None
195 https://docs.python.org/3.9/library/constants.html#None

14.1. Regular Classes 115

https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None
https://en.wikipedia.org/wiki/Rotary_encoder

gpiozero 2.0.1 Documentation, Release 2.0.1

>>> from gpiozero import RotaryEncoder
>>> from gpiozero.tools import scaled_half
>>> rotor = RotaryEncoder (21, 20)

>>> led = PWMLED (5)

>>> led.source = scaled_half (rotor.values)

Parameters

e a(int" or str'”®) - The GPIO pin connected to the “A” output of the rotary
encoder.

e b (int" or str’) - The GPIO pin connected to the “B” output of the rotary
encoder.

* bounce_time (float’! or None)-If None?? (the default), no software bounce

compensation will be performed. Otherwise, this is the length of time (in seconds) that
the component will ignore changes in state after an initial change.

» max_steps (int’") - The number of steps clockwise the encoder takes to change the
value (page 117) from O to 1, or counter-clockwise from O to -1. If this is O, then the
encoder’s value (page 117) never changes, but you can still read steps (page 116)
to determine the integer number of steps the encoder has moved clockwise or counter
clockwise.

» threshold_steps (tuple’™ of int?”)— A (min, max) tuple of steps between

which the device will be considered “active”, inclusive. In other words, when steps
(page 116) is greater than or equal to the min value, and less than or equal the max value,
the act ive property will be True?’® and the appropriate events (when_act ivated,
when_deactivated) will be fired. Defaults to (0, 0).

» wrap (bool1?"7) —If True’® and max_steps is non-zero, when the steps (page 116)
reaches positive or negative max_steps it wraps around by negation. Defaults to Fa1se’”.

* pin_factory (Factory (page 226) or None) — See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

wait_for_rotate (fimeout=None)
Pause the script until the encoder is rotated at least one step in either direction, or the timeout is reached.
Parameters

timeout (floa or None) — Number of seconds to wait before proceeding. If
this is None?!! (the default), then wait indefinitely until the encoder is rotated.

tZIO

wait_for_rotate_clockwise (fimeout=None)
Pause the script until the encoder is rotated at least one step clockwise, or the timeout is reached.
Parameters
timeout (float?'?> or None)— Number of seconds to wait before proceeding. If
this is None?!? (the default), then wait indefinitely until the encoder is rotated clockwise.
wait_for_rotate_counter_clockwise (timeout=None)
Pause the script until the encoder is rotated at least one step counter-clockwise, or the timeout is reached.
Parameters
timeout (float’* or None) - Number of seconds to wait before proceeding. If
this is None?!> (the default), then wait indefinitely until the encoder is rotated counter-
clockwise.
property max_steps
The number of discrete steps the rotary encoder takes to move value (page 117) from O to 1 clockwise,

or 0 to -1 counter-clockwise. In another sense, this is also the total number of discrete states this input
can represent.

116 Chapter 14. API - Input Devices

https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#tuple
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

property steps
The “steps” value of the encoder starts at 0. It increments by one for every step the encoder is rotated
clockwise, and decrements by one for every step it is rotated counter-clockwise. The steps value is limited
by max_steps (page 116). It will not advance beyond positive or negative max_steps (page 116),
unless wrap (page 117) is True?!® in which case it will roll around by negation. If max_steps
(page 116) is zero then steps are not limited at all, and will increase infinitely in either direction, but
value (page 117) will return a constant zero.

Note that, in contrast to most other input devices, because the rotary encoder has no absolute position
the steps (page 116) attribute (and value (page 117) by corollary) is writable.

property threshold_steps
The mininum and maximum number of steps between which is_act ive will return True?'”. Defaults
to (0, 0).

property value

Represents the value of the rotary encoder as a value between -1 and 1. The value is calculated by
dividing the value of steps (page 116) into the range from negative max_steps (page 116) to positive
max_steps (page 116).

Note that, in contrast to most other input devices, because the rotary encoder has no absolute position
the value (page 117) attribute is writable.
when_rotated
The function to be run when the encoder is rotated in either direction.
This can be set to a function which accepts no (mandatory) parameters, or a Python function which

accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated will be passed as that parameter.

Set this property to None?'® (the default) to disable the event.

when_rotated_clockwise
The function to be run when the encoder is rotated clockwise.
This can be set to a function which accepts no (mandatory) parameters, or a Python function which

accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated will be passed as that parameter.

Set this property to None?!” (the default) to disable the event.

when_rotated_counter_clockwise
The function to be run when the encoder is rotated counter-clockwise.
This can be set to a function which accepts no (mandatory) parameters, or a Python function which

accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated will be passed as that parameter.

Set this property to None??" (the default) to disable the event.

property wrap
If True?!, when value (page 117) reaches its limit (-1 or 1), it “wraps around” to the opposite limit.
When False???, the value (and the corresponding st eps (page 116) attribute) simply don’t advance
beyond their limits.

14.1. Regular Classes 117

https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False

gpiozero 2.0.1 Documentation, Release 2.0.1

14.2 Base Classes

The classes in the sections above are derived from a series of base classes, some of which are effectively abstract. The
classes form the (partial) hierarchy displayed in the graph below (abstract classes are shaded lighter than concrete
classes):

DistanceSensor

SmoothedInputDevice

GPIODevice InputDevice

MotionSensor
DigitallnputDevice

Button

The following sections document these base classes for advanced users that wish to construct classes for their own
devices.

196 https://en.wikipedia.org/wiki/Rotary_encoder

197 https://docs.python.org/3.9/library/functions.html#int
198 https://docs.python.org/3.9/library/stdtypes. html#str

199 https://docs.python.org/3.9/library/functions.html#int
200 hitps://docs.python.org/3.9/library/stdtypes.html#str

201 https://docs.python.org/3.9/library/functions. html#float
202 hitps://docs.python.org/3.9/library/constants.html#None
203 https://docs.python.org/3.9/library/functions.html#int
204 https://docs.python.org/3.9/library/stdtypes.html#tuple
205 https://docs.python.org/3.9/library/functions.html#int
206 hitps://docs.python.org/3.9/library/constants.html#True
207 https://docs.python.org/3.9/library/functions.html#bool
208 hitps://docs.python.org/3.9/library/constants.html#True
209 hitps://docs.python.org/3.9/library/constants.html#False
210 https://docs.python.org/3.9/library/functions. html#float
211 hitps://docs.python.org/3.9/library/constants.html#None
212 https://docs.python.org/3.9/library/functions. html#float
213 https://docs.python.org/3.9/library/constants.html#None
214 hitps://docs.python.org/3.9/library/functions.htm#float
215 hitps://docs.python.org/3.9/library/constants.html#None
216 https://docs.python.org/3.9/library/constants. html#True
217 https://docs.python.org/3.9/library/constants. html#True
218 hitps://docs.python.org/3.9/library/constants.html#None
219 https://docs.python.org/3.9/library/constants.html#None
220 https://docs.python.org/3.9/library/constants.html#None
221 https://docs.python.org/3.9/library/constants. html#True
222 https://docs.python.org/3.9/library/constants. html#False

118 Chapter 14. API - Input Devices

gpiozero 2.0.1 Documentation, Release 2.0.1

14.2.1 DigitallnputDevice

class gpiozero.DigitalInputDevice (*args, **kwargs)
Represents a generic input device with typical on/off behaviour.
This class extends TnputDevice (page 121) with machinery to fire the active and inactive events for devices

that operate in a typical digital manner: straight forward on / off states with (reasonably) clean transitions
between the two.

Parameters

e pin (int*® or str?) - The GPIO pin that the device is connected to. See Pin
Numbering (page 3) for valid pin numbers. If this is None??
(page 241) will be raised.

a GPIODeviceError

s pull_up (bool%?°

for more information.

or None) — See description under TnputDevice (page 121)

* active_state (bool”” or None) — See description under InputDevice
(page 121) for more information.

* bounce_time (float?®® or None)- Specifies the length of time (in seconds) that
the component will ignore changes in state after an initial change. This defaults to None??
which indicates that no bounce compensation will be performed.

* pin_factory (Factory (page 226) or None) — See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).
wait_for_active (fimeout=None)
Pause the script until the device is activated, or the timeout is reached.
Parameters
timeout (float?’ or None)— Number of seconds to wait before proceeding. If
this is None?®! (the default), then wait indefinitely until the device is active.
wait_for_inactive (fimeout=None)
Pause the script until the device is deactivated, or the timeout is reached.
Parameters

timeout (floa or None) — Number of seconds to wait before proceeding. If
this is None?*? (the default), then wait indefinitely until the device is inactive.

t232

property active_time

The length of time (in seconds) that the device has been active for. When the device is inactive, this is

bRy
None?23,

property inactive_time
The length of time (in seconds) that the device has been inactive for. When the device is active, this is
N 235
one .
property value
Returns a value representing the device’s state. Frequently, this is a boolean value, or a number between
0 and 1 but some devices use larger ranges (e.g. -1 to +1) and composite devices usually use tuples to
return the states of all their subordinate components.
when_activated
The function to run when the device changes state from inactive to active.
This can be set to a function which accepts no (mandatory) parameters, or a Python function which

accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated it will be passed as that parameter.

Set this property to None?*° (the default) to disable the event.

14.2. Base Classes 119

https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

when_deactivated

The function to run when the device changes state from active to inactive.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that deactivated it will be passed as that parameter.

Set this property to None?*’ (the default) to disable the event.

14.2.2 SmoothedinputDevice

class gpiozero.SmoothedInputDevice (*args, **kwargs)

Represents a generic input device which takes its value from the average of a queue of historical values.

This class extends InputDevice (page 121) with a queue which is filled by a background thread which
continually polls the state of the underlying device. The average (a configurable function) of the values in the
queue is compared to a threshold which is used to determine the state of the i s_act ive (page 121) property.

Note: The background queue is not automatically started upon construction. This is to allow descendents to
set up additional components before the queue starts reading values. Effectively this is an abstract base class.

This class is intended for use with devices which either exhibit analog behaviour (such as the charging time of

a capacitor with an LDR), or those which exhibit “twitchy” behaviour (such as certain motion sensors).

Parameters

pin (int?® or str??) - The GPIO pin that the device is connected to. See Pin
Numbering (page 3) for valid pin numbers. If this is None? a GPTODeviceError
(page 241) will be raised.

pull_up (bool?*! or None) - See description under InputDevice (page 121)
for more information.

active_state (bool’” or None) — See description under InputDevice
(page 121) for more information.

threshold (f1oat>*) — The value above which the device will be considered “on”.

queue_len (int***) — The length of the internal queue which is filled by the back-
ground thread.

sample_wait (float’®) — The length of time to wait between retrieving the state
of the underlying device. Defaults to 0.0 indicating that values are retrieved as fast as

possible.

partial (bool?*%) —If False’ (the default), attempts to read the state of the device
(from the is_active (page 121) property) will block until the queue has filled. If

223 https://docs.python.org/3.9/library/functions.html#int
224 nttps://docs.python.org/3.9/library/stdtypes.html#str

225 https://docs.python.org/3.9/library/constants.html#None
226 https://docs.python.org/3.9/library/functions.html#bool
227 https://docs.python.org/3.9/library/functions.html#bool
228 hitps://docs.python.org/3.9/library/functions.htm#float
229 https://docs.python.org/3.9/library/constants.html#None
230 https://docs.python.org/3.9/library/functions. html#float
231 hitps://docs.python.org/3.9/library/constants.html#None
232 https://docs.python.org/3.9/library/functions. html#float
233 https://docs.python.org/3.9/library/constants.html#None
234 https://docs.python.org/3.9/library/constants.html#None
235 https://docs.python.org/3.9/library/constants.html#None
236 https://docs.python.org/3.9/library/constants.html#None
237 https://docs.python.org/3.9/library/constants.html#None

120

Chapter 14. API - Input Devices

https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#False

gpiozero 2.0.1 Documentation, Release 2.0.1

True?, a value will be returned immediately, but be aware that this value is likely to
fluctuate excessively.

* average — The function used to average the values in the internal queue. This defaults
to statistics.median ()2* whichis a good selection for discarding outliers from
jittery sensors. The function specified must accept a sequence of numbers and return a
single number.

+ ignore (frozenset®’ or None)-The set of values which the queue should ignore,
if returned from querying the device’s value.

* pin_factory (Factory (page 226) or None) — See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

property is_active

Returns True”! if the value (page 121) currently exceeds t hreshold (page 121) and False?

otherwise.

property partial

52

If False?? (the default), attempts to read the va I ue (page 121) or is_act i ve (page 121) properties

will block until the queue has filled.

property queue_len

The length of the internal queue of values which is averaged to determine the overall state of the device.

This defaults to 5.

property threshold
54

If value (page 121) exceeds this amount, then is_act ive (page 121) will return True?

property value

Returns the average of the values in the internal queue. This is compared to t hreshold (page 121) to

determine whether is_active (page 121)is True®>.

14.2.3 InputDevice

class gpiozero.InputDevice (*args, **kwargs)

Represents a generic GPIO input device.

This class extends GPTODevice (page 122) to add facilities common to GPIO input devices. The constructor
adds the optional pull_up parameter to specify how the pin should be pulled by the internal resistors. The
is_active (page 122) property is adjusted accordingly so that True?° still means active regardless of the

pull_up setting.

Parameters

238 https://docs.python.org/3.9/library/functions.html#int

239 hitps://docs.python.org/3.9/library/stdtypes.html#str

240 https://docs.python.org/3.9/library/constants.html#None
241 hitps://docs.python.org/3.9/library/functions.html#bool
242 https://docs.python.org/3.9/library/functions.html#bool

243 https://docs.python.org/3.9/library/functions. html#float
244 https://docs.python.org/3.9/library/functions.html#int

245 https://docs.python.org/3.9/library/functions. html#float
246 https://docs.python.org/3.9/library/functions.html#bool

247 https://docs.python.org/3.9/library/constants. html#False
248 https://docs.python.org/3.9/library/constants. html#True
249 https://docs.python.org/3.9/library/statistics. html#statistics. median
250 https://docs.python.org/3.9/library/stdtypes.html#frozenset
251 hitps://docs.python.org/3.9/library/constants.html#True
252 https://docs.python.org/3.9/library/constants. html#False
253 https://docs.python.org/3.9/library/constants.html#False
254 hitps://docs.python.org/3.9/library/constants.html#True
255 https://docs.python.org/3.9/library/constants. html#True

14.2. Base Classes

121

https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/statistics.html#statistics.median
https://docs.python.org/3.9/library/stdtypes.html#frozenset
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#True

gpiozero 2.0.1 Documentation, Release 2.0.1

e pin (int?’ or str>®) - The GPIO pin that the device is connected to. See Pin
Numbering (page 3) for valid pin numbers. If this is None>’ a GPTODeviceError
(page 241) will be raised.

* pull_up (bool’® or None)-If True®®!, the pin will be pulled high with an internal
resistor. If False?® (the default), the pin will be pulled low. If None??, the pin will be
floating. As gpiozero cannot automatically guess the active state when not pulling the pin,
the active_state parameter must be passed.

* active_state (bool’® or None) - If True’®, when the hardware pin state

is HIGH, the software pin is HIGH. If False”®, the input polarity is reversed: when
the hardware pin state is HIGH, the software pin state is LOW. Use this parameter to set
the active state of the underlying pin when configuring it as not pulled (when pull_up is
None?®”). When pull_up is True?®® or False?®, the active state is automatically set to
the proper value.

* pin_factory (Factory (page 226) or None) — See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

property is_active

270 71

Returns True?’’ if the device is currently active and False?’' otherwise. This property is usually
derived from value (page 122). Unlike value (page 122), this is always a boolean.

property pull_up
If True?®’?, the device uses a pull-up resistor to set the GPIO pin “high” by default.

property value

Returns a value representing the device’s state. Frequently, this is a boolean value, or a number between
0 and 1 but some devices use larger ranges (e.g. -1 to +1) and composite devices usually use tuples to
return the states of all their subordinate components.

14.2.4 GPIODevice

class gpiozero.GPIODevice (*args, **kwargs)

Extends Device (page 199). Represents a generic GPIO device and provides the services common to all
single-pin GPIO devices (like ensuring two GPIO devices do no share a pin (page 123)).

Parameters
pin(int’" or str’’*)—The GPIO pin that the device is connected to. See Pin Numbering
(page 3) for valid pin numbers. If this is None?’> a GPTODeviceError (page 241) will
be raised. If the pin is already in use by another device, GPTOPinTInUse (page 241) will be
raised.

close ()
Shut down the device and release all associated resources (such as GPIO pins).

256 https://docs.python.org/3.9/library/constants.html#True
257 https://docs.python.org/3.9/library/functions.html#int
258 https://docs.python.org/3.9/library/stdtypes.html#str

259 https://docs.python.org/3.9/library/constants.html#None
260 hitps://docs.python.org/3.9/library/functions.html#bool
261 https://docs.python.org/3.9/library/constants. html#True
262 https://docs.python.org/3.9/library/constants.html#False
263 https://docs.python.org/3.9/library/constants.html#None
264 https://docs.python.org/3.9/library/functions.html#bool
265 hitps://docs.python.org/3.9/library/constants.html#True
266 https://docs.python.org/3.9/library/constants. html#False
267 https://docs.python.org/3.9/library/constants.html#None
268 https://docs.python.org/3.9/library/constants. html#True
269 https://docs.python.org/3.9/library/constants.html#False
270 https://docs.python.org/3.9/library/constants. html#True
271 https://docs.python.org/3.9/library/constants.html#False
272 https://docs.python.org/3.9/library/constants. html#True

122 Chapter 14. API - Input Devices

https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

This method is idempotent (can be called on an already closed device without any side-effects). It is
primarily intended for interactive use at the command line. It disables the device and releases its pin(s)
for use by another device.

You can attempt to do this simply by deleting an object, but unless you’ve cleaned up all references to the
object this may not work (even if you've cleaned up all references, there’s still no guarantee the garbage
collector will actually delete the object at that point). By contrast, the close method provides a means of
ensuring that the object is shut down.

For example, if you have a breadboard with a buzzer connected to pin 16, but then wish to attach an LED
instead:

>>> from gpiozero import *
>>> bz = Buzzer (16)

>>> bz.on ()

>>> bz.off ()

>>> bz.close ()

>>> led LED (16)

>>> led.blink ()

Device (page 199) descendents can also be used as context managers using the w1 t h?’® statement. For
example:

>>> from gpiozero import *
>>> with Buzzer (16) as bz:
bz.on ()

>>> with LED(16) as led:
led.on ()

property closed

Returns True”’” if the device is closed (see the c1ose () (page 122) method). Once a device is closed

you can no longer use any other methods or properties to control or query the device.

property pin
The Pin (page 227) that the device is connected to. This will be None?’® if the device has been closed
(seethe close () (page 199) method). When dealing with GPIO pins, query pin . number to discover
the GPIO pin (in BCM numbering) that the device is connected to.

property value

Returns a value representing the device’s state. Frequently, this is a boolean value, or a number between
0 and 1 but some devices use larger ranges (e.g. -1 to +1) and composite devices usually use tuples to
return the states of all their subordinate components.

273 https://docs.python.org/3.9/library/functions.html#int

274 https://docs.python.org/3.9/library/stdtypes.html#str

275 https://docs.python.org/3.9/library/constants.html#None

276 hitps://docs.python.org/3.9/reference/compound_stmts. html#with
277 https://docs.python.org/3.9/library/constants. html#True

278 https://docs.python.org/3.9/library/constants.html#None

14.2. Base Classes 123

https://docs.python.org/3.9/reference/compound_stmts.html#with
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

124 Chapter 14. API - Input Devices

CHAPTER
FIFTEEN

API - OUTPUT DEVICES

These output device component interfaces have been provided for simple use of everyday components. Components
must be wired up correctly before use in code.

Note: All GPIO pin numbers use Broadcom (BCM) numbering by default. See the Pin Numbering (page 3) section
for more information.

15.1 Regular Classes

The following classes are intended for general use with the devices they represent. All classes in this section are
concrete (not abstract).

15.1.1 LED

class gpiozero.LED (*args, **kwargs)

Extends DigitalOutputDevice (page 141) and represents a light emitting diode (LED).

Connect the cathode (short leg, flat side) of the LED to a ground pin; connect the anode (longer leg) to a limiting
resistor; connect the other side of the limiting resistor to a GPIO pin (the limiting resistor can be placed either
side of the LED).

The following example will light the LED:

from gpiozero import LED

led = LED(17)
led.on ()

Parameters

e pin (int?” or str®’) — The GPIO pin which the LED is connected to. See Pin
Numbering (page 3) for valid pin numbers. If this is None?! a GPTODeviceError
(page 241) will be raised.

» active_high (hoo1?®) — If True’® (the default), the LED will operate normally
with the circuit described above. If False”* you should wire the cathode to the GPIO
pin, and the anode to a 3V3 pin (via a limiting resistor).

» initial_value (hool®® or None)-If False?® (the default), the LED will be
off initially. If None?®’, the LED will be left in whatever state the pin is found in when
configured for output (warning: this can be on). If True”®®, the LED will be switched on
initially.

* pin_factory (Factory (page 226) or None) — See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

125

https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#True

gpiozero 2.0.1 Documentation, Release 2.0.1

blink (on_time=1, off _time=1, n=None, background=True)

Make the device turn on and off repeatedly.
Parameters
» on_time (float**)— Number of seconds on. Defaults to 1 second.

e off_time (float?*)— Number of seconds off. Defaults to 1 second.

tZ()l

e n(in or None)-Number of times to blink; None??? (the default) means forever.

* background (boo1??) —If True?®* (the default), start a background thread to con-
tinue blinking and return immediately. If False?®, only return when the blink is fin-
ished (warning: the default value of »n will result in this method never returning).

off ()

Turns the device off.

on ()

Turns the device on.
toggle ()
Reverse the state of the device. If it’s on, turn it off; if it’s off, turn it on.

property is_lit

Returns True?® if the device is currently active and False?”’

derived from value (page 126). Unlike value (page 126), this is always a boolean.

property pin

otherwise. This property is usually

The Pin (page 227) that the device is connected to. This will be None??® if the device has been closed
(seethe close () (page 199) method). When dealing with GPIO pins, query pin . number to discover

the GPIO pin (in BCM numbering) that the device is connected to.

property value

Returns 1 if the device is currently active and O otherwise. Setting this property changes the state of the

device.

279 https://docs.python.org/3.9/library/functions.html#int
280 hitps://docs.python.org/3.9/library/stdtypes.html#str

281 https://docs.python.org/3.9/library/constants.html#None
282 hitps://docs.python.org/3.9/library/functions.html#bool
283 https://docs.python.org/3.9/library/constants. html#True
284 https://docs.python.org/3.9/library/constants. html#False
285 https://docs.python.org/3.9/library/functions.html#bool
286 https://docs.python.org/3.9/library/constants.html#False
287 https://docs.python.org/3.9/library/constants.html#None
288 https://docs.python.org/3.9/library/constants. html#True
289 https://docs.python.org/3.9/library/functions. html#float
290 https://docs.python.org/3.9/library/functions. html#float
21 hitps://docs.python.org/3.9/library/functions.html#int
292 https://docs.python.org/3.9/library/constants.html#None
293 https://docs.python.org/3.9/library/functions.html#bool
294 https://docs.python.org/3.9/library/constants.html#True
295 https://docs.python.org/3.9/library/constants. html#False
29 https://docs.python.org/3.9/library/constants. html#True
297 https://docs.python.org/3.9/library/constants. html#False
298 https://docs.python.org/3.9/library/constants.html#None

126

Chapter 15. API - Output Devices

https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

15.1.2 PWMLED

class gpiozero.PWMLED (*args, **kwargs)

Extends PWMOutputDevice (page 142) and represents a light emitting diode (LED) with variable bright-
ness.

A typical configuration of such a device is to connect a GPIO pin to the anode (long leg) of the LED, and the
cathode (short leg) to ground, with an optional resistor to prevent the LED from burning out.

Parameters

e pin (int?” or str*") - The GPIO pin which the LED is connected to. See Pin
Numbering (page 3) for valid pin numbers. If this is None®"! a GPTODeviceError
(page 241) will be raised.

* active_high (hoo13%) —If True’? (the default), the on () (page 127) method will
set the GPIO to HIGH. If False®™, the on () (page 127) method will set the GPIO to
LOW (the of £ () (page 127) method always does the opposite).

* initial_value (float’”) —If 0 (the default), the LED will be off initially. Other
values between 0 and 1 can be specified as an initial brightness for the LED. Note that

None3% cannot be specified (unlike the parent class) as there is no way to tell PWM not

to alter the state of the pin.

+ frequency (int*"") — The frequency (in Hz) of pulses emitted to drive the LED. De-
faults to 100Hz.

* pin_factory (Factory (page 226) or None) — See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

blink (on_time=1, off _time=1, fade_in_time=0, fade_out_time=0, n=None, background=True)

Make the device turn on and off repeatedly.
Parameters
« on_time (float3?®)— Number of seconds on. Defaults to 1 second.
« off_time (float’")— Number of seconds off. Defaults to 1 second.
e fade_in_time (fIoat>!") — Number of seconds to spend fading in. Defaults to 0.

+ fade_out_time (float’'") — Number of seconds to spend fading out. Defaults to
0.

t312

e n(in or None)—Number of times to blink; None?' (the default) means forever.

» background (hoo1*'*) —If True’" (the default), start a background thread to con-
tinue blinking and return immediately. If False?'®, only return when the blink is fin-
ished (warning: the default value of » will result in this method never returning).

off ()
Turns the device off.

on ()

Turns the device on.

pulse (fade_in_time=1, fade_out_time=1, n=None, background="True)

Make the device fade in and out repeatedly.
Parameters
e fade_in_time (fIoat>!") — Number of seconds to spend fading in. Defaults to 1.

+ fade_out_time (float’'®) — Number of seconds to spend fading out. Defaults to
1.

* n(int*"? or None)-Number of times to pulse; None??" (the default) means forever.

15.1. Regular Classes 127

https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

* background (boo1*!") —If True??? (the default), start a background thread to con-

tinue pulsing and return immediately. If False

, only return when the pulse is finished

(warning: the default value of n will result in this method never returning).

toggle ()

Toggle the state of the device. If the device is currently off (value (page 128) is 0.0), this changes it
to “fully” on (value (page 128) is 1.0). If the device has a duty cycle (value (page 128)) of 0.1, this

will toggle it to 0.9, and so on.

property is_lit

Returns True®?* if the device is currently active (value (page 128) is non-zero) and False?? other-

wise.

property pin

The Pin (page 227) that the device is connected to. This will be None

326 if the device has been closed

(seethe close () (page 199) method). When dealing with GPIO pins, query pin. number to discover
the GPIO pin (in BCM numbering) that the device is connected to.

property value

The duty cycle of the PWM device. 0.0 is off, 1.0 is fully on. Values in between may be specified for

varying levels of power in the device.

15.1.3 RGBLED

class gpiozero.RGBLED (*args, **kwargs)

Extends Device (page 199) and represents a full color LED component (composed of red, green, and blue

LEDs).

Connect the common cathode (longest leg) to a ground pin; connect each of the other legs (representing the
red, green, and blue anodes) to any GPIO pins. You should use three limiting resistors (one per anode).

The following code will make the LED yellow:

299 https://docs.python.org/3.9/library/functions.html#int
300 https://docs.python.org/3.9/library/stdtypes.html#str

301 hitps://docs.python.org/3.9/library/constants.html#None
302 https://docs.python.org/3.9/library/functions.html#bool
303 https://docs.python.org/3.9/library/constants. html#True
304 https://docs.python.org/3.9/library/constants.html#False
305 https://docs.python.org/3.9/library/functions.html#float
306 https://docs.python.org/3.9/library/constants.html#None
307 https://docs.python.org/3.9/library/functions.html#int
308 https://docs.python.org/3.9/library/functions. html#float
309 https://docs.python.org/3.9/library/functions. html#float
310 hitps://docs.python.org/3.9/library/functions.htm#float
31T https://docs.python.org/3.9/library/functions. html#float
312 https://docs.python.org/3.9/library/functions. html#int
313 https://docs.python.org/3.9/library/constants.html#None
314 https://docs.python.org/3.9/library/functions.html#bool
315 https://docs.python.org/3.9/library/constants. html#True
316 https://docs.python.org/3.9/library/constants. html#False
317 https://docs.python.org/3.9/library/functions.html#float
318 https://docs.python.org/3.9/library/functions. html#float
319 hitps://docs.python.org/3.9/library/functions.html#int
320 https://docs.python.org/3.9/library/constants.html#None
321 https://docs.python.org/3.9/library/functions.html#bool
322 https://docs.python.org/3.9/library/constants.html#True
323 https://docs.python.org/3.9/library/constants. html#False
324 https://docs.python.org/3.9/library/constants. html#True
325 https://docs.python.org/3.9/library/constants. html#False
326 https://docs.python.org/3.9/library/constants.html#None

128

Chapter 15. API - Output Devices

https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

Is N

from gpiozero import RGBLED

led = RGBLED (2, 3, 4)
led.color = (1, 1, 0)

L J

The colorzero®?’ library is also supported:

-
from gpiozero import RGBLED
from colorzero import Color

led = RGBLED (2, 3, 4)
led.color = Color('yellow')

Parameters

» red (int*® or str’*)—The GPIO pin that controls the red component of the RGB
LED. See Pin Numbering (page 3) for valid pin numbers. If this is None®’ a GPTODe—
viceError (page 241) will be raised.

75331

* green (in or str*3?)—The GPIO pin that controls the green component of the

RGB LED.

e blue (int*? or str¥¥)

RGB LED.

— The GPIO pin that controls the blue component of the

» active_high (bool?) — Set to True®* (the default) for common cathode RGB
LED:s. If you are using a common anode RGB LED, set this to False’.

8 or tuple®?) - The initial color for the RGB LED.

* initial_value (Color™
Defaults to black (0, 0, 0).

s pwm (boo1**) — If True*! (the default), construct PWMLED (page 127) instances for
each component of the RGBLED. If False’?, construct regular LED (page 125) in-
stances, which prevents smooth color graduations.

* pin_factory (Factory (page 226) or None) — See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

blink (on_time=1, off _time=1, fade_in_time=0, fade_out_time=0, on_color=(1, 1, 1), off _color=(0, 0, 0),
n=None, background="True)

Make the device turn on and off repeatedly.
Parameters
» on_time (float**)— Number of seconds on. Defaults to 1 second.
e off_time (£loat***)— Number of seconds off. Defaults to 1 second.

+ fade_in_time (f10at**) — Number of seconds to spend fading in. Defaults to 0.
Must be 0 if pwm was False>*® when the class was constructed (ValueError>* will
be raised if not).

» fade_out_time (f1oat**) - Number of seconds to spend fading out. Defaults to
0. Must be 0 if pwm was False* when the class was constructed (ValueError?
will be raised if not).

* on_color (Color®' or tuplée’

Defaults to white.

32) = The color to use when the LED is “on”.

3

* off_color (Color’® or tuple®*) - The color to use when the LED is “off”.

Defaults to black.

e n(int*” or None)-Number of times to blink; None° (the default) means forever.

15.1. Regular Classes 129

https://colorzero.readthedocs.io/
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Color
https://docs.python.org/3.9/library/stdtypes.html#tuple
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/exceptions.html#ValueError
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/exceptions.html#ValueError
https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Color
https://docs.python.org/3.9/library/stdtypes.html#tuple
https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Color
https://docs.python.org/3.9/library/stdtypes.html#tuple
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

* background (boo1¥7) —If True®?® (the default), start a background thread to con-
tinue blinking and return immediately. If Fa1se®”, only return when the blink is fin-
ished (warning: the default value of n will result in this method never returning).

off ()
Turn the LED off. This is equivalent to setting the LED color to black (0, 0, 0).

on ()
Turn the LED on. This equivalent to setting the LED color to white (1, 1, 1).
pulse (fade_in_time=1, fade_out_time=1, on_color=(1, 1, 1), off _color=(0, 0, 0), n=None,
background="True)
Make the device fade in and out repeatedly.

Parameters
+ fade_in_time (f1oat**) — Number of seconds to spend fading in. Defaults to 1.
+ fade_out_time (f1oat®") — Number of seconds to spend fading out. Defaults to

1.

362

e on_color (Color or tuple’®) — The color to use when the LED is “on”.

Defaults to white.

364

* off_color (Color’™ or tuple®®)— The color to use when the LED is “off”.

Defaults to black.
* n(int*°® or None)-Number of times to pulse; None>®’ (the default) means forever.

+ background (hoo1*%%) —If True’® (the default), start a background thread to con-
tinue pulsing and return immediately. If Fa1se?’%, only return when the pulse is finished
(warning: the default value of n will result in this method never returning).
toggle ()
Toggle the state of the device. If the device is currently off (value (page 130)is (0, 0, 0)), this
changes it to “fully” on (value (page 130)is (1, 1, 1)). If the device has a specific color, this
method inverts the color.
property blue
Represents the blue element of the LED as a B1ue®’' object.

property color

Represents the color of the LED as a Color®’? object.

property green

373

Represents the green element of the LED as a Green”’” object.

property is_lit

Returns True®’* if the LED is currently active (not black) and False?” otherwise.
property red

Represents the red element of the LED as a Red?’® object.

property value

Represents the color of the LED as an RGB 3-tuple of (red, green, blue) where each value is
between 0 and 1 if pwm was True’’” when the class was constructed (and only O or 1 if not).

For example, red would be (1, 0, 0) and yellow would be (1, 1, 0), while orange would be
(1, 0.5, 0).

130 Chapter 15. API - Output Devices

https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Color
https://docs.python.org/3.9/library/stdtypes.html#tuple
https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Color
https://docs.python.org/3.9/library/stdtypes.html#tuple
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Blue
https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Color
https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Green
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Red
https://docs.python.org/3.9/library/constants.html#True

gpiozero 2.0.1 Documentation, Release 2.0.1

15.1.4 Buzzer

class gpiozero.Buzzer (*args, **kwargs)

Extends DigitalOutputDevice (page 141) and represents a digital buzzer component.

Note: This interface is only capable of simple on/off commands, and is not capable of playing a variety of

tones (see TonalBuzzer (page 133)).

Connect the cathode (negative pin) of the buzzer to a ground pin; connect the other side to any GPIO pin.

The following example will sound the buzzer:

from gpiozero import Buzzer

327 https://colorzero.readthedocs.io/

328 https://docs.python.org/3.9/library/functions.html#int

329 https://docs.python.org/3.9/library/stdtypes.html#str

330 hitps://docs.python.org/3.9/library/constants.html#None

331 https://docs.python.org/3.9/library/functions.html#int

332 https://docs.python.org/3.9/library/stdtypes. html#str

333 https://docs.python.org/3.9/library/functions. html#int

334 https://docs.python.org/3.9/library/stdtypes.html#str

335 https://docs.python.org/3.9/library/functions.html#bool

336 https://docs.python.org/3.9/library/constants. html#True

337 https://docs.python.org/3.9/library/constants.html#False

338 https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Color
339 hitps://docs.python.org/3.9/library/stdtypes.html#tuple

340 https://docs.python.org/3.9/library/functions.html#bool

341 https://docs.python.org/3.9/library/constants. html#True

342 https://docs.python.org/3.9/library/constants.html#False

343 https://docs.python.org/3.9/library/functions. html#float

34 https://docs.python.org/3.9/library/functions. html#float

345 https://docs.python.org/3.9/library/functions. html#float

346 https://docs.python.org/3.9/library/constants.html#False

347 https://docs.python.org/3.9/library/exceptions.html#ValueError

348 hitps://docs.python.org/3.9/library/functions.htm#float

349 https://docs.python.org/3.9/library/constants.html#False

350 hitps://docs.python.org/3.9/library/exceptions.html#ValueError

351 https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Color
352 https://docs.python.org/3.9/library/stdtypes.html#tuple

353 https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Color
354 https://docs.python.org/3.9/library/stdtypes.html#tuple

355 https://docs.python.org/3.9/library/functions.html#int

356 https://docs.python.org/3.9/library/constants.html#None

357 https://docs.python.org/3.9/library/functions.html#bool

358 https://docs.python.org/3.9/library/constants. html#True

359 https://docs.python.org/3.9/library/constants.html#False

360 https://docs.python.org/3.9/library/functions.html#float

361 https://docs.python.org/3.9/library/functions. html#float

362 hitps://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Color
363 https://docs.python.org/3.9/library/stdtypes.html#tuple

364 https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Color
365 https://docs.python.org/3.9/library/stdtypes.html#tuple

366 https://docs.python.org/3.9/library/functions.html#int

367 hitps://docs.python.org/3.9/library/constants.html#None

368 https://docs.python.org/3.9/library/functions.html#bool

369 https://docs.python.org/3.9/library/constants.html#True

370 https://docs.python.org/3.9/library/constants. html#False

371 hitps://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Blue
372 https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Color
373 https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Green
374 https://docs.python.org/3.9/library/constants.html#True

375 https://docs.python.org/3.9/library/constants. html#False

376 https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Red
377 https://docs.python.org/3.9/library/constants. html#True

(continues on next page)

15.1. Regular Classes

131

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

bz = Buzzer (3)
bz.on ()

Parameters

» pin (int?"® or str*’’) - The GPIO pin which the buzzer is connected to. See Pin
Numbering (page 3) for valid pin numbers. If this is None®®" a GPTODeviceError
(page 241) will be raised.

* active_high (boo1®!) —If True®®? (the default), the buzzer will operate normally
with the circuit described above. If False?®? you should wire the cathode to the GPIO
pin, and the anode to a 3V3 pin.

* initial_value (bool®® or None)-If False® (the default), the buzzer will
be silent initially. If None3®, the buzzer will be left in whatever state the pin is found
in when configured for output (warning: this can be on). If True?’, the buzzer will be
switched on initially.

* pin_factory (Factory (page 226) or None) — See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

beep (on_time=1, off _time=1, n=None, background="True)
Make the device turn on and off repeatedly.

Parameters
e on_time (£1oat>*)— Number of seconds on. Defaults to 1 second.
e off_time (float’®)— Number of seconds off. Defaults to 1 second.
e n(int** or None)—Number of times to blink; None*! (the default) means forever.

» background (boo1%?) —If True? (the default), start a background thread to con-
tinue blinking and return immediately. If ¥alse**, only return when the blink is fin-
ished (warning: the default value of » will result in this method never returning).

off ()

Turns the device off.

on ()

Turns the device on.

toggle ()

Reverse the state of the device. If it’s on, turn it off; if it’s off, turn it on.

property is_active

395 396

Returns True”” if the device is currently active and False”® otherwise. This property is usually
derived from value (page 132). Unlike value (page 132), this is always a boolean.

property pin
The Pin (page 227) that the device is connected to. This will be None” if the device has been closed
(seethe close () (page 199) method). When dealing with GPIO pins, query pin.number to discover
the GPIO pin (in BCM numbering) that the device is connected to.

property value

Returns 1 if the device is currently active and O otherwise. Setting this property changes the state of the
device.

132 Chapter 15. API - Output Devices

https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

15.1.5 TonalBuzzer

class gpiozero.TonalBuzzer (*args, **kwargs)

Extends CompositeDevice (page 187) and represents a tonal buzzer.
Parameters

s pin (int?*® or str*’) - The GPIO pin which the buzzer is connected to. See Pin
Numbering (page 3) for valid pin numbers. If this is None* a GPTODeviceError
(page 241) will be raised.

* initial_value (float*")—If None*’? (the default), the buzzer will be off initially.
Values between -1 and 1 can be specified as an initial value for the buzzer.

* mid_tone (int*”? or str**)— The tone which is represented the device’s middle

value (0). The default is “A4” (MIDI note 69).

» octaves (int*?) — The number of octaves to allow away from the base note. The
default is 1, meaning a value of -1 goes one octave below the base note, and one above,
i.e. from A3 to A5 with the default base note of A4.

* pin_factory (Factory (page 226) or None) — See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

Note: Note that this class does not currently work with Pi GPTOFactory (page 236).

play (fone)

Play the given tone. This can either be an instance of Tone (page 215) or can be anything that could be
used to construct an instance of Tone (page 215).

For example:

>>> from gpiozero import TonalBuzzer
>>> from gpiozero.tones import Tone
>>> b = TonalBuzzer (17)
b.play (Tone ("A4"))
b.play (Tone (220.0)) # Hz
>>> b.play (Tone (60)) # middle C in MIDI notation
>>> b ("A4")

b (220.0)

b (60)

>>>
>>>

>>>
>>>

stop ()

Turn the buzzer off. This is equivalent to setting value (page 134) to None*’°,

378 https://docs.python.org/3.9/library/functions.html#int
379 https://docs.python.org/3.9/library/stdtypes.html#str

380 https://docs.python.org/3.9/library/constants.html#None
381 hitps://docs.python.org/3.9/library/functions.html#bool
382 https://docs.python.org/3.9/library/constants. html#True
383 https://docs.python.org/3.9/library/constants. html#False
384 https://docs.python.org/3.9/library/functions.html#bool
385 https://docs.python.org/3.9/library/constants. html#False
386 https://docs.python.org/3.9/library/constants.html#None
387 https://docs.python.org/3.9/library/constants. html#True
388 https://docs.python.org/3.9/library/functions. html#float
389 https://docs.python.org/3.9/library/functions.html#float
39 https://docs.python.org/3.9/library/functions. html#int
39T https://docs.python.org/3.9/library/constants.html#None
392 https://docs.python.org/3.9/library/functions.html#bool
393 hitps://docs.python.org/3.9/library/constants.html#True
394 https://docs.python.org/3.9/library/constants. html#False
395 https://docs.python.org/3.9/library/constants.html#True
39 https://docs.python.org/3.9/library/constants. html#False
397 https://docs.python.org/3.9/library/constants.html#None

15.1. Regular Classes 133

https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

property is_active

407 8

Returns True*’ if the buzzer is currently playing, otherwise False?.

property max_tone

The highest tone that the buzzer can play, i.e. the tone played when value (page 134)is 1.
property mid_tone

The middle tone available, i.e. the tone played when value (page 134) is 0.
property min_tone

The lowest tone that the buzzer can play, i.e. the tone played when value (page 134) is -1.
property octaves

The number of octaves available (above and below mid_tone).

property tone

409

Returns the Tone (page 215) that the buzzer is currently playing, or None™” if the buzzer is silent. This

property can also be set to play the specified tone.

property value

Represents the state of the buzzer as a value between -1 (representing the minimum tone) and 1 (rep-
resenting the maximum tone). This can also be the special value None*!? indicating that the buzzer is
currently silent.

15.1.6 Motor

class gpiozero.Motor (*args, **kwargs)

Extends CompositeDevice (page 187) and represents a generic motor connected to a bi-directional motor

driver circuit (i.e. an H-bridge*'").

Attach an H-bridge*!? motor controller to your Pi; connect a power source (e.g. a battery pack or the 5V pin)
to the controller; connect the outputs of the controller board to the two terminals of the motor; connect the
inputs of the controller board to two GPIO pins.

The following code will make the motor turn “forwards”:

from gpiozero import Motor

motor = Motor (17, 18)
motor.forward ()

Parameters

» forward (int*"® or str*'*) - The GPIO pin that the forward input of the motor
driver chip is connected to. See Pin Numbering (page 3) for valid pin numbers. If this is
None*!S a GPTODeviceError (page 241) will be raised.

398 https://docs.python.org/3.9/library/functions.html#int
399 hitps://docs.python.org/3.9/library/stdtypes.html#str

400 https://docs.python.org/3.9/library/constants.html#None
401 https://docs.python.org/3.9/library/functions. html#float

402

https://docs.python.org/3.9/library/constants.html#None

403 https://docs.python.org/3.9/library/functions.html#int
404 https://docs.python.org/3.9/library/stdtypes.html#str
405 https://docs.python.org/3.9/library/functions.html#int

406 https://docs.python.org/3.9/library/constants.html#None
407 https://docs.python.org/3.9/library/constants. html#True
408 hitps://docs.python.org/3.9/library/constants.html#False
409 https://docs.python.org/3.9/library/constants.html#None
410 https://docs.python.org/3.9/library/constants.html#None

134

Chapter 15. API - Output Devices

https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None
https://en.wikipedia.org/wiki/H_bridge
https://en.wikipedia.org/wiki/H_bridge
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

* backward (int*'% or st r*7)—The GPIO pin that the backward input of the motor
driver chip is connected to. See Pin Numbering (page 3) for valid pin numbers. If this is
None*'® a GPTODeviceError (page 241) will be raised.

* enable (int*"? or str* or None) - The GPIO pin that enables the motor.
Required for some motor controller boards. See Pin Numbering (page 3) for valid pin
numbers.

o pwm (bool*") —If True*?? (the default), construct PWMOut putDevice (page 142)
instances for the motor controller pins, allowing both direction and variable speed control.
If False*?, construct DigitalOutputDevice (page 141) instances, allowing only
direction control.

* pin_factory (Factory (page 226) or None) — See API - Pins (page 221) for

more information (this is an advanced feature which most users can ignore).

backward (speed=1)
Drive the motor backwards.

Parameters

speed (f1oat**)—The speed at which the motor should turn. Can be any value between
when the class was

0 (stopped) and the default 1 (maximum speed) if pwm was True*?

constructed (and only O or 1 if not).

forward (speed=1)
Drive the motor forwards.

Parameters

speed (f10at**%)—The speed at which the motor should turn. Can be any value between
when the class was

0 (stopped) and the default 1 (maximum speed) if pwm was True*?’

constructed (and only O or 1 if not).

reverse ()

Reverse the current direction of the motor. If the motor is currently idle this does nothing. Otherwise,

the motor’s direction will be reversed at the current speed.

stop ()
Stop the motor.

property is_active

428

Returns True*?® if the motor is currently running and False*? otherwise.

property value

Represents the speed of the motor as a floating point value between -1 (full speed backward) and 1 (full

speed forward), with O representing stopped.

41T https://en.wikipedia.org/wiki/H_bridge

412 https://en.wikipedia.org/wiki/H_bridge

413 hitps://docs.python.org/3.9/library/functions.html#int
414 https://docs.python.org/3.9/library/stdtypes.html#str

415 hitps://docs.python.org/3.9/library/constants.html#None
416 https://docs.python.org/3.9/library/functions. html#int
417 https://docs.python.org/3.9/library/stdtypes. html#str

418 https://docs.python.org/3.9/library/constants.html#None
419 https://docs.python.org/3.9/library/functions.html#int
420 https://docs.python.org/3.9/library/stdtypes.html#str

421 https://docs.python.org/3.9/library/functions.html#bool
422 https://docs.python.org/3.9/library/constants. html#True
423 https://docs.python.org/3.9/library/constants.html#False
424 https://docs.python.org/3.9/library/functions. html#float
425 https://docs.python.org/3.9/library/constants. html#True
426 hitps://docs.python.org/3.9/library/functions.htm#float
427 https://docs.python.org/3.9/library/constants. html#True
428 https://docs.python.org/3.9/library/constants. html#True
429 https://docs.python.org/3.9/library/constants.html#False

15.1. Regular Classes

135

https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False

gpiozero 2.0.1 Documentation, Release 2.0.1

15.1.7 PhaseEnableMotor

class gpiozero.PhaseEnableMotor (*args, **kwargs)

Extends CompositeDevice (page 187) and represents a generic motor connected to a Phase/Enable motor
driver circuit; the phase of the driver controls whether the motor turns forwards or backwards, while enable
controls the speed with PWM.

The following code will make the motor turn “forwards”:

from gpiozero import PhaseEnableMotor
motor = PhaseEnableMotor (12, 5)
motor. forward ()

Parameters

» phase (int™" or str*!)— The GPIO pin that the phase (direction) input of the
motor driver chip is connected to. See Pin Numbering (page 3) for valid pin numbers. If
this is None*? a GPTODeviceError (page 241) will be raised.

* enable (int*?® or str**) - The GPIO pin that the enable (speed) input of the
motor driver chip is connected to. See Pin Numbering (page 3) for valid pin numbers. If
this is None* a GPTODeviceError (page 241) will be raised.

s pwm (hoo1%%) —If True®’ (the default), construct PWMOut putDevice (page 142)
instances for the motor controller pins, allowing both direction and variable speed control.
If False™®, construct DigitalOutputDevice (page 141) instances, allowing only
direction control.

* pin_factory (Factory (page 226) or None) — See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

backward (speed=1)
Drive the motor backwards.
Parameters
speed (f1oat*?)—The speed at which the motor should turn. Can be any value between
0 (stopped) and the default 1 (maximum speed).
forward (speed=1)
Drive the motor forwards.
Parameters
speed (f10at*")—The speed at which the motor should turn. Can be any value between
0 (stopped) and the default 1 (maximum speed).
reverse ()
Reverse the current direction of the motor. If the motor is currently idle this does nothing. Otherwise,
the motor’s direction will be reversed at the current speed.
stop ()
Stop the motor.

property is_active

441

Returns True*! if the motor is currently running and Fa1se** otherwise.

property value

Represents the speed of the motor as a floating point value between -1 (full speed backward) and 1 (full
speed forward).

136 Chapter 15. API - Output Devices

https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False

gpiozero 2.0.1 Documentation, Release 2.0.1

15.1.8 Servo

class gpiozero.Servo (*args, **kwargs)

Extends CompositeDevice (page 187) and represents a PWM-controlled servo motor connected to a GPIO
pin.

Connect a power source (e.g. a battery pack or the 5V pin) to the power cable of the servo (this is typically
colored red); connect the ground cable of the servo (typically colored black or brown) to the negative of your
battery pack, or a GND pin; connect the final cable (typically colored white or orange) to the GPIO pin you
wish to use for controlling the servo.

The following code will make the servo move between its minimum, maximum, and mid-point positions with

a pause between each:

from gpiozero import Servo
from time import sleep

servo = Servo (l1l7)

while True:
servo.min ()
sleep (1)
servo.mid ()
sleep (1)
servo.max ()
sleep (1)

You can also use the value (page 138) property to move the servo to a particular position, on a scale from -1

(min) to 1 (max) where 0 is the mid-point:

from gpiozero import Servo
servo = Servo (17)

servo.value = 0.5

Note: To reduce servo jitter, use the pigpio pin driver rather than the default RPi.GPIO driver (pigpio uses
DMA sampling for much more precise edge timing). See Changing the pin factory (page 223) for further

information.

Parameters

e pin (int*? or str**) - The GPIO pin that the servo is connected to. See Pin

Numbering (page 3) for valid pin numbers. If this is None

(page 241) will be raised.

445

a GPIODeviceError

e initial_value (float*®) —If 0 (the default), the device’s mid-point will be set

initially. Other values between -1 and +1 can be specified as an initial position. None

430 https://docs.python.org/3.9/library/functions.html#int
431 https://docs.python.org/3.9/library/stdtypes.html#str

432 https://docs.python.org/3.9/library/constants.html#None
433 https://docs.python.org/3.9/library/functions.html#int
434 https://docs.python.org/3.9/library/stdtypes.html#str

435 https://docs.python.org/3.9/library/constants.html#None
436 https://docs.python.org/3.9/library/functions.html#bool
437 https://docs.python.org/3.9/library/constants. html#True
438 https://docs.python.org/3.9/library/constants. html#False
439 hitps://docs.python.org/3.9/library/functions. htm#float
440 https://docs.python.org/3.9/library/functions. html#float
441 https://docs.python.org/3.9/library/constants. html#True
442 https://docs.python.org/3.9/library/constants.html#False

447

15.1. Regular Classes

137

https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

means to start the servo un-controlled (see value (page 138)).

* min_pulse_width (f1oat*®) - The pulse width corresponding to the servo’s mini-
mum position. This defaults to Ims.

» max_pulse_width (f10at*’) - The pulse width corresponding to the servo’s max-
imum position. This defaults to 2ms.

+ frame_width (£1oat*") - The length of time between servo control pulses measured
in seconds. This defaults to 20ms which is a common value for servos.

* pin_factory (Factory (page 226) or None) — See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

detach ()

Temporarily disable control of the servo. This is equivalent to setting value (page 138) to None®!.

max ()

Set the servo to its maximum position.

mid ()

Set the servo to its mid-point position.

min ()

Set the servo to its minimum position.

property frame_width

The time between control pulses, measured in seconds.
property is_active

Composite devices are considered “active” if any of their constituent devices have a “truthy” value.
property max_pulse_width

The control pulse width corresponding to the servo’s maximum position, measured in seconds.
property min_pulse_width

The control pulse width corresponding to the servo’s minimum position, measured in seconds.

property pulse_width

Returns the current pulse width controlling the servo.

property value

Represents the position of the servo as a value between -1 (the minimum position) and +1 (the maximum
position). This can also be the special value None*? indicating that the servo is currently “uncontrolled”,
i.e. that no control signal is being sent. Typically this means the servo’s position remains unchanged, but

that it can be moved by hand.

443 https://docs.python.org/3.9/library/functions. html#int
444 https://docs.python.org/3.9/library/stdtypes.html#str

445 https://docs.python.org/3.9/library/constants.html#None
446 https://docs.python.org/3.9/library/functions. html#float
447 https://docs.python.org/3.9/library/constants.html#None
448 https://docs.python.org/3.9/library/functions. html#float
449 hitps://docs.python.org/3.9/library/functions.htm#float
450 https://docs.python.org/3.9/library/functions. html#float
45T https://docs.python.org/3.9/library/constants.html#None
452 hitps://docs.python.org/3.9/library/constants.html#None

138

Chapter 15. API - Output Devices

https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

15.1.9 AngularServo

class gpiozero.AngularServo (*args, **kwargs)

Extends Servo (page 137) and represents a rotational PWM-controlled servo motor which can be set to
particular angles (assuming valid minimum and maximum angles are provided to the constructor).

Connect a power source (e.g. a battery pack or the 5V pin) to the power cable of the servo (this is typically
colored red); connect the ground cable of the servo (typically colored black or brown) to the negative of your
battery pack, or a GND pin; connect the final cable (typically colored white or orange) to the GPIO pin you
wish to use for controlling the servo.

Next, calibrate the angles that the servo can rotate to. In an interactive Python session, construct a Servo
(page 137) instance. The servo should move to its mid-point by default. Set the servo to its minimum value,
and measure the angle from the mid-point. Set the servo to its maximum value, and again measure the angle:

>>>
>>>
>>>
>>>

from gpiozero import Servo
s = Servo(17)

s.min() # measure the angle
s.max () # measure the angle

You should now be able to construct an AngularServo (page 139) instance with the correct bounds:

>>>

from gpiozero import AngularServo

>>> s = AngularServo (17, min_angle=-42, max_angle=44)

>>> s.angle = 0.0

>>> s.angle

0.0

>>> s.angle = 15

>>> s.angle

15.0

.

Note: You can set min_angle greater than max_angle if you wish to reverse the sense of the angles (e.g.

min_angle=45, max_angle=-45). This can be useful with servos that rotate in the opposite direction
to your expectations of minimum and maximum.

Parameters

pin (int®® or str®*) — The GPIO pin that the servo is connected to. See Pin
Numbering (page 3) for valid pin numbers. If this is None*?
(page 241) will be raised.

a GPIODeviceError

initial_angle (f1oat™*°)— Sets the servo’s initial angle to the specified value. The
default is 0. The value specified must be between min_angle and max_angle inclusive.
None®’ means to start the servo un-controlled (see value (page 140)).

min_angle (float*?%) — Sets the minimum angle that the servo can rotate to. This
defaults to -90, but should be set to whatever you measure from your servo during calibra-
tion.

max_angle (f1oat*?) — Sets the maximum angle that the servo can rotate to. This
defaults to 90, but should be set to whatever you measure from your servo during calibra-
tion.

min_pulse_width (£1oat*") - The pulse width corresponding to the servo’s mini-
mum position. This defaults to Ims.

max_pulse_width (float*')—The pulse width corresponding to the servo’s max-
imum position. This defaults to 2ms.

frame_width (£10at*?) - The length of time between servo control pulses measured
in seconds. This defaults to 20ms which is a common value for servos.

15.1. Regular Classes

139

https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float

gpiozero 2.0.1 Documentation, Release 2.0.1

* pin_factory (Factory (page 226) or None) — See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

max ()

Set the servo to its maximum position.

mid ()

Set the servo to its mid-point position.

min ()

Set the servo to its minimum position.

property angle

The position of the servo as an angle measured in degrees. This will only be accurate if min_angle
(page 140) and max_angle (page 140) have been set appropriately in the constructor.

This can also be the special value None*%® indicating that the servo is currently “uncontrolled”, i.e. that
no control signal is being sent. Typically this means the servo’s position remains unchanged, but that it

can be moved by hand.

property is_active

Composite devices are considered “active” if any of their constituent devices have a “truthy” value.

property max_angle

The maximum angle that the servo will rotate to when max () (page 140) is called.

property min_angle

The minimum angle that the servo will rotate to when min () (page 140) is called.

property value

Represents the position of the servo as a value between -1 (the minimum position) and +1 (the maximum

position). This can also be the special value None

ndicating that the servo is currently “uncontrolled”,

i.e. that no control signal is being sent. Typically this means the servo’s position remains unchanged, but

that it can be moved by hand.

15.2 Base Classes

The classes in the sections above are derived from a series of base classes, some of which are effectively abstract. The
classes form the (partial) hierarchy displayed in the graph below (abstract classes are shaded lighter than concrete

classes):

453 https://docs.python.org/3.9/library/functions.html#int
454 https://docs.python.org/3.9/library/stdtypes.html#str

453 https://docs.python.org/3.9/library/constants.html#None
456 https://docs.python.org/3.9/library/functions. html#float
457 https://docs.python.org/3.9/library/constants.html#None
458 https://docs.python.org/3.9/library/functions. html#float
459 https://docs.python.org/3.9/library/functions. html#float
460 https://docs.python.org/3.9/library/functions.html#float
461 https://docs.python.org/3.9/library/functions.html#float
462 https://docs.python.org/3.9/library/functions. html#float
463 https://docs.python.org/3.9/library/constants.html#None
464 https://docs.python.org/3.9/library/constants.html#None

140

Chapter 15. API - Output Devices

https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

Buzzer

DigitalOutputDevice

GPIODevice OutputDevice PWMOutputDevice PWMLED

Device RGBLED AngularServo

/“\

CompositeDevice

PhaseEnableMotor

TonalBuzzer

The following sections document these base classes for advanced users that wish to construct classes for their own
devices.

15.2.1 DigitalOutputDevice

class gpiozero.DigitalOutputDevice (*args, **kwargs)

Represents a generic output device with typical on/off behaviour.

This class extends OutputDevice (page 144) witha b1ink () (page 141) method which uses an optional
background thread to handle toggling the device state without further interaction.

Parameters

e pin (int*® or str*°) — The GPIO pin that the device is connected to. See Pin
Numbering (page 3) for valid pin numbers. If this is None*’ a GPTODeviceError
(page 241) will be raised.

* active_high (boo1%%) —If True*® (the default), the on () (page 142) method will
set the GPIO to HIGH. If False’’, the on () (page 142) method will set the GPIO to
LOW (the of £ () (page 142) method always does the opposite).

e initial_value (bool*’! or None)-If False*’? (the default), the device will be
off initially. If None*”, the device will be left in whatever state the pin is found in when
configured for output (warning: this can be on). If True*’*, the device will be switched
on initially.

* pin_factory (Factory (page 226) or None) — See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

blink (on_time=1, off _time=1, n=None, background=True)
Make the device turn on and off repeatedly.

Parameters
» on_time (float*’?) — Number of seconds on. Defaults to 1 second.

« off_time (float*’®) — Number of seconds off. Defaults to 1 second.

15.2. Base Classes 141

https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float

gpiozero 2.0.1 Documentation, Release 2.0.1

e n(int*”’ or None)-Number of times to blink; None*’® (the default) means forever.

* background (bool*?) —If True* (the default), start a background thread to con-
tinue blinking and return immediately. If False*!, only return when the blink is fin-
ished (warning: the default value of » will result in this method never returning).

off ()

Turns the device off.

on ()

Turns the device on.

property value

Returns 1 if the device is currently active and O otherwise. Setting this property changes the state of the

device.

15.2.2 PWMOutputDevice

class gpiozero.PWMOutputDevice (*args, **kwargs)

Generic output device configured for pulse-width modulation (PWM).
Parameters

e pin (int®™ or str*) - The GPIO pin that the device is connected to. See Pin
Numbering (page 3) for valid pin numbers. If this is None®* a GPIODeviceError
(page 241) will be raised.

» active_high (bool1*)—If True*® (the default), the on () (page 143) method will
set the GPIO to HIGH. If False®’, the on () (page 143) method will set the GPIO to
LOW (the off () (page 143) method always does the opposite).

e initial_value (float*®) — If 0 (the default), the device’s duty cycle will be 0
initially. Other values between 0 and 1 can be specified as an initial duty cycle. Note that
None* cannot be specified (unlike the parent class) as there is no way to tell PWM not
to alter the state of the pin.

+ frequency (int*") — The frequency (in Hz) of pulses emitted to drive the device.
Defaults to 100Hz.

* pin_factory (Factory (page 226) or None) — See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

blink (on_time=1, off _time=1, fade_in_time=0, fade_out_time=0, n=None, background=True)

Make the device turn on and off repeatedly.
Parameters

* on_time (£loat*')— Number of seconds on. Defaults to 1 second.

465 https://docs.python.org/3.9/library/functions.html#int
466 https://docs.python.org/3.9/library/stdtypes.html#str

467 https://docs.python.org/3.9/library/constants.html#None
468 https://docs.python.org/3.9/library/functions.html#bool
469 hitps://docs.python.org/3.9/library/constants.html#True
470 https://docs.python.org/3.9/library/constants.html#False
471 https://docs.python.org/3.9/library/functions.html#bool
472 https://docs.python.org/3.9/library/constants.html#False
473 https://docs.python.org/3.9/library/constants.html#None
474 https://docs.python.org/3.9/library/constants. html#True
475 https://docs.python.org/3.9/library/functions. html#float
476 https://docs.python.org/3.9/library/functions.html#float
477 https://docs.python.org/3.9/library/functions.html#int
478 https://docs.python.org/3.9/library/constants.html#None
479 https://docs.python.org/3.9/library/functions.html#bool
480 https://docs.python.org/3.9/library/constants. html#True
481 https://docs.python.org/3.9/library/constants.html#False

142 Chapter 15. API - Output Devices

https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/functions.html#float

gpiozero 2.0.1 Documentation, Release 2.0.1

« off_time (float*?)— Number of seconds off. Defaults to 1 second.
» fade_in_time (f1oat*’?) — Number of seconds to spend fading in. Defaults to 0.

+ fade_out_time (£1oat***) — Number of seconds to spend fading out. Defaults to
0.

e n(int* or None)—Number of times to blink; None*’® (the default) means forever.

* background (bool¥7) —If True*® (the default), start a background thread to con-
tinue blinking and return immediately. If ¥a1se*", only return when the blink is fin-
ished (warning: the default value of » will result in this method never returning).

off ()

Turns the device off.

on ()

Turns the device on.

pulse (fade_in_time=1, fade_out_time=1, n=None, background="True)

Make the device fade in and out repeatedly.
Parameters
+ fade_in_time (f1oat>")— Number of seconds to spend fading in. Defaults to 1.

+ fade_out_time (f1oat>"") — Number of seconds to spend fading out. Defaults to
1.

* n(int*"? or None)-Number of times to pulse; None"? (the default) means forever.

* background (boo 1) —If True®” (the default), start a background thread to con-
tinue pulsing and return immediately. If Fa1se°", only return when the pulse is finished
(warning: the default value of n will result in this method never returning).

toggle ()
Toggle the state of the device. If the device is currently off (value (page 143) is 0.0), this changes it
to “fully” on (value (page 143)is 1.0). If the device has a duty cycle (value (page 143)) of 0.1, this
will toggle it to 0.9, and so on.

property frequency
The frequency of the pulses used with the PWM device, in Hz. The default is 100Hz.

property is_active

507 508

Returns True other-

wise.

if the device is currently active (va lue (page 143) is non-zero) and False

property value

The duty cycle of the PWM device. 0.0 is off, 1.0 is fully on. Values in between may be specified for
varying levels of power in the device.

15.2. Base Classes 143

https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False

gpiozero 2.0.1 Documentation, Release 2.0.1

15.2.3 OutputDevice

class gpiozero.OutputDevice (*args, **kwargs)

Represents a generic GPIO output device.

This class extends GPIODevice (page 122) to add facilities common to GPIO output devices: an on ()
(page 144) method to switch the device on, a corresponding of £ () (page 144) method, and a toggle ()

(page 144) method.

Parameters

e pin (int>” or str’'%) — The GPIO pin that the device is connected to. See Pin

11

Numbering (page 3) for valid pin numbers. If this is None’!! a GPTODeviceError

(page 241) will be raised.

active_high (boo1’'?)~1If True’'? (the default), the on () (page 144) method will
set the GPIO to HIGH. If False’', the on () (page 144) method will set the GPIO to
LOW (the of £ () (page 144) method always does the opposite).

initial_value (bool’"” or None)-If False’!® (the default), the device will be
off initially. If None>!”, the device will be left in whatever state the pin is found in when
configured for output (warning: this can be on). If True’'®, the device will be switched

on initially.

* pin_factory (Factory (page 226) or None) — See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

off ()

Turns the device off.

on ()

Turns the device on.

toggle ()

Reverse the state of the device. If it’s on, turn it off; if it’s off, turn it on.

property active_high

When True'?, the value (page 145) property is True’

482 https://docs.python.org/3.9/library/functions.html#int
483 https://docs.python.org/3.9/library/stdtypes.html#str

484 hitps://docs.python.org/3.9/library/constants.html#None
485 https://docs.python.org/3.9/library/functions.html#bool
486 https://docs.python.org/3.9/library/constants.html#True
487 https://docs.python.org/3.9/library/constants. html#False
488 hitps://docs.python.org/3.9/library/functions.htm#float
489 https://docs.python.org/3.9/library/constants.html#None
490 https://docs.python.org/3.9/library/functions.html#int
491 https://docs.python.org/3.9/library/functions.html#float
492 https://docs.python.org/3.9/library/functions. html#float
493 hitps://docs.python.org/3.9/library/functions.html#float
494 https://docs.python.org/3.9/library/functions. html#float
495 hitps://docs.python.org/3.9/library/functions.html#int
49 https://docs.python.org/3.9/library/constants.html#None
497 https://docs.python.org/3.9/library/functions.html#bool
498 https://docs.python.org/3.9/library/constants. html#True
499 https://docs.python.org/3.9/library/constants. html#False
500 https://docs.python.org/3.9/library/functions. html#float
30T https://docs.python.org/3.9/library/functions. html#float
502 https://docs. python.org/3.9/library/functions.html#int
503 https://docs.python.org/3.9/library/constants.html#None
504 https://docs.python.org/3.9/library/functions.html#bool
505 https://docs.python.org/3.9/library/constants. html#True
506 https://docs.python.org/3.9/library/constants. html#False
307 https://docs.python.org/3.9/library/constants. html#True
508 hitps://docs.python.org/3.9/library/constants.html#False

when the device’s pin (page 123) is high.

144

Chapter 15. API - Output Devices

https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#True

gpiozero 2.0.1 Documentation, Release 2.0.1

When False’?! the value (page 145) property is True”?? when the device’s pin is low (i.e. the value

is inverted).

This property can be set after construction; be warned that changing it will invert va 1 ue (page 145) (i.e.
changing this property doesn’t change the device’s pin state - it just changes how that state is interpreted).

property value

Returns 1 if the device is currently active and O otherwise. Setting this property changes the state of the

device.

15.2.4 GPIODevice

class gpiozero.GPIODevice (*args, **kwargs)

Extends Device (page 199). Represents a generic GPIO device and provides the services common to all
single-pin GPIO devices (like ensuring two GPIO devices do no share a pin (page 123)).

Parameters

pin(int>?

(page 3) for valid pin numbers. If this is None

or st ?*)—The GPIO pin that the device is connected to. See Pin Numbering

92 a4 GPIODeviceError (page 241) will

be raised. If the pin is already in use by another device, GPTOPinTInUse (page 241) will be

raised.

close ()

Shut down the device and release all associated resources (such as GPIO pins).

This method is idempotent (can be called on an already closed device without any side-effects). It is
primarily intended for interactive use at the command line. It disables the device and releases its pin(s)

for use by another device.

You can attempt to do this simply by deleting an object, but unless you’ve cleaned up all references to the
object this may not work (even if you've cleaned up all references, there’s still no guarantee the garbage
collector will actually delete the object at that point). By contrast, the close method provides a means of

ensuring that the object is shut down.

For example, if you have a breadboard with a buzzer connected to pin 16, but then wish to attach an LED

instead:

>>> from gpiozero import *
>>> bz = Buzzer (16)

>>> bz.on ()

>>> bz.off ()

>>> bz.close()

>>> led = LED(16)

>>> led.blink ()

J

Device (page 199) descendents can also be used as context managers using the w1 t h>%° statement. For

example:

309 https://docs.python.org/3.9/library/functions.html#int
510 https://docs.python.org/3.9/library/stdtypes.html#str

SIT https://docs.python.org/3.9/library/constants.html#None
512 https://docs.python.org/3.9/library/functions.html#bool
513 https://docs.python.org/3.9/library/constants. html#True
514 https://docs.python.org/3.9/library/constants. html#False
315 https://docs.python.org/3.9/library/functions.html#bool
516 hitps://docs.python.org/3.9/library/constants.html#False
S17 https://docs.python.org/3.9/library/constants.html#None
318 https://docs.python.org/3.9/library/constants. html#True
519 hitps://docs.python.org/3.9/library/constants.html#True
520 https://docs.python.org/3.9/library/constants. html#True
521 https://docs.python.org/3.9/library/constants.html#False
522 https://docs.python.org/3.9/library/constants.html#True

15.2. Base Classes

145

https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/reference/compound_stmts.html#with

gpiozero 2.0.1 Documentation, Release 2.0.1

>>> from gpiozero import *
>>> with Buzzer (16) as bz:
bz.on ()

>>> with LED(16) as led:
led.on ()

property closed
Returns True’?’ if the device is closed (see the c1ose () (page 122) method). Once a device is closed
you can no longer use any other methods or properties to control or query the device.

property pin

The Pin (page 227) that the device is connected to. This will be None?® if the device has been closed
(seethe close () (page 199) method). When dealing with GPIO pins, query pin . number to discover
the GPIO pin (in BCM numbering) that the device is connected to.

property value

Returns a value representing the device’s state. Frequently, this is a boolean value, or a number between
0 and 1 but some devices use larger ranges (e.g. -1 to +1) and composite devices usually use tuples to
return the states of all their subordinate components.

523 https://docs.python.org/3.9/library/functions.html#int

524 https://docs.python.org/3.9/library/stdtypes.html#str

525 https:/docs.python.org/3.9/library/constants.html#None

526 https://docs.python.org/3.9/reference/compound_stmts. html#with
527 hitps://docs.python.org/3.9/library/constants.html#True

528 https://docs.python.org/3.9/library/constants.html#None

146 Chapter 15. API - Output Devices

https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#None

CHAPTER
SIXTEEN

API - SPI DEVICES

SPI stands for Serial Peripheral Interface’> and is a mechanism allowing compatible devices to communicate with
the Pi. SPI is a four-wire protocol meaning it usually requires four pins to operate:

¢ A “clock” pin which provides timing information.
e A “MOSI” pin (Master Out, Slave In) which the Pi uses to send information to the device.
e A “MISO” pin (Master In, Slave Out) which the Pi uses to receive information from the device.

¢ A “select” pin which the Pi uses to indicate which device it’s talking to. This last pin is necessary because
multiple devices can share the clock, MOSI, and MISO pins, but only one device can be connected to each
select pin.

The gpiozero library provides two SPI implementations:

* A software based implementation. This is always available, can use any four GPIO pins for SPI communication,
but is rather slow and won’t work with all devices.

* A hardware based implementation. This is only available when the SPI kernel module is loaded, and the
Python spidev library is available. It can only use specific pins for SPI communication (GPIO11=clock,
GPIO10=MOSI, GPIO9=MISO, while GPIOS is select for device 0 and GPIO7 is select for device 1). How-
ever, it is extremely fast and works with all devices.

16.1 SPI keyword args

When constructing an SPI device there are two schemes for specifying which pins it is connected to:

* You can specify port and device keyword arguments. The port parameter must be O (there is only one user-
accessible hardware SPI interface on the Pi using GPIO11 as the clock pin, GPIO10 as the MOSI pin, and
GPIO9 as the MISO pin), while the device parameter must be 0 or 1. If device is 0, the select pin will be
GPIOS8. If device is 1, the select pin will be GPIO7.

¢ Alternatively you can specify clock_pin, mosi_pin, miso_pin, and select_pin keyword arguments. In this case
the pins can be any 4 GPIO pins (remember that SPI devices can share clock, MOSI, and MISO pins, but not
select pins - the gpiozero library will enforce this restriction).

You cannot mix these two schemes, i.e. attempting to specify port and clock_pin will result in SPTBadArgs
(page 240) being raised. However, you can omit any arguments from either scheme. The defaults are:

¢ port and device both default to O.
* clock_pin defaults to 11, mosi_pin defaults to 10, miso_pin defaults to 9, and select_pin defaults to 8.

* As with other GPIO based devices you can optionally specify a pin_factory argument overriding the default
pin factory (see API - Pins (page 221) for more information).

Hence the following constructors are all equivalent:

29 hitps://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

147

https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

gpiozero 2.0.1 Documentation, Release 2.0.1

from gpiozero import MCP3008

MCP3008 (channel=0)

MCP3008 (channel=0, device=0)

MCP3008 (channel=0, port=0, device=0)

MCP3008 (channel=0, select_pin=8)

MCP3008 (channel=0, clock_pin=11, mosi_pin=10, miso_pin=9, select_pin=38)

Note that the defaults describe equivalent sets of pins and that these pins are compatible with the hardware imple-
mentation. Regardless of which scheme you use, gpiozero will attempt to use the hardware implementation if it is
available and if the selected pins are compatible, falling back to the software implementation if not.

16.2 Analog to Digital Converters (ADC)

The following classes are intended for general use with the integrated circuits they are named after. All classes in this
section are concrete (not abstract).

16.2.1 MCP3001

class gpiozero.MCP3001 (*args, **kwargs)
The MCP3001°*" is a 10-bit analog to digital converter with 1 channel. Please note that the MCP3001 always
operates in differential mode, measuring the value of IN+ relative to IN-.
property value

The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for certain devices
operating in differential mode).

16.2.2 MCP3002

class gpiozero.MCP3002 (*args, **kwargs)
The MCP3002°%! is a 10-bit analog to digital converter with 2 channels (0-1).

property channel

The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the
MCP3004/3204/3302 have 4 channels (0-3), the MCP3002/3202 have 2 channels (0-1), and the
MCP3001/3201/3301 only have 1 channel.

property differential
If True, the device is operated in differential mode. In this mode one channel (specified by the channel

attribute) is read relative to the value of a second channel (implied by the chip’s design).

Please refer to the device data-sheet to determine which channel is used as the relative base value (for
example, when using an MCP 3008 (page 149) in differential mode, channel 0 is read relative to channel

1).
property value

The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for certain devices
operating in differential mode).

330 http://www.farnell.com/datasheets/630400.pdf
331 hitp://www.farnell.com/datasheets/1599363.pdf

148 Chapter 16. API - SPI Devices

http://www.farnell.com/datasheets/630400.pdf
http://www.farnell.com/datasheets/1599363.pdf

gpiozero 2.0.1 Documentation, Release 2.0.1

16.2.3 MCP3004

class gpiozero.MCP3004 (*args, **kwargs)
The MCP3004°* is a 10-bit analog to digital converter with 4 channels (0-3).

property channel
The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the
MCP3004/3204/3302 have 4 channels (0-3), the MCP3002/3202 have 2 channels (0-1), and the
MCP3001/3201/3301 only have 1 channel.

property differential
If True, the device is operated in differential mode. In this mode one channel (specified by the channel
attribute) is read relative to the value of a second channel (implied by the chip’s design).

Please refer to the device data-sheet to determine which channel is used as the relative base value (for
example, when using an MCP 30038 (page 149) in differential mode, channel O is read relative to channel
D).

property value

The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for certain devices
operating in differential mode).

16.2.4 MCP3008

class gpiozero.MCP3008 (*args, **kwargs)
The MCP3008°* is a 10-bit analog to digital converter with 8 channels (0-7).

property channel
The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the
MCP3004/3204/3302 have 4 channels (0-3), the MCP3002/3202 have 2 channels (0-1), and the
MCP3001/3201/3301 only have 1 channel.

property differential
If True, the device is operated in differential mode. In this mode one channel (specified by the channel
attribute) is read relative to the value of a second channel (implied by the chip’s design).

Please refer to the device data-sheet to determine which channel is used as the relative base value (for
example, when using an MCP 3008 (page 149) in differential mode, channel O is read relative to channel

1).
property value

The current value read from the device, scaled to a value between O and 1 (or -1 to +1 for certain devices
operating in differential mode).

16.2.5 MCP3201

class gpiozero.MCP3201 (*args, **kwargs)
The MCP3201°* is a 12-bit analog to digital converter with 1 channel. Please note that the MCP3201 always
operates in differential mode, measuring the value of IN+ relative to IN-.
property value

The current value read from the device, scaled to a value between O and 1 (or -1 to +1 for certain devices
operating in differential mode).

332 http://www.farnell.com/datasheets/808965.pdf
533 http://www.farnell.com/datasheets/808965.pdf
334 http://www.farnell.com/datasheets/1669366.pdf

16.2. Analog to Digital Converters (ADC) 149

http://www.farnell.com/datasheets/808965.pdf
http://www.farnell.com/datasheets/808965.pdf
http://www.farnell.com/datasheets/1669366.pdf

gpiozero 2.0.1 Documentation, Release 2.0.1

16.2.6 MCP3202

class gpiozero.MCP3202 (*args, **kwargs)
The MCP3202°% is a 12-bit analog to digital converter with 2 channels (0-1).

property channel
The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the
MCP3004/3204/3302 have 4 channels (0-3), the MCP3002/3202 have 2 channels (0-1), and the
MCP3001/3201/3301 only have 1 channel.

property differential
If True, the device is operated in differential mode. In this mode one channel (specified by the channel
attribute) is read relative to the value of a second channel (implied by the chip’s design).

Please refer to the device data-sheet to determine which channel is used as the relative base value (for
example, when using an MCP 30038 (page 149) in differential mode, channel O is read relative to channel
D).

property value

The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for certain devices
operating in differential mode).

16.2.7 MCP3204

class gpiozero.MCP3204 (*args, **kwargs)
The MCP3204°% is a 12-bit analog to digital converter with 4 channels (0-3).

property channel
The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the
MCP3004/3204/3302 have 4 channels (0-3), the MCP3002/3202 have 2 channels (0-1), and the
MCP3001/3201/3301 only have 1 channel.

property differential
If True, the device is operated in differential mode. In this mode one channel (specified by the channel
attribute) is read relative to the value of a second channel (implied by the chip’s design).

Please refer to the device data-sheet to determine which channel is used as the relative base value (for
example, when using an MCP 3008 (page 149) in differential mode, channel O is read relative to channel

1).
property value

The current value read from the device, scaled to a value between O and 1 (or -1 to +1 for certain devices
operating in differential mode).

16.2.8 MCP3208

class gpiozero.MCP3208 (*args, **kwargs)
The MCP3208°%7 is a 12-bit analog to digital converter with 8 channels (0-7).

property channel

The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the
MCP3004/3204/3302 have 4 channels (0-3), the MCP3002/3202 have 2 channels (0-1), and the
MCP3001/3201/3301 only have 1 channel.

335 http://www.farnell.com/datasheets/1669376.pdf
536 http://www.farnell.com/datasheets/808967.pdf

150 Chapter 16. API - SPI Devices

http://www.farnell.com/datasheets/1669376.pdf
http://www.farnell.com/datasheets/808967.pdf
http://www.farnell.com/datasheets/808967.pdf

gpiozero 2.0.1 Documentation, Release 2.0.1

property differential
If True, the device is operated in differential mode. In this mode one channel (specified by the channel
attribute) is read relative to the value of a second channel (implied by the chip’s design).

Please refer to the device data-sheet to determine which channel is used as the relative base value (for
example, when using an MCP 30038 (page 149) in differential mode, channel O is read relative to channel
1).

property value

The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for certain devices
operating in differential mode).

16.2.9 MCP3301

class gpiozero.MCP3301 (*args, **kwargs)
The MCP3301°%% is a signed 13-bit analog to digital converter. Please note that the MCP3301 always operates
in differential mode measuring the difference between IN+ and IN-. Its output value is scaled from -1 to +1.
property value

The current value read from the device, scaled to a value between O and 1 (or -1 to +1 for devices operating
in differential mode).

16.2.10 MCP3302

class gpiozero.MCP3302 (*args, **kwargs)

The MCP3302%? is a 12/13-bit analog to digital converter with 4 channels (0-3). When operated in differential
mode, the device outputs a signed 13-bit value which is scaled from -1 to +1. When operated in single-ended
mode (the default), the device outputs an unsigned 12-bit value scaled from O to 1.

property channel

The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the
MCP3004/3204/3302 have 4 channels (0-3), the MCP3002/3202 have 2 channels (0-1), and the
MCP3001/3201/3301 only have 1 channel.

property differential
If True, the device is operated in differential mode. In this mode one channel (specified by the channel

attribute) is read relative to the value of a second channel (implied by the chip’s design).

Please refer to the device data-sheet to determine which channel is used as the relative base value (for
example, when using an MCP3304 (page 152) in differential mode, channel O is read relative to channel
1).

property value

The current value read from the device, scaled to a value between O and 1 (or -1 to +1 for devices operating
in differential mode).

537 http://www.farnell.com/datasheets/808967.pdf
538 http://www.farnell.com/datasheets/1669397.pdf
539 http://www.farnell.com/datasheets/1486116.pdf

16.2. Analog to Digital Converters (ADC) 151

http://www.farnell.com/datasheets/1669397.pdf
http://www.farnell.com/datasheets/1486116.pdf

gpiozero 2.0.1 Documentation, Release 2.0.1

16.2.11 MCP3304

class gpiozero.MCP3304 (*args, **kwargs)

The MCP3304°% is a 12/13-bit analog to digital converter with 8 channels (0-7). When operated in differential
mode, the device outputs a signed 13-bit value which is scaled from -1 to +1. When operated in single-ended
mode (the default), the device outputs an unsigned 12-bit value scaled from O to 1.

property channel

The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the
MCP3004/3204/3302 have 4 channels (0-3), the MCP3002/3202 have 2 channels (0-1), and the
MCP3001/3201/3301 only have 1 channel.

property differential
If True, the device is operated in differential mode. In this mode one channel (specified by the channel

attribute) is read relative to the value of a second channel (implied by the chip’s design).

Please refer to the device data-sheet to determine which channel is used as the relative base value (for
example, when using an MCP 3304 (page 152) in differential mode, channel O is read relative to channel

1).
property value

The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for devices operating
in differential mode).

16.3 Base Classes

The classes in the sections above are derived from a series of base classes, some of which are effectively abstract. The
classes form the (partial) hierarchy displayed in the graph below (abstract classes are shaded lighter than concrete
classes):

540 http://www.farnell.com/datasheets/1486116.pdf

152 Chapter 16. API - SPI Devices

http://www.farnell.com/datasheets/1486116.pdf

gpiozero 2.0.1 Documentation, Release 2.0.1

MCP3004

T

MCP30xx MCP3008
/emxxz
el
Device -¢—— SPIDevice -¢—— AnaloglnputDevice <¢—— MCP3xxx
‘\
MCP32xx

MCP3208

|

MCP33xx

T

The following sections document these base classes for advanced users that wish to construct classes for their own
devices.

16.3.1 AnaloglnputDevice

class gpiozero.AnalogInputDevice (*args, **kwargs)
Represents an analog input device connected to SPI (serial interface).

Typical analog input devices are analog to digital converters®*' (ADCs). Several classes are provided for specific
ADC chips, including MCP3004 (page 149), MCP3008 (page 149), MCP3204 (page 150), and MCP3208
(page 150).

The following code demonstrates reading the first channel of an MCP3008 chip attached to the Pi’s SPI pins:

from gpiozero import MCP3008

pot = MCP3008 (0)
print (pot.value)

The value (page 154) attribute is normalized such that its value is always between 0.0 and 1.0 (or in special
cases, such as differential sampling, -1 to +1). Hence, you can use an analog input to control the brightness of

16.3. Base Classes 15

W

https://en.wikipedia.org/wiki/Analog-to-digital_converter

gpiozero 2.0.1 Documentation, Release 2.0.1

a PWMLED (page 127) like so:

from gpiozero import MCP3008, PWMLED

pot = MCP3008 (0)
led = PWMLED (17)
led.source = pot

The voltage (page 154) attribute reports values between 0.0 and max_voltage (which defaults to 3.3, the
logic level of the GPIO pins).
property bits
The bit-resolution of the device/channel.
property max_voltage

The voltage required to set the device’s value to 1.

property raw_value

The raw value as read from the device.

property value
The current value read from the device, scaled to a value between O and 1 (or -1 to +1 for certain devices
operating in differential mode).

property voltage

The current voltage read from the device. This will be a value between 0 and the max_voltage parameter
specified in the constructor.

16.3.2 SPIDevice

class gpiozero.SPIDevice (*args, **kwargs)
Extends Device (page 199). Represents a device that communicates via the SPI protocol.
See SPI keyword args (page 147) for information on the keyword arguments that can be specified with the
constructor.
close()
Shut down the device and release all associated resources (such as GPIO pins).
This method is idempotent (can be called on an already closed device without any side-effects). It is

primarily intended for interactive use at the command line. It disables the device and releases its pin(s)
for use by another device.

You can attempt to do this simply by deleting an object, but unless you’ve cleaned up all references to the
object this may not work (even if you've cleaned up all references, there’s still no guarantee the garbage
collector will actually delete the object at that point). By contrast, the close method provides a means of
ensuring that the object is shut down.

For example, if you have a breadboard with a buzzer connected to pin 16, but then wish to attach an LED
instead:

>>> from gpiozero import *
>>> bz = Buzzer (16)

>>> bz.on ()

>>> bz.off ()

>>> bz.close()

>>> led = LED(16)

>>> led.blink ()

J

Device (page 199) descendents can also be used as context managers using the w1t h>*” statement. For
example:

541 https://en.wikipedia.org/wiki/Analog- to-digital_converter

154 Chapter 16. API - SPI Devices

https://docs.python.org/3.9/reference/compound_stmts.html#with

gpiozero 2.0.1 Documentation, Release 2.0.1

>>> from gpiozero import *
>>> with Buzzer (16) as bz:
bz.on ()

>>> with LED(16) as led:
led.on ()

property closed

Returns True>*? if the device is closed (see the close () (page 154) method). Once a device is closed

you can no longer use any other methods or properties to control or query the device.

542 https://docs.python.org/3.9/reference/compound_stmts. html#with
543 https://docs.python.org/3.9/library/constants. html#True

16.3. Base Classes 155

https://docs.python.org/3.9/library/constants.html#True

gpiozero 2.0.1 Documentation, Release 2.0.1

156 Chapter 16. API - SPI Devices

CHAPTER
SEVENTEEN

API - BOARDS AND ACCESSORIES

These additional interfaces are provided to group collections of components together for ease of use, and as examples.
They are composites made up of components from the various API - Input Devices (page 105) and API - Output Devices
(page 125) provided by GPIO Zero. See those pages for more information on using components individually.

Note: All GPIO pin numbers use Broadcom (BCM) numbering by default. See the Pin Numbering (page 3) section
for more information.

17.1 Regular Classes

The following classes are intended for general use with the devices they are named after. All classes in this section
are concrete (not abstract).

17.1.1 LEDBoard

class gpiozero.LEDBoard (*args, **kwargs)

Extends LEDCollection (page 186) and represents a generic LED board or collection of LEDs.

The following example turns on all the LEDs on a board containing 5 LEDs attached to GPIO pins 2 through
6:

from gpiozero import LEDBoard

leds = LEDBoard (2, 3, 4, 5, 6)
leds.on ()

Parameters

* *pins — Specify the GPIO pins that the LEDs of the board are attached to. See Pin
Numbering (page 3) for valid pin numbers. You can designate as many pins as necessary.
You can also specify LEDBoard (page 157) instances to create trees of LEDs.

o pwm (bool’*) —If True’®, construct PIWMLED (page 127) instances for each pin. If
False>O (the default), construct regular LED (page 125) instances.

» active_high (boo1’*)—If True’* (the default), the on () (page 158) method will
set all the associated pins to HIGH. If False™, the on () (page 158) method will set
all pins to LOW (the o () (page 158) method always does the opposite).

e initial_value (bool”>? or None)-If False! (the default), all LEDs will be
off initially. If None?, each device will be left in whatever state the pin is found in when
configured for output (warning: this can be on). If True?, the device will be switched
on initially.

157

https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#True

gpiozero 2.0.1 Documentation, Release 2.0.1

+ _order (list?* or None)-If specified, this is the order of named items specified by

keyword arguments (to ensure that the value tuple is constructed with a specific order).
All keyword arguments must be included in the collection. If omitted, an alphabetically
sorted order will be selected for keyword arguments.

* pin_factory (Factory (page 226) or None) — See APl - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

* **named_pins —Specify GPIO pins that LEDs of the board are attached to, associating
each LED with a property name. You can designate as many pins as necessary and use
any names, provided they’re not already in use by something else. You can also specify
LEDBoard (page 157) instances to create trees of LEDs.

blink (on_time=1, off _time=1, fade_in_time=0, fade_out_time=0, n=None, background=True)
Make all the LEDs turn on and off repeatedly.

Parameters

* on_time (f10at>>) - Number of seconds on. Defaults to 1 second.
e off_time (£loat>°)— Number of seconds off. Defaults to 1 second.

+ fade_in_time (float>>’) — Number of seconds to spend fading in. Defaults to 0.
Must be 0 if pwm was Fa 1 se>>® when the class was constructed (ValueError > will
be raised if not).

» fade_out_time (£loat’*") — Number of seconds to spend fading out. Defaults to
0. Must be 0 if pwm was False! when the class was constructed (ValueError
will be raised if not).

t563

e n(in or None)—Number of times to blink; None>** (the default) means forever.

* background (boo1°%) —If True’, start a background thread to continue blinking
and return immediately. If False®, only return when the blink is finished (warning:
the default value of n will result in this method never returning).

of £ (*args)

If no arguments are specified, turn all the LEDs off. If arguments are specified, they must be the indexes
of the LEDs you wish to turn off. For example:

from gpiozero import LEDBoard

leds = LEDBoard(2, 3, 4, 5)

leds.on () # turn on all LEDs

leds.off (0) # turn off the first LED (pin 2)

leds.off (-1) # turn off the last LED (pin 5)
leds.off (1, 2) # turn off the middle LEDs (pins 3 and 4)
leds.on () # turn on all LEDs

If b1ink () (page 158) is currently active, it will be stopped first.

Parameters
args (int>%) — The index(es) of the LED(s) to turn off. If no indexes are specified turn
off all LEDs.
on (*args)

If no arguments are specified, turn all the LEDs on. If arguments are specified, they must be the indexes
of the LEDs you wish to turn on. For example:

from gpiozero import LEDBoard

leds = LEDBoard(2, 3, 4, 5)
leds.on (0) # turn on the first LED (pin 2)
leds.on(-1) # turn on the last LED (pin 5)
(continues on next page)

158 Chapter 17. API - Boards and Accessories

https://docs.python.org/3.9/library/stdtypes.html#list
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/exceptions.html#ValueError
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/exceptions.html#ValueError
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#int

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)
leds.on (1, 2) # turn on the middle LEDs (pins 3 and 4)
leds.off () # turn off all LEDs
leds.on () # turn on all LEDs

If b1ink () (page 158) is currently active, it will be stopped first.

Parameters
args (int>*’) — The index(es) of the LED(s) to turn on. If no indexes are specified turn

on all LEDs.
pulse (fade_in_time=1, fade_out_time=1, n=None, background="True)

Make all LEDs fade in and out repeatedly. Note that this method will only work if the pwm parameter

was True’? at construction time.

Parameters

» fade_in_time (fIloat>’") — Number of seconds to spend fading in. Defaults to 1.

+ fade_out_time (£loat’’?) — Number of seconds to spend fading out. Defaults to
1.

t573

e n(in or None)—Number of times to blink; None>’* (the default) means forever.

* background (boo17) - If True”’® (the default), start a background thread to con-
tinue blinking and return immediately. If False®’’, only return when the blink is fin-
ished (warning: the default value of » will result in this method never returning).

toggle (*args)

If no arguments are specified, toggle the state of all LEDs. If arguments are specified, they must be the
indexes of the LEDs you wish to toggle. For example:

from gpiozero import LEDBoard

leds = LEDBoard(2
leds.toggle (0)
leds.toggle (-1)
leds.toggle ()

3, 4, 5)

turn on the first LED (pin 2)

turn on the last LED (pin 5)

turn the first and last LED off, and the
middle pair on

H FH W K

If b1ink () (page 158) is currently active, it will be stopped first.

Parameters

args (int>’®) - The index(es) of the LED(s) to toggle. If no indexes are specified toggle
the state of all LEDs.

17.1. Regular Classes 159

https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#int

gpiozero 2.0.1 Documentation, Release 2.0.1

17.1.2 LEDBarGraph

class gpiozero.LEDBarGraph (*args, **kwargs)

Extends LEDCollection (page 186) to control a line of LEDs representing a bar graph. Positive values (0
to 1) light the LEDs from first to last. Negative values (-1 to 0) light the LEDs from last to first.

The following example demonstrates turning on the first two and last two LEDs in a board containing five LEDs

attached to GPIOs 2 through 6:

from time import sleep
graph = LEDBarGraph (2, 3, 4, 5,
sleep (1)

sleep (1)
graph.off ()

from gpiozero import LEDBarGraph

6)

graph.value = 2/5 # Light the first two LEDs only

graph.value = -2/5 # Light the last two LEDs only

As with all other output devices, source (page 161) and values (page 161) are supported:

from signal import pause

graph = LEDBarGraph (2, 3, 4, 5,
pot = MCP3008 (channel=0)

graph.source = pot

pause ()

6,

from gpiozero import LEDBarGraph, MCP3008

pwm=True)

544 https://docs.python.org/3.9/library/functions.html#bool
343 https://docs.python.org/3.9/library/constants. html#True
346 hitps://docs.python.org/3.9/library/constants.html#False
547 https://docs.python.org/3.9/library/functions.html#bool
548 https://docs.python.org/3.9/library/constants.html#True
549 hitps://docs.python.org/3.9/library/constants. html#False
550 https://docs.python.org/3.9/library/functions.html#bool
33T https://docs.python.org/3.9/library/constants.html#False
352 hitps://docs.python.org/3.9/library/constants.html#None
553 https://docs.python.org/3.9/library/constants. html#True
3554 https://docs.python.org/3.9/library/stdtypes.html#list

353 https://docs.python.org/3.9/library/functions. html#float
356 https://docs.python.org/3.9/library/functions. html#float
357 https://docs.python.org/3.9/library/functions. html#float
358 https://docs.python.org/3.9/library/constants.html#False

559 https://docs.python.org/3.9/library/exceptions.html#ValueError

560 https://docs.python.org/3.9/library/functions.html#float
361 https://docs.python.org/3.9/library/constants.html#False

562 https://docs.python.org/3.9/library/exceptions.html#ValueError

563 https://docs.python.org/3.9/library/functions.html#int
364 https://docs.python.org/3.9/library/constants.html#None
365 hitps://docs.python.org/3.9/library/functions.html#bool
566 https://docs.python.org/3.9/library/constants. html#True
367 https://docs.python.org/3.9/library/constants.html#False
368 https://docs.python.org/3.9/library/functions.html#int
569 https://docs.python.org/3.9/library/functions.html#int
570 https://docs.python.org/3.9/library/constants. html#True
571 https://docs.python.org/3.9/library/functions. html#float
572 https://docs.python.org/3.9/library/functions. html#float
573 https://docs.python.org/3.9/library/functions.html#int
574 https://docs.python.org/3.9/library/constants.html#None
575 https://docs.python.org/3.9/library/functions.html#bool
576 https://docs.python.org/3.9/library/constants. html#True
ST7 https://docs.python.org/3.9/library/constants.htmlI#False
578 https://docs.python.org/3.9/library/functions.html#int

160

Chapter 17. API - Boards and Accessories

gpiozero 2.0.1 Documentation, Release 2.0.1

Parameters

* *pins — Specify the GPIO pins that the LEDs of the bar graph are attached to. See Pin
Numbering (page 3) for valid pin numbers. You can designate as many pins as necessary.

o pwm (boo1’") — If True’®, construct PWMLED (page 127) instances for each pin. If
False®! (the default), construct regular LED (page 125) instances. This parameter can
only be specified as a keyword parameter.

» active_high (boo1%%?) —If True®® (the default), the on () method will set all the
associated pins to HIGH. If Fal se’%* the on () method will set all pins to LOW (the
off () method always does the opposite). This parameter can only be specified as a
keyword parameter.

e initial_value (float’®) — The initial value (page 161) of the graph given as

a float between -1 and +1. Defaults to 0.0. This parameter can only be specified as a
keyword parameter.

* pin_factory (Factory (page 226) or None) — See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

property lit_count
The number of LEDs on the bar graph actually lit up. Note that just like va I ue (page 161), this can be
negative if the LEDs are lit from last to first.

property source
The iterable to use as a source of values for value (page 161).

property value
The value of the LED bar graph. When no LEDs are lit, the value is 0. When all LEDs are lit, the value

is 1. Values between 0 and 1 light LEDs linearly from first to last. Values between O and -1 light LEDs
linearly from last to first.

To light a particular number of LEDs, simply divide that number by the number of LEDs. For example,
if your graph contains 3 LEDs, the following will light the first:

from gpiozero import LEDBarGraph

graph = LEDBarGraph (12, 16, 19)
graph.value = 1/3

Note: Setting value to -1 will light all LEDs. However, querying it subsequently will return 1 as both
representations are the same in hardware. The readable range of value (page 161) is effectively -1 <
value <= 1.

property values
An infinite iterator of values read from value (page 161).

579 https://docs.python.org/3.9/library/functions.html#bool
580 https://docs.python.org/3.9/library/constants. html#True
381 https://docs.python.org/3.9/library/constants.html#False
582 https://docs.python.org/3.9/library/functions.html#bool
583 https://docs.python.org/3.9/library/constants. html#True
384 https://docs.python.org/3.9/library/constants.html#False
585 https://docs.python.org/3.9/library/functions. html#float

17.1. Regular Classes 161

https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#float

gpiozero 2.0.1 Documentation, Release 2.0.1

17.1.3 LEDCharDisplay

class gpiozero.LEDCharDisplay (*args, **kwargs)

Extends LEDCollection (page 186) for a multi-segment LED display.

Multi-segment LED displays>®® typically have 7 pins (labelled “a” through “g”) representing 7 LEDs layed out
in a figure-of -8 fashion. Frequently, an eigth pin labelled “dp” is included for a trailing decimal-point:

a
£ | ©
| g |
e | | ¢
| |
dp
d
. J

Other common layouts are 9, 14, and 16 segment displays which include additional segments permitting more
accurate renditions of alphanumerics. For example:

£ I\Ll3/] b
| \I/k|
g— —h
e | /I\n| ¢
| /1]m\|
. dp
d

.

Such displays have either a common anode, or common cathode pin. This class defaults to the latter; when
using a common anode display active_high should be set to False®.

Instances of this class can be used to display characters or control individual LEDs on the display. For example:

from gpiozero import LEDCharDisplay

char = LEDCharDisplay (4, 5, 6, 7, 8, 9, 10, active_high=False)
char.value = 'C'

If the class is constructed with 7 or 14 segments, a default font (page 163) will be loaded, mapping some
ASCII characters to typical layouts. In other cases, the default mapping will simply assign “ “ (space) to all
LEDs off. You can assign your own mapping at construction time or after instantiation.

While the example above shows the display with a st %% value, theoretically the font can map any value that

can be the key in a dict%, so the value of the display can be likewise be any valid key value (e.g. you could
map integer digits to LED patterns). That said, there is one exception to this: when dp is specified to enable
the decimal-point, the value (page 163) must be a st r°%°
whether the dp LED is lit.

@

as the presence or absence of a “.” suffix indicates

Parameters

» *pins — Specify the GPIO pins that the multi-segment display is attached to. Pins should
be in the LED segment order A, B, C, D, E, F, G, and will be named automatically by the
class. If a decimal-point pin is present, specify it separately as the dp parameter.

s dp (int?!" or str’°?)—If adecimal-point segment is present, specify it as this named
parameter.

+ font (dict™? or None)- A mapping of values (typically characters, but may also
be numbers) to tuples of LED states. A default mapping for ASCII characters is provided
for 7 and 14 segment displays.

162

Chapter 17. API - Boards and Accessories

https://en.wikipedia.org/wiki/Seven-segment_display
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#dict
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#dict

gpiozero 2.0.1 Documentation, Release 2.0.1

s pwm (boo1°%*) — If True’®, construct PWMLED (page 127) instances for each pin. If
False® (the default), construct regular LED (page 125) instances.

» active_high (boo1¥”) —If True®® (the default), the on () method will set all the
associated pins to HIGH. If False>”, the on () method will set all pins to LOW (the
of f () method always does the opposite).

99 &

e initial_value — The initial value to display. Defaults to space (” “) which typically
maps to all LEDs being inactive. If None®", each device will be left in whatever state the
pin is found in when configured for output (warning: this can be on).

* pin_factory (Factory (page 226) or None) — See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

property font

An LEDCharFont (page 165) mapping characters to tuples of LED states. The font is mutable after
construction. You can assign a tuple of LED states to a character to modify the font, delete an existing
character in the font, or assign a mapping of characters to tuples to replace the entire font.

Note that modifying the font (page 163) never alters the underlying LED states. Only assignment to
value (page 163), or calling the inherited LEDCollection (page 186) methods (on (), off (),
etc.) modifies LED states. However, modifying the font may alter the character returned by querying
value (page 163).

property value

The character the display should show. This is mapped by the current font (page 163) to a tuple of
LED states which is applied to the underlying LED objects when this attribute is set.

When queried, the current LED states are looked up in the font to determine the character shown. If the
current LED states do not correspond to any character in the font (page 163), the value is None®'.

It is possible for multiple characters in the font to map to the same LED states (e.g. S and 5). In this
case, if the font was constructed from an ordered mapping (which is the default), then the first matching
mapping will always be returned. This also implies that the value queried need not match the value set.

17.1.4 LEDMultiCharDisplay

class gpiozero.LEDMultiCharDisplay (*args, **kwargs)

d()OZ

Wraps LEDCharDisplay (page 162) for multi-character multiplexe LED character displays.

The class is constructed with a char which is an instance of the LEDCharDisplay (page 162) class, capable
of controlling the LEDs in one character of the display, and an additional set of pins that represent the common
cathode (or anode) of each character.

586 https://en.wikipedia.org/wiki/Seven-segment_display
87 https://docs.python.org/3.9/library/constants. html#False
388 hitps://docs.python.org/3.9/library/stdtypes.html#str

389 hitps://docs.python.org/3.9/library/stdtypes.html#dict
590 https://docs.python.org/3.9/library/stdtypes.html#str

391 https://docs.python.org/3.9/library/functions.html#int
392 hitps://docs.python.org/3.9/library/stdtypes. html#str

593 https://docs.python.org/3.9/library/stdtypes.html#dict
594 https://docs.python.org/3.9/library/functions.html#bool
395 hitps://docs.python.org/3.9/library/constants.html#True
59 https://docs.python.org/3.9/library/constants. html#False
597 https://docs.python.org/3.9/library/functions.html#bool
398 https://docs.python.org/3.9/library/constants.html#True
599 https://docs.python.org/3.9/library/constants. html#False
600 https://docs.python.org/3.9/library/constants.html#None
601 hitps://docs.python.org/3.9/library/constants.html#None

17.1. Regular Classes 163

https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None
https://en.wikipedia.org/wiki/Multiplexed_display

gpiozero 2.0.1 Documentation, Release 2.0.1

Warning: You should not attempt to connect the common cathode (or anode) off each character directly to
a GPIO. Rather, use a set of transistors (or some other suitable component capable of handling the current
of all the segment LEDs simultaneously) to connect the common cathode to ground (or the common anode
to the supply) and control those transistors from the GPIOs specified under pins.

The active_high parameter defaults to True®?. Note that it only applies to the specified pins, which are

assumed to be controlling a set of transistors (hence the default). The specified char will use its own active_high
parameter. Finally, inifial_value defaults to a tuple of value (page 163) attribute of the specified display
multiplied by the number of pins provided.

When the va lue (page 164) is set such that one or more characters in the display differ in value, a background
thread is implicitly started to rotate the active character, relying on persistence of vision®** to display the
complete value.
property plex_delay

The delay (measured in seconds) in the loop used to switch each character in the multiplexed display on.

Defaults to 0.005 seconds which is generally sufficient to provide a “stable” (non-flickery) display.
property value

The sequence of values to display.

This can be any sequence containing keys from the font (page 163) of the associated character display.

For example, if the value consists only of single-character strings, it’s valid to assign a string to this
property (as a string is simply a sequence of individual character keys):

from gpiozero import LEDCharDisplay, LEDMultiCharDisplay

l¢] LEDCharDisplay (4, 5, 6,
d = LEDMultiCharDisplay (c,
d.value = 'LEDS'

T,
19,

8,
20,

9,
21,

10)
22)

However, things get more complicated if a decimal point is in use as then this class needs to know
explicitly where to break the value for use on each character of the display. This can be handled by
simply assigning a sequence of strings thus:

from gpiozero import LEDCharDisplay, LEDMultiCharDisplay
c = LEDCharDisplay (4, 5, 6,
d = LEDMultiCharDisplay (c,
d.value = ('L.', 'E', 'D',

7y
19,
VSI)

8,
20,

9,
21,

10)
22)

This is how the value will always be represented when queried (as a tuple of individual values) as it neatly
handles dealing with heterogeneous types and the aforementioned decimal point issue.

Note: The value also controls whether a background thread is in use to multiplex the display. When all
positions in the value are equal the background thread is disabled and all characters are simultaneously
enabled.

602 https://en.wikipedia.org/wiki/Multiplexed_display
603 https://docs.python.org/3.9/library/constants. html#True
604 hitps://en.wikipedia.org/wiki/Persistence_of _vision

164

Chapter 17. API - Boards and Accessories

https://docs.python.org/3.9/library/constants.html#True
https://en.wikipedia.org/wiki/Persistence_of_vision

gpiozero 2.0.1 Documentation, Release 2.0.1

17.1.5 LEDCharFont

class gpiozero.LEDCharFont (font)

Contains a mapping of values to tuples of LED states.

This effectively acts as a “font” for LEDCharDisplay (page 162), and two default fonts (for 7-segment and
14-segment displays) are shipped with GPIO Zero by default. You can construct your own font instance from
a dict % which maps values (usually single-character strings) to a tuple of LED states:

from gpiozero import LEDCharDisplay, LEDCharFont

my_font = LEDCharFont ({

“vg (@, ©, 0O, 0O, ©, ©, @),
"bYg (4, i, i1, L, A, i, @),
'A': (2, 1, 1, 0, 1, 1, 1),
‘el (@, i, 4, 41, i, @, 14),
'a': (1, 1, 1, 1, 1, O, 1),

})

display = LEDCharDisplay (26, 13, 12, 22, 17, 19, 6, dp=5, font=my_font)
display.value = 'D'

.

J

Font instances are mutable and can be changed while actively in use by an instance of LEDCharDisplay
(page 162). However, changing the font will not change the state of the LEDs in the display (though it may
change the value (page 163) of the display when next queried).

Note: Your custom mapping should always include a value (typically space) which represents all the LEDs
off. This will usually be the default value for an instance of LEDCharDisplay (page 162).

You may also wish to load fonts from a friendly text-based format. A simple parser for such formats (sup-
porting an arbitrary number of segments) is provided by gpiozero. fonts. load _segment_font ()
(page 212).

17.1.6 ButtonBoard

class gpiozero.ButtonBoard (*args, **kwargs)

Extends CompositeDevice (page 187) and represents a generic button board or collection of buttons. The
value (page 166) of the button board is a tuple of all the buttons states. This can be used to control all the
LEDs in a LEDBoard (page 157) with a But t onBoard (page 165):

s Y
from gpiozero import LEDBoard, ButtonBoard

from signal import pause

leds = LEDBoard(2, 3, 4, 5)
btns = ButtonBoard (6, 7, 8, 9)
leds.source = btns

pause ()

Alternatively you could represent the number of pressed buttons with an LEDBarGraph (page 160):

from gpiozero import LEDBarGraph, ButtonBoard
from statistics import mean
from signal import pause

graph = LEDBarGraph (2, 3, 4, 5)
bb = ButtonBoard(6, 7, 8, 9)
(continues on next page)

605 https://docs.python.org/3.9/library/stdtypes.html#dict

17.1. Regular Classes 165

https://docs.python.org/3.9/library/stdtypes.html#dict

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

graph.source = (mean(values) for values in bb.values)

pause ()

Parameters

* *pins — Specify the GPIO pins that the buttons of the board are attached to. See Pin
Numbering (page 3) for valid pin numbers. You can designate as many pins as necessary.

s pull_up (bool® or None)-If True®’ (the default), the GPIO pins will be pulled
high by default. In this case, connect the other side of the buttons to ground. If False®%,
the GPIO pins will be pulled low by default. In this case, connect the other side of the
buttons to 3V3. If None®”, the pin will be floating, so it must be externally pulled up or
down and the act ive_state parameter must be set accordingly.

* active_state (bool®” or None) — See description under InputDevice
(page 121) for more information.

* bounce_time (f10at®") —If None®'? (the default), no software bounce compensa-
tion will be performed. Otherwise, this is the length of time (in seconds) that the buttons
will ignore changes in state after an initial change.

* hold_time (float®?) - The length of time (in seconds) to wait after any button is
pushed, until executing the when_held handler. Defaults to 1.

* hold_repeat (hoo1%*) —If True®!, the when_held handler will be repeatedly
executed as long as any buttons remain held, every hold_time seconds. If False®'® (the
default) the when_he1d handler will be only be executed once per hold.

* pin_factory (Factory (page 226) or None) — See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

» **named_pins — Specify GPIO pins that buttons of the board are attached to, associ-
ating each button with a property name. You can designate as many pins as necessary and
use any names, provided they’re not already in use by something else.

wait_for_press (timeout=None)
Pause the script until the device is activated, or the timeout is reached.
Parameters

timeout (floa or None) — Number of seconds to wait before proceeding. If
this is None®'® (the default), then wait indefinitely until the device is active.

t6]7

wait_for_release (timeout=None)
Pause the script until the device is deactivated, or the timeout is reached.
Parameters
timeout (float®’ or None)- Number of seconds to wait before proceeding. If
this is None%?" (the default), then wait indefinitely until the device is inactive.
property is_pressed
Composite devices are considered “active” if any of their constituent devices have a “truthy” value.
property pressed_time

The length of time (in seconds) that the device has been active for. When the device is inactive, this is

None®!,

property value

A namedtuple () 622 containing a value for each subordinate device. Devices with names will be
represented as named elements. Unnamed devices will have a unique name generated for them, and they
will appear in the position they appeared in the constructor.

166

Chapter 17. API - Boards and Accessories

https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/collections.html#collections.namedtuple

gpiozero 2.0.1 Documentation, Release 2.0.1

when_pressed

The function to run when the device changes state from inactive to active.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated it will be passed as that parameter.

Set this property to None®?? (the default) to disable the event.

when_released

The function to run when the device changes state from active to inactive.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that deactivated it will be passed as that parameter.

Set this property to None®* (the default) to disable the event.

17.1.7 TrafficLights

class gpiozero.TrafficLights (*args, **kwargs)

Extends LEDBoard (page 157) for devices containing red, yellow, and green LEDs.

The following example initializes a device connected to GPIO pins 2, 3, and 4, then lights the amber (yellow)

LED attached to GPIO 3:

from gpiozero import TrafficLights

traffic = Trafficlights (2, 3, 4)
traffic.amber.on ()

Parameters

» red (int®” or str®%) — The GPIO pin that the red LED is attached to. See Pin
Numbering (page 3) for valid pin numbers.

» amber (int%’ or str%® or None)-The GPIO pin that the amber LED is attached
to. See Pin Numbering (page 3) for valid pin numbers.

» yellow (int®?

or str

or None) — The GPIO pin that the yellow LED is

attached to. This is merely an alias for the amber parameter; you can’t specify both
amber and yellow. See Pin Numbering (page 3) for valid pin numbers.

» green (int%' or str%?)— The GPIO pin that the green LED is attached to. See
Pin Numbering (page 3) for valid pin numbers.

606 https://docs.python.org/3.9/library/functions.html#bool

607 https://docs.python.org/3.9/library/constants. html#True

608 https://docs.python.org/3.9/library/constants.html#False
609 https://docs.python.org/3.9/library/constants.html#None
610 https://docs.python.org/3.9/library/functions.html#bool

61T https://docs.python.org/3.9/library/functions. html#float
612 https://docs.python.org/3.9/library/constants.html#None
613 https://docs.python.org/3.9/library/functions. html#float
614 https://docs.python.org/3.9/library/functions.html#bool

615 https://docs.python.org/3.9/library/constants. html#True
616 https://docs.python.org/3.9/library/constants.html#False
617 https://docs.python.org/3.9/library/functions. html#float
618 https://docs.python.org/3.9/library/constants.html#None
619 https://docs.python.org/3.9/library/functions. html#float
620 https://docs.python.org/3.9/library/constants.html#None
621 hitps://docs.python.org/3.9/library/constants.html#None

622 https://docs.python.org/3.9/library/collections.html#collections.namedtuple

623 https://docs.python.org/3.9/library/constants.html#None
624 https://docs.python.org/3.9/library/constants.html#None

17.1. Regular Classes

167

https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str

gpiozero 2.0.1 Documentation, Release 2.0.1

s pwm (boo19?) —If True®*, construct PIWMLED (page 127) instances to represent each
LED. If Falseb® (the default), construct regular LED (page 125) instances.

e initial_value (bool%® or None)-If Falseb’ (the default), all LEDs will be
off initially. If None®®, each device will be left in whatever state the pin is found in when
configured for output (warning: this can be on). If True®”’, the device will be switched
on initially.

* pin_factory (Factory (page 226) or None) — See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

red
The red LED (page 125) or PWMLED (page 127).
amber

The amber LED (page 125) or PWMLED (page 127). Note that this attribute will not be present when the
instance is constructed with the yellow keyword parameter.

yellow

The yellow LED (page 125) or PWMLED (page 127). Note that this attribute will only be present when
the instance is constructed with the yellow keyword parameter.

green

The green LED (page 125) or PWMLED (page 127).

17.1.8 TrafficLightsBuzzer

class gpiozero.TrafficLightsBuzzer (*args, **kwargs)

Extends CompositeOutputDevice (page 186) and is a generic class for HATs with traffic lights, a button
and a buzzer.

Parameters

* lights (TrafficLights (page 167)) — An instance of TrafficLights
(page 167) representing the traffic lights of the HAT.

* buzzer (Buzzer (page 131)) — An instance of Buzzer (page 131) representing the
buzzer on the HAT.

* button (Button (page 105)) — An instance of Button (page 105) representing the
button on the HAT.

* pin_factory (Factory (page 226) or None) — See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

lights
The TrafficLights (page 167) instance passed as the lights parameter.

625 https://docs.python.org/3.9/library/functions.html#int
626 https://docs.python.org/3.9/library/stdtypes.html#str

627 https://docs.python.org/3.9/library/functions.html#int
628 https://docs.python.org/3.9/library/stdtypes.html#str
629 hitps://docs.python.org/3.9/library/functions.html#int
630 https://docs.python.org/3.9/library/stdtypes.html#str

631 https://docs.python.org/3.9/library/functions.html#int
632 https://docs.python.org/3.9/library/stdtypes.html#str

633 https://docs.python.org/3.9/library/functions.html#bool
634 https://docs.python.org/3.9/library/constants.html#True
635 https://docs.python.org/3.9/library/constants. html#False
636 https://docs.python.org/3.9/library/functions.html#bool
637 https://docs.python.org/3.9/library/constants. html#False
638 https://docs.python.org/3.9/library/constants.html#None
639 hitps://docs.python.org/3.9/library/constants.html#True

168 Chapter 17. API - Boards and Accessories

https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#True

gpiozero 2.0.1 Documentation, Release 2.0.1

buzzer
The Buzzer (page 131) instance passed as the buzzer parameter.

button
The But ton (page 105) instance passed as the butfon parameter.

17.1.9 PiHutXmasTree

clas

s gpiozero.PiHutXmasTree (*args, **kwargs)

Extends LEDBoard (page 157) for The Pi Hut's Xmas board®*: a 3D Christmas tree board with 24 red LEDs
and a white LED as a star on top.

The 24 red LEDs can be accessed through the attributes led0, ledl1, led2, and so on. The white star LED
is accessed through the star (page 169) attribute. Alternatively, as with all descendents of LEDBoard
(page 157), you can treat the instance as a sequence of LEDs (the first element is the star (page 169)).

The Xmas Tree board pins are fixed and therefore there’s no need to specify them when constructing this class.
The following example turns all the LEDs on one at a time:

-

from gpiozero import PiHutXmasTree
from time import sleep

tree = PiHutXmasTree ()
for light in tree:

light.on ()
sleep (1)

The following example turns the star LED on and sets all the red LEDs to flicker randomly:

from gpiozero import PiHutXmasTree
from gpiozero.tools import random_values
from signal import pause
tree = PiHutXmasTree (pwm=True)
tree.star.on ()
for led in tree[l:]:

led.source_delay = 0.1

led.source = random_values ()

pause ()

Parameters

s pwm (boo %) — If True®?, construct PWMLED (page 127) instances for each pin. If
False® (the default), construct regular LED (page 125) instances.

e initial_value (bool®* or None)-If False® (the default), all LEDs will be
off initially. If None®®, each device will be left in whatever state the pin is found in when
configured for output (warning: this can be on). If True®’, the device will be switched
on initially.

* pin_factory (Factory (page 226) or None) — See API - Pins (page 221) for

more information (this is an advanced feature which most users can ignore).

star

Returns the LED (page 125) or PWMLED (page 127) representing the white star on top of the tree.

17.1.

Regular Classes 169

https://thepihut.com/xmas
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#True

gpiozero 2.0.1 Documentation, Release 2.0.1

led0, ledl, 1led2,

Returns the ZLED (page 125) or PWMLED (page 127) representing one of the red LEDs. There are actually
24 of these properties named led0, led1, and so on but for the sake of brevity we represent all 24 under
this section.

17.1.10 LedBorg

class gpiozero.LedBorg (*args, **kwargs)

Extends RGBLED (page 128) for the PiBorg LLedBorg®*®: an add-on board containing a very bright RGB LED.

The LedBorg pins are fixed and therefore there’s no need to specify them when constructing this class. The
following example turns the LedBorg purple:

from gpiozero import LedBorg

led = LedBorg()
led.color = (1, 0, 1)

Parameters

e initial_value (Color®™ 630y —

Defaults to black (0, 0, 0).

or tuple The initial color for the LedBorg.

o pwm (bool1%") —If True®? (the default), construct PWMLED (page 127) instances for
each component of the LedBorg. If False®?, construct regular LED (page 125) in-
stances, which prevents smooth color graduations.

* pin_factory (Factory (page 226) or None) — See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

17.1.11 PilLiter

class gpiozero.PilLiter (*args, **kwargs)

Extends LEDBoard (page 157) for the Ciseco Pi-LITEr®*: a strip of 8 very bright LEDs.

The Pi-LITEr pins are fixed and therefore there’s no need to specify them when constructing this class. The
following example turns on all the LEDs of the Pi-LITEr:

from gpiozero import Piliter

lite = PiLiter ()
lite.on ()

Parameters

640 https://thepihut.com/xmas

641 https://docs.python.org/3.9/library/functions.html#bool
642 https://docs.python.org/3.9/library/constants. html#True
643 https://docs.python.org/3.9/library/constants.html#False
644 https://docs.python.org/3.9/library/functions.html#bool
643 https://docs.python.org/3.9/library/constants.html#False
646 https://docs.python.org/3.9/library/constants.html#None
47 https://docs.python.org/3.9/library/constants. html#True
648 hitps://www.piborg.org/ledborg

649 https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Color
650 https://docs.python.org/3.9/library/stdtypes.html#tuple
651 hitps://docs.python.org/3.9/library/functions.html#bool
652 https://docs.python.org/3.9/library/constants. html#True
653 https://docs.python.org/3.9/library/constants.html#False

170 Chapter 17. API - Boards and Accessories

https://www.piborg.org/ledborg
https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Color
https://docs.python.org/3.9/library/stdtypes.html#tuple
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
http://shop.ciseco.co.uk/pi-liter-8-led-strip-for-the-raspberry-pi/

gpiozero 2.0.1 Documentation, Release 2.0.1

s pwm (boo1%) — If True®®, construct PWMLED (page 127) instances for each pin. If
False®7 (the default), construct regular LED (page 125) instances.

e initial_value (bool%® or None)-If False®? (the default), all LEDs will
be off initially. If None®?, each LED will be left in whatever state the pin is found in
when configured for output (warning: this can be on). If True®!, the each LED will be
switched on initially.

* pin_factory (Factory (page 226) or None) — See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

17.1.12 PiLiterBarGraph

class gpiozero.PiLiterBarGraph (*args, **kwargs)

Extends L.EDBarGraph (page 160) to treat the Ciseco Pi-LITEr®? as an 8-segment bar graph.

The Pi-LITEr pins are fixed and therefore there’s no need to specify them when constructing this class. The
following example sets the graph value to 0.5:

from gpiozero import PiliterBarGraph

graph = PiLiterBarGraph ()
graph.value = 0.5

Parameters

o pwm (boo1%3) — If True®*, construct PWMLED (page 127) instances for each pin. If
False% (the default), construct regular ZED (page 125) instances.

» initial_value (£10at®®)—The initial value of the graph given as a float between
-1 and +1. Defaults to 0. O.

* pin_factory (Factory (page 226) or None) — See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

17.1.13 PiTraffic

class gpiozero.PiTraffic (*args, **kwargs)
Extends TrafficLights (page 167) for the Low Voltage Labs PI-TRAFFIC®® vertical traffic lights board
when attached to GPIO pins 9, 10, and 11.

There’s no need to specify the pins if the PI-TRAFFIC is connected to the default pins (9, 10, 11). The
following example turns on the amber LED on the PI-TRAFFIC:

654 http://shop.ciseco.co.uk/pi-liter-8-led- strip-for-the-raspberry-pi/
655 https://docs.python.org/3.9/library/functions.html#bool
656 https://docs.python.org/3.9/library/constants. html#True
657 https://docs.python.org/3.9/library/constants.html#False
658 https://docs.python.org/3.9/library/functions.html#bool
659 https://docs.python.org/3.9/library/constants. html#False
660 https://docs.python.org/3.9/library/constants.html#None
661 https://docs.python.org/3.9/library/constants. html#True
662 http://shop.ciseco.co.uk/pi-liter-8-led-strip-for-the-raspberry- pi/
663 hitps://docs.python.org/3.9/library/functions.html#bool
664 https:/docs.python.org/3.9/library/constants.html#True
665 https://docs.python.org/3.9/library/constants.html#False
666 https://docs.python.org/3.9/library/functions. html#float

17.1. Regular Classes 171

https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#True
http://shop.ciseco.co.uk/pi-liter-8-led-strip-for-the-raspberry-pi/
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#float
http://lowvoltagelabs.com/products/pi-traffic/

gpiozero 2.0.1 Documentation, Release 2.0.1

from gpiozero import PiTraffic

traffic = PiTraffic()
traffic.amber.on ()

To use the PI-TRAFFIC board when attached to a non-standard set of pins, simply use the parent class, Traf—
ficLights (page 167).

Parameters

o pwm (hoo1°%) —If True®’, construct PIWMLED (page 127) instances to represent each
LED. If False®”? (the default), construct regular LED (page 125) instances.

» initial_value (bool%") —If False®? (the default), all LEDs will be off initially.
If None®”3, each device will be left in whatever state the pin is found in when configured
for output (warning: this can be on). If True®*, the device will be switched on initially.

* pin_factory (Factory (page 226) or None) — See APl - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

17.1.14 PiStop

class gpiozero.PiStop (*args, **kwargs)

Extends TrafficLights (page 167) for the PiHardware Pi-Stop®”>: a vertical traffic lights board.

The following example turns on the amber LED on a Pi-Stop connected to location A+:

from gpiozero import PiStop

traffic = PiStop ('A+")
traffic.amber.on ()

Parameters

* location (st %) — The location®”” on the GPIO header to which the Pi-Stop is con-
nected. Must be one of: A, A+, B, B+, C, D.

o pwm (boo1%7®) —If True®”, construct PWMLED (page 127) instances to represent each
LED. If False% (the default), construct regular LED (page 125) instances.

* initial_value (bool%") —If False®? (the default), all LEDs will be off initially.
If None®?, each device will be left in whatever state the pin is found in when configured
for output (warning: this can be on). If True®*, the device will be switched on initially.

* pin_factory (Factory (page 226) or None) — See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

667 hitp://lowvoltagelabs.com/products/pi- traffic/

668 https://docs.python.org/3.9/library/functions.html#bool
669 https://docs.python.org/3.9/library/constants.html#True
670 https://docs.python.org/3.9/library/constants. html#False
671 https://docs.python.org/3.9/library/functions.html#bool
672 https://docs.python.org/3.9/library/constants.html#False
673 https://docs.python.org/3.9/library/constants.html#None
674 https://docs.python.org/3.9/library/constants.html#True

172 Chapter 17. API - Boards and Accessories

https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#True
https://pihw.wordpress.com/meltwaters-pi-hardware-kits/pi-stop/
https://docs.python.org/3.9/library/stdtypes.html#str
https://github.com/PiHw/Pi-Stop/blob/master/markdown_source/markdown/Discover-PiStop.md
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#True

gpiozero 2.0.1 Documentation, Release 2.0.1

17.1.15 FishDish

class gpiozero.FishDish (*args, **kwargs)

Extends CompositeOutputDevice (page 186) for the Pi Supply FishDish®: traffic light LEDs, a button
and a buzzer.

The FishDish pins are fixed and therefore there’s no need to specify them when constructing this class. The
following example waits for the button to be pressed on the FishDish, then turns on all the LEDs:

from gpiozero import FishDish

fish = FishDish ()
fish.button.wait_for_press /()
fish.lights.on()

Parameters

o pwm (boo1%) —If True®’, construct PWMLED (page 127) instances to represent each
LED. If False%® (the default), construct regular LED (page 125) instances.

* pin_factory (Factory (page 226) or None) — See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

17.1.16 TrafficHat

class gpiozero.TrafficHat (*args, **kwargs)

Extends CompositeOutputDevice (page 186) for the Pi Supply Traffic HAT®®: a board with traffic light
LEDs, a button and a buzzer.

The Traffic HAT pins are fixed and therefore there’s no need to specify them when constructing this class. The
following example waits for the button to be pressed on the Traffic HAT, then turns on all the LEDs:

from gpiozero import TrafficHat

hat = TrafficHat ()
hat .button.wait_for_press|()
hat.lights.on()

Par