
Gpiozero Documentation
Release 1.4.0

Ben Nuttall

Jul 26, 2017

Contents

1 Installing GPIO Zero 1

2 Basic Recipes 3

3 Advanced Recipes 27

4 Configuring Remote GPIO 35

5 Remote GPIO Recipes 43

6 Source/Values 47

7 Command-line Tools 53

8 Frequently Asked Questions 61

9 Contributing 65

10 Development 67

11 API - Input Devices 69

12 API - Output Devices 81

13 API - SPI Devices 97

14 API - Boards and Accessories 105

15 API - Internal Devices 141

16 API - Generic Classes 145

17 API - Device Source Tools 151

18 API - Pi Information 159

19 API - Pins 163

20 API - Exceptions 177

21 Changelog 181

22 License 187

i

Python Module Index 189

ii

CHAPTER 1

Installing GPIO Zero

GPIO Zero is installed by default in Raspbian Jessie1 and Raspbian x862, available from raspberrypi.org3. Follow
these guides to installing on other operating systems, including for PCs using the remote GPIO (page 35) feature.

Raspberry Pi

First, update your repositories list:

pi@raspberrypi:~$ sudo apt update

Then install the package for Python 3:

pi@raspberrypi:~$ sudo apt install python3-gpiozero

or Python 2:

pi@raspberrypi:~$ sudo apt install python-gpiozero

If you’re using another operating system on your Raspberry Pi, you may need to use pip to install GPIO Zero
instead. Install pip using get-pip4 and then type:

pi@raspberrypi:~$ sudo pip3 install gpiozero

or for Python 2:

pi@raspberrypi:~$ sudo pip install gpiozero

To install GPIO Zero in a virtual environment, see the Development (page 67) page.

1 https://www.raspberrypi.org/downloads/raspbian/
2 https://www.raspberrypi.org/blog/pixel-pc-mac/
3 https://www.raspberrypi.org/downloads/
4 https://pip.pypa.io/en/stable/installing/

1

https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/blog/pixel-pc-mac/
https://www.raspberrypi.org/downloads/
https://pip.pypa.io/en/stable/installing/

Gpiozero Documentation, Release 1.4.0

PC/Mac

In order to use GPIO Zero’s remote GPIO feature from a PC or Mac, you’ll need to install GPIO Zero on that
computer using pip. See the Configuring Remote GPIO (page 35) page for more information.

2 Chapter 1. Installing GPIO Zero

CHAPTER 2

Basic Recipes

The following recipes demonstrate some of the capabilities of the GPIO Zero library. Please note that all recipes
are written assuming Python 3. Recipes may work under Python 2, but no guarantees!

Importing GPIO Zero

In Python, libraries and functions used in a script must be imported by name at the top of the file, with the
exception of the functions built into Python by default.

For example, to use the Button (page 69) interface from GPIO Zero, it should be explicitly imported:

from gpiozero import Button

Now Button (page 69) is available directly in your script:

button = Button(2)

Alternatively, the whole GPIO Zero library can be imported:

import gpiozero

In this case, all references to items within GPIO Zero must be prefixed:

button = gpiozero.Button(2)

Pin Numbering

This library uses Broadcom (BCM) pin numbering for the GPIO pins, as opposed to physical (BOARD) number-
ing. Unlike in the RPi.GPIO5 library, this is not configurable.

Any pin marked “GPIO” in the diagram below can be used as a pin number. For example, if an LED was attached
to “GPIO17” you would specify the pin number as 17 rather than 11:

5 https://pypi.python.org/pypi/RPi.GPIO

3

https://pypi.python.org/pypi/RPi.GPIO

Gpiozero Documentation, Release 1.4.0

3V3
Power

GPIO2
SDA I²C

GPIO3
SCL I²C

GPIO4

Ground

GPIO17

GPIO27

GPIO22

3V3
Power

GPIO10
SPI MOSI

GPIO9
SPI MISO

GPIO11
SPI SCLK

Ground

ID SD
I²C ID

GPIO5

GPIO6

GPIO13

GPIO19

GPIO26

Ground

5V
Power

5V
Power

Ground

GPIO14
UART0 TXD

GPIO15
UART0 RXD

GPIO18

Ground

GPIO23

GPIO24

Ground

GPIO25

GPIO8
SPI CE0

GPIO7
SPI CE1

ID SC
I²C ID

Ground

GPIO12

Ground

GPIO16

GPIO20

GPIO21

All Models

40-pin
models only

11

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

USB Ports

4 Chapter 2. Basic Recipes

Gpiozero Documentation, Release 1.4.0

LED

Turn an LED (page 81) on and off repeatedly:

from gpiozero import LED
from time import sleep

red = LED(17)

while True:
red.on()
sleep(1)
red.off()
sleep(1)

Alternatively:

from gpiozero import LED
from signal import pause

red = LED(17)

red.blink()

pause()

Note: Reaching the end of a Python script will terminate the process and GPIOs may be reset. Keep your script
alive with signal.pause()6. See How do I keep my script running? (page 61) for more information.

LED with variable brightness

Any regular LED can have its brightness value set using PWM (pulse-width-modulation). In GPIO Zero, this can
be achieved using PWMLED (page 82) using values between 0 and 1:

6 https://docs.python.org/3.5/library/signal.html#signal.pause

2.3. LED 5

https://docs.python.org/3.5/library/signal.html#signal.pause

Gpiozero Documentation, Release 1.4.0

from gpiozero import PWMLED
from time import sleep

led = PWMLED(17)

while True:
led.value = 0 # off
sleep(1)
led.value = 0.5 # half brightness
sleep(1)
led.value = 1 # full brightness
sleep(1)

Similarly to blinking on and off continuously, a PWMLED can pulse (fade in and out continuously):

from gpiozero import PWMLED
from signal import pause

led = PWMLED(17)

led.pulse()

pause()

Button

Check if a Button (page 69) is pressed:

from gpiozero import Button

button = Button(2)

while True:
if button.is_pressed:

print("Button is pressed")
else:

print("Button is not pressed")

6 Chapter 2. Basic Recipes

Gpiozero Documentation, Release 1.4.0

Wait for a button to be pressed before continuing:

from gpiozero import Button

button = Button(2)

button.wait_for_press()
print("Button was pressed")

Run a function every time the button is pressed:

from gpiozero import Button
from signal import pause

def say_hello():
print("Hello!")

button = Button(2)

button.when_pressed = say_hello

pause()

Note: Note that the line button.when_pressed = say_hello does not run the function say_hello,
rather it creates a reference to the function to be called when the button is pressed. Accidental use of button.
when_pressed = say_hello() would set the when_pressed action to None (the return value of this
function) which would mean nothing happens when the button is pressed.

Similarly, functions can be attached to button releases:

from gpiozero import Button
from signal import pause

def say_hello():
print("Hello!")

def say_goodbye():
print("Goodbye!")

button = Button(2)

button.when_pressed = say_hello
button.when_released = say_goodbye

pause()

2.5. Button 7

Gpiozero Documentation, Release 1.4.0

Button controlled LED

11

55

1010

1515

2020

2525

3030

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

R
asp

b
erry Pi M

od
el 2 v1.1

©
 R

asp
b

erry Pi 2014

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

Turn on an LED (page 81) when a Button (page 69) is pressed:

from gpiozero import LED, Button
from signal import pause

led = LED(17)
button = Button(2)

button.when_pressed = led.on
button.when_released = led.off

pause()

Alternatively:

from gpiozero import LED, Button
from signal import pause

led = LED(17)
button = Button(2)

led.source = button.values

pause()

Button controlled camera

Using the button press to trigger PiCamera7 to take a picture using button.when_pressed = camera.
capture would not work because the capture()8 method requires an output parameter. However, this can
be achieved using a custom function which requires no parameters:

7 https://picamera.readthedocs.io/en/latest/api_camera.html#picamera.PiCamera
8 https://picamera.readthedocs.io/en/latest/api_camera.html#picamera.PiCamera.capture

8 Chapter 2. Basic Recipes

https://picamera.readthedocs.io/en/latest/api_camera.html#picamera.PiCamera
https://picamera.readthedocs.io/en/latest/api_camera.html#picamera.PiCamera.capture

Gpiozero Documentation, Release 1.4.0

from gpiozero import Button
from picamera import PiCamera
from datetime import datetime
from signal import pause

button = Button(2)
camera = PiCamera()

def capture():
datetime = datetime.now().isoformat()
camera.capture('/home/pi/%s.jpg' % datetime)

button.when_pressed = capture

pause()

Another example could use one button to start and stop the camera preview, and another to capture:

from gpiozero import Button
from picamera import PiCamera
from datetime import datetime
from signal import pause

left_button = Button(2)
right_button = Button(3)
camera = PiCamera()

def capture():
datetime = datetime.now().isoformat()
camera.capture('/home/pi/%s.jpg' % datetime)

left_button.when_pressed = camera.start_preview
left_button.when_released = camera.stop_preview
right_button.when_pressed = capture

pause()

Shutdown button

The Button (page 69) class also provides the ability to run a function when the button has been held for a given
length of time. This example will shut down the Raspberry Pi when the button is held for 2 seconds:

from gpiozero import Button
from subprocess import check_call
from signal import pause

def shutdown():
check_call(['sudo', 'poweroff'])

shutdown_btn = Button(17, hold_time=2)
shutdown_btn.when_held = shutdown

pause()

LEDBoard

A collection of LEDs can be accessed using LEDBoard (page 105):

2.8. Shutdown button 9

Gpiozero Documentation, Release 1.4.0

from gpiozero import LEDBoard
from time import sleep
from signal import pause

leds = LEDBoard(5, 6, 13, 19, 26)

leds.on()
sleep(1)
leds.off()
sleep(1)
leds.value = (1, 0, 1, 0, 1)
sleep(1)
leds.blink()

pause()

Using LEDBoard (page 105) with pwm=True allows each LED’s brightness to be controlled:

from gpiozero import LEDBoard
from signal import pause

leds = LEDBoard(5, 6, 13, 19, 26, pwm=True)

leds.value = (0.2, 0.4, 0.6, 0.8, 1.0)

pause()

See more LEDBoard (page 105) examples in the advanced LEDBoard recipes (page 27).

LEDBarGraph

A collection of LEDs can be treated like a bar graph using LEDBarGraph (page 108):

from gpiozero import LEDBarGraph
from time import sleep

graph = LEDBarGraph(5, 6, 13, 19, 26, pwm=True)

graph.value = 1/10 # (0.5, 0, 0, 0, 0)
sleep(1)
graph.value = 3/10 # (1, 0.5, 0, 0, 0)
sleep(1)
graph.value = -3/10 # (0, 0, 0, 0.5, 1)
sleep(1)
graph.value = 9/10 # (1, 1, 1, 1, 0.5)
sleep(1)
graph.value = 95/100 # (1, 1, 1, 1, 0.75)
sleep(1)

Note values are essentially rounded to account for the fact LEDs can only be on or off when pwm=False (the
default).

However, using LEDBarGraph (page 108) with pwm=True allows more precise values using LED brightness:

from gpiozero import LEDBarGraph
from time import sleep

graph = LEDBarGraph(5, 6, 13, 19, 26, pwm=True)

graph.value = 1/10 # (0.5, 0, 0, 0, 0)

10 Chapter 2. Basic Recipes

Gpiozero Documentation, Release 1.4.0

sleep(1)
graph.value = 3/10 # (1, 0.5, 0, 0, 0)
sleep(1)
graph.value = -3/10 # (0, 0, 0, 0.5, 1)
sleep(1)
graph.value = 9/10 # (1, 1, 1, 1, 0.5)
sleep(1)
graph.value = 95/100 # (1, 1, 1, 1, 0.75)
sleep(1)

Traffic Lights

11

55

1010

1515

2020

2525

3030

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

R
asp

b
erry Pi M

od
el 2 v1.1

©
 R

asp
b

erry Pi 2014

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

A full traffic lights system.

Using a TrafficLights (page 111) kit like Pi-Stop:

from gpiozero import TrafficLights
from time import sleep

lights = TrafficLights(2, 3, 4)

lights.green.on()

while True:
sleep(10)
lights.green.off()
lights.amber.on()
sleep(1)
lights.amber.off()
lights.red.on()
sleep(10)
lights.amber.on()
sleep(1)

2.11. Traffic Lights 11

Gpiozero Documentation, Release 1.4.0

lights.green.on()
lights.amber.off()
lights.red.off()

Alternatively:

from gpiozero import TrafficLights
from time import sleep
from signal import pause

lights = TrafficLights(2, 3, 4)

def traffic_light_sequence():
while True:

yield (0, 0, 1) # green
sleep(10)
yield (0, 1, 0) # amber
sleep(1)
yield (1, 0, 0) # red
sleep(10)
yield (1, 1, 0) # red+amber
sleep(1)

lights.source = traffic_light_sequence()

pause()

Using LED (page 81) components:

from gpiozero import LED
from time import sleep

red = LED(2)
amber = LED(3)
green = LED(4)

green.on()
amber.off()
red.off()

while True:
sleep(10)
green.off()
amber.on()
sleep(1)
amber.off()
red.on()
sleep(10)
amber.on()
sleep(1)
green.on()
amber.off()
red.off()

Push button stop motion

Capture a picture with the camera module every time a button is pressed:

from gpiozero import Button
from picamera import PiCamera

12 Chapter 2. Basic Recipes

Gpiozero Documentation, Release 1.4.0

button = Button(2)
camera = PiCamera()

camera.start_preview()
frame = 1
while True:

button.wait_for_press()
camera.capture('/home/pi/frame%03d.jpg' % frame)
frame += 1

See Push Button Stop Motion9 for a full resource.

Reaction Game

11

55

1010

1515

2020

2525

3030

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

R
asp

b
erry Pi M

od
el 2 v1.1

©
 R

asp
b

erry Pi 2014

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io
USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

When you see the light come on, the first person to press their button wins!

from gpiozero import Button, LED
from time import sleep
import random

led = LED(17)

player_1 = Button(2)
player_2 = Button(3)

time = random.uniform(5, 10)
sleep(time)
led.on()

while True:
if player_1.is_pressed:

print("Player 1 wins!")
break

if player_2.is_pressed:

9 https://www.raspberrypi.org/learning/quick-reaction-game/

2.13. Reaction Game 13

https://www.raspberrypi.org/learning/quick-reaction-game/

Gpiozero Documentation, Release 1.4.0

print("Player 2 wins!")
break

led.off()

See Quick Reaction Game10 for a full resource.

GPIO Music Box

Each button plays a different sound!

from gpiozero import Button
import pygame.mixer
from pygame.mixer import Sound
from signal import pause

pygame.mixer.init()

button_sounds = {
Button(2): Sound("samples/drum_tom_mid_hard.wav"),
Button(3): Sound("samples/drum_cymbal_open.wav"),

}

for button, sound in button_sounds.items():
button.when_pressed = sound.play

pause()

See GPIO Music Box11 for a full resource.

All on when pressed

While the button is pressed down, the buzzer and all the lights come on.

FishDish (page 125):

from gpiozero import FishDish
from signal import pause

fish = FishDish()

fish.button.when_pressed = fish.on
fish.button.when_released = fish.off

pause()

Ryanteck TrafficHat (page 126):

from gpiozero import TrafficHat
from signal import pause

th = TrafficHat()

th.button.when_pressed = th.on
th.button.when_released = th.off

10 https://www.raspberrypi.org/learning/quick-reaction-game/
11 https://www.raspberrypi.org/learning/gpio-music-box/

14 Chapter 2. Basic Recipes

https://www.raspberrypi.org/learning/quick-reaction-game/
https://www.raspberrypi.org/learning/gpio-music-box/

Gpiozero Documentation, Release 1.4.0

pause()

Using LED (page 81), Buzzer (page 86), and Button (page 69) components:

from gpiozero import LED, Buzzer, Button
from signal import pause

button = Button(2)
buzzer = Buzzer(3)
red = LED(4)
amber = LED(5)
green = LED(6)

things = [red, amber, green, buzzer]

def things_on():
for thing in things:

thing.on()

def things_off():
for thing in things:

thing.off()

button.when_pressed = things_on
button.when_released = things_off

pause()

Full color LED

11

55

1010

1515

2020

2525

3030

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

R
asp

b
erry Pi M

od
el 2 v1.1

©
 R

asp
b

erry Pi 2014

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

Making colours with an RGBLED (page 84):

from gpiozero import RGBLED
from time import sleep

2.16. Full color LED 15

Gpiozero Documentation, Release 1.4.0

led = RGBLED(red=9, green=10, blue=11)

led.red = 1 # full red
sleep(1)
led.red = 0.5 # half red
sleep(1)

led.color = (0, 1, 0) # full green
sleep(1)
led.color = (1, 0, 1) # magenta
sleep(1)
led.color = (1, 1, 0) # yellow
sleep(1)
led.color = (0, 1, 1) # cyan
sleep(1)
led.color = (1, 1, 1) # white
sleep(1)

led.color = (0, 0, 0) # off
sleep(1)

slowly increase intensity of blue
for n in range(100):

led.blue = n/100
sleep(0.1)

Motion sensor

11

55

1010

1515

2020

2525

3030

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

R
asp

b
erry Pi M

od
el 2 v1.1

©
 R

asp
b

erry Pi 2014

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

Light an LED (page 81) when a MotionSensor (page 72) detects motion:

16 Chapter 2. Basic Recipes

Gpiozero Documentation, Release 1.4.0

from gpiozero import MotionSensor, LED
from signal import pause

pir = MotionSensor(4)
led = LED(16)

pir.when_motion = led.on
pir.when_no_motion = led.off

pause()

Light sensor

11

55

1010

1515

2020

2525

3030

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

R
asp

b
erry Pi M

od
el 2 v1.1

©
 R

asp
b

erry Pi 2014

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

Have a LightSensor (page 74) detect light and dark:

from gpiozero import LightSensor

sensor = LightSensor(18)

while True:
sensor.wait_for_light()
print("It's light! :)")
sensor.wait_for_dark()
print("It's dark :(")

Run a function when the light changes:

from gpiozero import LightSensor, LED
from signal import pause

sensor = LightSensor(18)
led = LED(16)

sensor.when_dark = led.on
sensor.when_light = led.off

2.18. Light sensor 17

Gpiozero Documentation, Release 1.4.0

pause()

Or make a PWMLED (page 82) change brightness according to the detected light level:

from gpiozero import LightSensor, PWMLED
from signal import pause

sensor = LightSensor(18)
led = PWMLED(16)

led.source = sensor.values

pause()

Distance sensor

Have a DistanceSensor (page 75) detect the distance to the nearest object:

from gpiozero import DistanceSensor
from time import sleep

sensor = DistanceSensor(23, 24)

while True:
print('Distance to nearest object is', sensor.distance, 'm')
sleep(1)

Run a function when something gets near the sensor:

from gpiozero import DistanceSensor, LED
from signal import pause

sensor = DistanceSensor(23, 24, max_distance=1, threshold_distance=0.2)
led = LED(16)

sensor.when_in_range = led.on
sensor.when_out_of_range = led.off

pause()

18 Chapter 2. Basic Recipes

Gpiozero Documentation, Release 1.4.0

Motors

11

55

1010

1515

2020

2525

3030

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

R
asp

b
erry Pi M

od
el 2 v1.1

©
 R

asp
b

erry Pi 2014

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d
io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

Spin a Motor (page 87) around forwards and backwards:

from gpiozero import Motor
from time import sleep

motor = Motor(forward=4, backward=14)

while True:
motor.forward()
sleep(5)
motor.backward()
sleep(5)

Robot

Make a Robot (page 126) drive around in (roughly) a square:

from gpiozero import Robot
from time import sleep

robot = Robot(left=(4, 14), right=(17, 18))

for i in range(4):
robot.forward()
sleep(10)
robot.right()
sleep(1)

Make a robot with a distance sensor that runs away when things get within 20cm of it:

from gpiozero import Robot, DistanceSensor
from signal import pause

sensor = DistanceSensor(23, 24, max_distance=1, threshold_distance=0.2)
robot = Robot(left=(4, 14), right=(17, 18))

sensor.when_in_range = robot.backward

2.20. Motors 19

Gpiozero Documentation, Release 1.4.0

sensor.when_out_of_range = robot.stop
pause()

Button controlled robot

Use four GPIO buttons as forward/back/left/right controls for a robot:

from gpiozero import Robot, Button
from signal import pause

robot = Robot(left=(4, 14), right=(17, 18))

left = Button(26)
right = Button(16)
fw = Button(21)
bw = Button(20)

fw.when_pressed = robot.forward
fw.when_released = robot.stop

left.when_pressed = robot.left
left.when_released = robot.stop

right.when_pressed = robot.right
right.when_released = robot.stop

bw.when_pressed = robot.backward
bw.when_released = robot.stop

pause()

Keyboard controlled robot

Use up/down/left/right keys to control a robot:

import curses
from gpiozero import Robot

robot = Robot(left=(4, 14), right=(17, 18))

actions = {
curses.KEY_UP: robot.forward,
curses.KEY_DOWN: robot.backward,
curses.KEY_LEFT: robot.left,
curses.KEY_RIGHT: robot.right,
}

def main(window):
next_key = None
while True:

curses.halfdelay(1)
if next_key is None:

key = window.getch()
else:

key = next_key
next_key = None

if key != -1:

20 Chapter 2. Basic Recipes

Gpiozero Documentation, Release 1.4.0

KEY DOWN
curses.halfdelay(3)
action = actions.get(key)
if action is not None:

action()
next_key = key
while next_key == key:

next_key = window.getch()
KEY UP
robot.stop()

curses.wrapper(main)

Note: This recipe uses the standard curses12 module. This module requires that Python is running in a terminal
in order to work correctly, hence this recipe will not work in environments like IDLE.

If you prefer a version that works under IDLE, the following recipe should suffice:

from gpiozero import Robot
from evdev import InputDevice, list_devices, ecodes

robot = Robot(left=(4, 14), right=(17, 18))

Get the list of available input devices
devices = [InputDevice(device) for device in list_devices()]
Filter out everything that's not a keyboard. Keyboards are defined as any
device which has keys, and which specifically has keys 1..31 (roughly Esc,
the numeric keys, the first row of QWERTY plus a few more) and which does
not have key 0 (reserved)
must_have = {i for i in range(1, 32)}
must_not_have = {0}
devices = [

dev
for dev in devices
for keys in (set(dev.capabilities().get(ecodes.EV_KEY, [])),)
if must_have.issubset(keys)
and must_not_have.isdisjoint(keys)

]
Pick the first keyboard
keyboard = devices[0]

keypress_actions = {
ecodes.KEY_UP: robot.forward,
ecodes.KEY_DOWN: robot.backward,
ecodes.KEY_LEFT: robot.left,
ecodes.KEY_RIGHT: robot.right,

}

for event in keyboard.read_loop():
if event.type == ecodes.EV_KEY and event.code in keypress_actions:

if event.value == 1: # key down
keypress_actions[event.code]()

if event.value == 0: # key up
robot.stop()

Note: This recipe uses the third-party evdev module. Install this library with sudo pip3 install evdev
first. Be aware that evdev will only work with local input devices; this recipe will not work over SSH.

12 https://docs.python.org/3.5/library/curses.html#module-curses

2.23. Keyboard controlled robot 21

https://docs.python.org/3.5/library/curses.html#module-curses

Gpiozero Documentation, Release 1.4.0

Motion sensor robot

Make a robot drive forward when it detects motion:

from gpiozero import Robot, MotionSensor
from signal import pause

robot = Robot(left=(4, 14), right=(17, 18))
pir = MotionSensor(5)

pir.when_motion = robot.forward
pir.when_no_motion = robot.stop

pause()

Alternatively:

from gpiozero import Robot, MotionSensor
from signal import pause

robot = Robot(left=(4, 14), right=(17, 18))
pir = MotionSensor(5)

robot.source = zip(pir.values, pir.values)

pause()

Potentiometer

1
1

5
5

10
10

15
15

20
20

25
25

30
30

A A

B B

C C

D D

E E

F F

G G

H H

I I

J J

R
asp

b
erry Pi M

od
el 2 v1.1

©
 R

asp
b

erry Pi 2014

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

MCP3008

22 Chapter 2. Basic Recipes

Gpiozero Documentation, Release 1.4.0

Continually print the value of a potentiometer (values between 0 and 1) connected to a MCP3008 (page 99) analog
to digital converter:

from gpiozero import MCP3008

pot = MCP3008(channel=0)

while True:
print(pot.value)

Present the value of a potentiometer on an LED bar graph using PWM to represent states that won’t “fill” an LED:

from gpiozero import LEDBarGraph, MCP3008
from signal import pause

graph = LEDBarGraph(5, 6, 13, 19, 26, pwm=True)
pot = MCP3008(channel=0)
graph.source = pot.values
pause()

Measure temperature with an ADC

Wire a TMP36 temperature sensor to the first channel of an MCP3008 (page 99) analog to digital converter:

from gpiozero import MCP3008
from time import sleep

def convert_temp(gen):
for value in gen:

yield (value * 3.3 - 0.5) * 100

adc = MCP3008(channel=0)

for temp in convert_temp(adc.values):
print('The temperature is', temp, 'C')
sleep(1)

Full color LED controlled by 3 potentiometers

Wire up three potentiometers (for red, green and blue) and use each of their values to make up the colour of the
LED:

from gpiozero import RGBLED, MCP3008

led = RGBLED(red=2, green=3, blue=4)
red_pot = MCP3008(channel=0)
green_pot = MCP3008(channel=1)
blue_pot = MCP3008(channel=2)

while True:
led.red = red_pot.value
led.green = green_pot.value
led.blue = blue_pot.value

Alternatively, the following example is identical, but uses the source (page 148) property rather than a while13

loop:

13 https://docs.python.org/3.5/reference/compound_stmts.html#while

2.26. Measure temperature with an ADC 23

https://docs.python.org/3.5/reference/compound_stmts.html#while

Gpiozero Documentation, Release 1.4.0

from gpiozero import RGBLED, MCP3008
from signal import pause

led = RGBLED(2, 3, 4)
red_pot = MCP3008(0)
green_pot = MCP3008(1)
blue_pot = MCP3008(2)

led.source = zip(red_pot.values, green_pot.values, blue_pot.values)

pause()

Note: Please note the example above requires Python 3. In Python 2, zip()14 doesn’t support lazy evaluation
so the script will simply hang.

Timed heat lamp

If you have a pet (e.g. a tortoise) which requires a heat lamp to be switched on for a certain amount of time each
day, you can use an Energenie Pi-mote15 to remotely control the lamp, and the TimeOfDay (page 141) class to
control the timing:

from gpiozero import Energenie, TimeOfDay
from datetime import time
from signal import pause

lamp = Energenie(1)
daytime = TimeOfDay(time(8), time(20))

lamp.source = daytime.values
lamp.source_delay = 60

pause()

Internet connection status indicator

You can use a pair of green and red LEDs to indicate whether or not your internet connection is working. Simply
use the PingServer (page 142) class to identify whether a ping to google.com is successful. If successful, the
green LED is lit, and if not, the red LED is lit:

from gpiozero import LED, PingServer
from gpiozero.tools import negated
from signal import pause

green = LED(17)
red = LED(18)

google = PingServer('google.com')

green.source = google.values
green.source_delay = 60
red.source = negated(green.values)

pause()

14 https://docs.python.org/3.5/library/functions.html#zip
15 https://energenie4u.co.uk/catalogue/product/ENER002-2PI

24 Chapter 2. Basic Recipes

https://docs.python.org/3.5/library/functions.html#zip
https://energenie4u.co.uk/catalogue/product/ENER002-2PI

Gpiozero Documentation, Release 1.4.0

CPU Temperature Bar Graph

You can read the Raspberry Pi’s own CPU temperature using the built-in CPUTemperature (page 142) class,
and display this on a “bar graph” of LEDs:

from gpiozero import LEDBarGraph, CPUTemperature
from signal import pause

cpu = CPUTemperature(min_temp=50, max_temp=90)
leds = LEDBarGraph(2, 3, 4, 5, 6, 7, 8, pwm=True)

leds.source = cpu.values

pause()

More recipes

Continue to:

• Advanced Recipes (page 27)

• Remote GPIO Recipes (page 43)

2.30. CPU Temperature Bar Graph 25

Gpiozero Documentation, Release 1.4.0

26 Chapter 2. Basic Recipes

CHAPTER 3

Advanced Recipes

The following recipes demonstrate some of the capabilities of the GPIO Zero library. Please note that all recipes
are written assuming Python 3. Recipes may work under Python 2, but no guarantees!

LEDBoard

You can iterate over the LEDs in a LEDBoard (page 105) object one-by-one:

from gpiozero import LEDBoard
from time import sleep

leds = LEDBoard(5, 6, 13, 19, 26)

for led in leds:
led.on()
sleep(1)
led.off()

LEDBoard (page 105) also supports indexing. This means you can access the individual LED (page 81) objects
using leds[i] where i is an integer from 0 up to (not including) the number of LEDs:

from gpiozero import LEDBoard
from time import sleep

leds = LEDBoard(2, 3, 4, 5, 6, 7, 8, 9)

leds[0].on() # first led on
sleep(1)
leds[7].on() # last led on
sleep(1)
leds[-1].off() # last led off
sleep(1)

This also means you can use slicing to access a subset of the LEDs:

from gpiozero import LEDBoard
from time import sleep

27

Gpiozero Documentation, Release 1.4.0

leds = LEDBoard(2, 3, 4, 5, 6, 7, 8, 9)

for led in leds[3:]: # leds 3 and onward
led.on()

sleep(1)
leds.off()

for led in leds[:2]: # leds 0 and 1
led.on()

sleep(1)
leds.off()

for led in leds[::2]: # even leds (0, 2, 4...)
led.on()

sleep(1)
leds.off()

for led in leds[1::2]: # odd leds (1, 3, 5...)
led.on()

sleep(1)
leds.off()

LEDBoard (page 105) objects can have their LED objects named upon construction. This means the individual
LEDs can be accessed by their name:

from gpiozero import LEDBoard
from time import sleep

leds = LEDBoard(red=2, green=3, blue=4)

leds.red.on()
sleep(1)
leds.green.on()
sleep(1)
leds.blue.on()
sleep(1)

LEDBoard (page 105) objects can also be nested within other LEDBoard (page 105) objects:

from gpiozero import LEDBoard
from time import sleep

leds = LEDBoard(red=LEDBoard(top=2, bottom=3), green=LEDBoard(top=4, bottom=5))

leds.red.on() ## both reds on
sleep(1)
leds.green.on() # both greens on
sleep(1)
leds.off() # all off
sleep(1)
leds.red.top.on() # top red on
sleep(1)
leds.green.bottom.on() # bottom green on
sleep(1)

Who’s home indicator

Using a number of green-red LED pairs, you can show the status of who’s home, according to which IP addresses
you can ping successfully. Note that this assumes each person’s mobile phone has a reserved IP address on the
home router.

28 Chapter 3. Advanced Recipes

Gpiozero Documentation, Release 1.4.0

from gpiozero import PingServer, LEDBoard
from gpiozero.tools import negated
from signal import pause

status = LEDBoard(
mum=LEDBoard(red=14, green=15),
dad=LEDBoard(red=17, green=18),
alice=LEDBoard(red=21, green=22)

)

statuses = {
PingServer('192.168.1.5'): status.mum,
PingServer('192.168.1.6'): status.dad,
PingServer('192.168.1.7'): status.alice,

}

for server, leds in statuses.items():
leds.green.source = server.values
leds.green.source_delay = 60
leds.red.source = negated(leds.green.values)

pause()

Alternatively, using the STATUS Zero16 board:

from gpiozero import PingServer, StatusZero
from gpiozero.tools import negated
from signal import pause

status = StatusZero('mum', 'dad', 'alice')

statuses = {
PingServer('192.168.1.5'): status.mum,
PingServer('192.168.1.6'): status.dad,
PingServer('192.168.1.7'): status.alice,

}

for server, leds in statuses.items():
leds.green.source = server.values
leds.green.source_delay = 60
leds.red.source = negated(leds.green.values)

pause()

Travis build LED indicator

Use LEDs to indicate the status of a Travis build. A green light means the tests are passing, a red light means the
build is broken:

from travispy import TravisPy
from gpiozero import LED
from gpiozero.tools import negated
from time import sleep
from signal import pause

def build_passed(repo='RPi-Distro/python-gpiozero', delay=3600):
t = TravisPy()
r = t.repo(repo)

16 https://thepihut.com/status

3.3. Travis build LED indicator 29

https://thepihut.com/status

Gpiozero Documentation, Release 1.4.0

while True:
yield r.last_build_state == 'passed'
sleep(delay) # Sleep an hour before hitting travis again

red = LED(12)
green = LED(16)

red.source = negated(green.values)
green.source = build_passed()
pause()

Note this recipe requires travispy17. Install with sudo pip3 install travispy.

Button controlled robot

Alternatively to the examples in the simple recipes, you can use four buttons to program the directions and add a
fifth button to process them in turn, like a Bee-Bot or Turtle robot.

from gpiozero import Button, Robot
from time import sleep
from signal import pause

robot = Robot((17, 18), (22, 23))

left = Button(2)
right = Button(3)
forward = Button(4)
backward = Button(5)
go = Button(6)

instructions = []

def add_instruction(btn):
instructions.append({

left: (-1, 1),
right: (1, -1),
forward: (1, 1),
backward: (-1, -1),

}[btn])

def do_instructions():
instructions.append((0, 0))
robot.source_delay = 0.5
robot.source = instructions
sleep(robot.source_delay * len(instructions))
del instructions[:]

go.when_pressed = do_instructions
for button in (left, right, forward, backward):

button.when_pressed = add_instruction

pause()

Robot controlled by 2 potentiometers

Use two potentiometers to control the left and right motor speed of a robot:

17 https://travispy.readthedocs.io/

30 Chapter 3. Advanced Recipes

https://travispy.readthedocs.io/

Gpiozero Documentation, Release 1.4.0

from gpiozero import Robot, MCP3008
from signal import pause

robot = Robot(left=(4, 14), right=(17, 18))

left = MCP3008(0)
right = MCP3008(1)

robot.source = zip(left.values, right.values)

pause()

Note: Please note the example above requires Python 3. In Python 2, zip()18 doesn’t support lazy evaluation
so the script will simply hang.

To include reverse direction, scale the potentiometer values from 0-1 to -1-1:

from gpiozero import Robot, MCP3008
from gpiozero.tools import scaled
from signal import pause

robot = Robot(left=(4, 14), right=(17, 18))

left = MCP3008(0)
right = MCP3008(1)

robot.source = zip(scaled(left.values, -1, 1), scaled(right.values, -1, 1))

pause()

BlueDot LED

BlueDot is a Python library an Android app which allows you to easily add Bluetooth control to your Raspberry
Pi project. A simple example to control a LED using the BlueDot app:

from bluedot import BlueDot
from gpiozero import LED

bd = BlueDot()
led = LED(17)

while True:
bd.wait_for_press()
led.on()
bd.wait_for_release()
led.off()

Note this recipe requires bluedot and the associated Android app. See the BlueDot documentation19 for instal-
lation instructions.

18 https://docs.python.org/3.5/library/functions.html#zip
19 https://bluedot.readthedocs.io/en/latest/index.html

3.6. BlueDot LED 31

https://docs.python.org/3.5/library/functions.html#zip
https://bluedot.readthedocs.io/en/latest/index.html

Gpiozero Documentation, Release 1.4.0

BlueDot robot

You can create a Bluetooth controlled robot which moves forward when the dot is pressed and stops when it is
released:

from bluedot import BlueDot
from gpiozero import Robot
from signal import pause

bd = BlueDot()
robot = Robot(left=(4, 14), right=(17, 18))

def move(pos):
if pos.top:

robot.forward(pos.distance)
elif pos.bottom:

robot.backward(pos.distance)
elif pos.left:

robot.left(pos.distance)
elif pos.right:

robot.right(pos.distance)

bd.when_pressed = move
bd.when_moved = move
bd.when_released = robot.stop

pause()

Or a more advanced example including controlling the robot’s speed and precise direction:

from gpiozero import Robot
from bluedot import BlueDot
from signal import pause

def pos_to_values(x, y):
left = y if x > 0 else y + x
right = y if x < 0 else y - x
return (clamped(left), clamped(right))

def clamped(v):
return max(-1, min(1, v))

def drive():
while True:

if bd.is_pressed:
x, y = bd.position.x, bd.position.y
yield pos_to_values(x, y)

else:
yield (0, 0)

robot = Robot(left=(4, 14), right=(17, 18))
bd = BlueDot()

robot.source = drive()

pause()

32 Chapter 3. Advanced Recipes

Gpiozero Documentation, Release 1.4.0

Controlling the Pi’s own LEDs

On certain models of Pi (specifically the model A+, B+, and 2B) it’s possible to control the power and activity
LEDs. This can be useful for testing GPIO functionality without the need to wire up your own LEDs (also useful
because the power and activity LEDs are “known good”).

Firstly you need to disable the usual triggers for the built-in LEDs. This can be done from the terminal with the
following commands:

$ echo none | sudo tee /sys/class/leds/led0/trigger
$ echo gpio | sudo tee /sys/class/leds/led1/trigger

Now you can control the LEDs with gpiozero like so:

from gpiozero import LED
from signal import pause

power = LED(35) # /sys/class/leds/led1
activity = LED(47) # /sys/class/leds/led0

activity.blink()
power.blink()
pause()

To revert the LEDs to their usual purpose you can either reboot your Pi or run the following commands:

$ echo mmc0 | sudo tee /sys/class/leds/led0/trigger
$ echo input | sudo tee /sys/class/leds/led1/trigger

Note: On the Pi Zero you can control the activity LED with this recipe, but there’s no separate power LED to
control (it’s also worth noting the activity LED is active low, so set active_high=False when constructing
your LED component).

On the original Pi 1 (model A or B), the activity LED can be controlled with GPIO16 (after disabling its trigger
as above) but the power LED is hard-wired on.

On the Pi 3B the LEDs are controlled by a GPIO expander which is not accessible from gpiozero (yet).

3.8. Controlling the Pi’s own LEDs 33

Gpiozero Documentation, Release 1.4.0

34 Chapter 3. Advanced Recipes

CHAPTER 4

Configuring Remote GPIO

GPIO Zero supports a number of different pin implementations (low-level pin libraries which deal with the GPIO
pins directly). By default, the RPi.GPIO20 library is used (assuming it is installed on your system), but you can
optionally specify one to use. For more information, see the API - Pins (page 163) documentation page.

One of the pin libraries supported, pigpio21, provides the ability to control GPIO pins remotely over the network,
which means you can use GPIO Zero to control devices connected to a Raspberry Pi on the network. You can do
this from another Raspberry Pi, or even from a PC.

See the Remote GPIO Recipes (page 43) page for examples on how remote pins can be used.

Preparing the Raspberry Pi

If you’re using Raspbian (desktop - not Raspbian Lite) then you have everything you need to use the remote GPIO
feature. If you’re using Raspbian Lite, or another distribution, you’ll need to install pigpio:

$ sudo apt install pigpio

Alternatively, pigpio is available from abyz.co.uk22.

You’ll need to launch the pigpio daemon on the Raspberry Pi to allow remote connections. You can do this in
three different ways. Most users will find the desktop method the easiest (and can skip to the next section).

Desktop

On the Raspbian desktop image, enable Remote GPIO in the Raspberry Pi configuration tool:

20 https://pypi.python.org/pypi/RPi.GPIO
21 http://abyz.co.uk/rpi/pigpio/python.html
22 http://abyz.co.uk/rpi/pigpio/download.html

35

https://pypi.python.org/pypi/RPi.GPIO
http://abyz.co.uk/rpi/pigpio/python.html
http://abyz.co.uk/rpi/pigpio/download.html

Gpiozero Documentation, Release 1.4.0

This will launch the pigpio daemon automatically.

Command-line: raspi-config

Alternatively, enter sudo raspi-config on the command line, and enable Remote GPIO. This will also
launch the pigpio daemon automatically.

Command-line: manual

Another option is to launch the pigpio daemon manually:

$ sudo pigpiod

This is for single-use and will not persist after a reboot. However, this method can be used to allow connections
from a specific IP address, using the -n flag. For example:

$ sudo pigpiod -n localhost # allow localhost only
$ sudo pigpiod -n 192.168.1.65 # allow 192.168.1.65 only
$ sudo pigpiod -n localhost -n 192.168.1.65 # allow localhost and 192.168.1.65 only

To automate running the daemon at boot time, run:

$ sudo systemctl enable pigpiod

36 Chapter 4. Configuring Remote GPIO

Gpiozero Documentation, Release 1.4.0

Preparing the control computer

If the control computer (the computer you’re running your Python code from) is a Raspberry Pi running Raspbian
(or a PC running Raspbian x86), then you have everything you need. If you’re using another Linux distribution,
Mac OS or Windows then you’ll need to install the pigpio Python library on the PC.

Raspberry Pi

First, update your repositories list:

$ sudo apt update

Then install GPIO Zero and the pigpio library for Python 3:

$ sudo apt install python3-gpiozero python3-pigpio

or Python 2:

$ sudo apt install python-gpiozero python-pigpio

Alternatively, install with pip:

$ sudo pip3 install gpiozero pigpio

or for Python 2:

$ sudo pip install gpiozero pigpio

Linux

First, update your distribution’s repositories list. For example:

$ sudo apt update

Then install pip for Python 3:

$ sudo apt install python3-pip

or Python 2:

$ sudo apt install python-pip

(Alternatively, install pip with get-pip23.)

Next, install GPIO Zero and pigpio for Python 3:

$ sudo pip3 install gpiozero pigpio

or Python 2:

$ sudo pip install gpiozero pigpio

23 https://pip.pypa.io/en/stable/installing/

4.2. Preparing the control computer 37

https://pip.pypa.io/en/stable/installing/

Gpiozero Documentation, Release 1.4.0

Mac OS

First, install pip. If you installed Python 3 using brew, you will already have pip. If not, install pip with get-pip24.

Next, install GPIO Zero and pigpio with pip:

$ pip3 install gpiozero pigpio

Or for Python 2:

$ pip install gpiozero pigpio

Windows

First, install pip by following this guide25. Next, install GPIO Zero and pigpio with pip:

C:\Users\user1> pip install gpiozero pigpio

Environment variables

The simplest way to use devices with remote pins is to set the PIGPIO_ADDR environment variable to the IP
address of the desired Raspberry Pi. You must run your Python script or launch your development environment
with the environment variable set using the command line. For example, one of the following:

$ PIGPIO_ADDR=192.168.1.3 python3 hello.py
$ PIGPIO_ADDR=192.168.1.3 python3
$ PIGPIO_ADDR=192.168.1.3 ipython3
$ PIGPIO_ADDR=192.168.1.3 idle3 &

If you are running this from a PC (not a Raspberry Pi) with gpiozero and the pigpio Python library installed, this
will work with no further configuration. However, if you are running this from a Raspberry Pi, you will also need
to ensure the default pin factory is set to PiGPIOFactory. If RPi.GPIO is installed, this will be selected as
the default pin factory, so either uninstall it, or use another environment variable to set it to PiGPIOFactory:

$ GPIOZERO_PIN_FACTORY=pigpio PIGPIO_ADDR=192.168.1.3 python3 hello.py

This usage will set the pin factory to PiGPIOFactory with a default host of 192.168.1.3. The pin factory
can be changed inline in the code, as seen in the following sections.

With this usage, you can write gpiozero code like you would on a Raspberry Pi, with no modifications needed.
For example:

from gpiozero import LED
from time import sleep

red = LED(17)

while True:
red.on()
sleep(1)
red.off()
sleep(1)

When run with:

24 https://pip.pypa.io/en/stable/installing/
25 https://www.raspberrypi.org/learning/using-pip-on-windows/worksheet/

38 Chapter 4. Configuring Remote GPIO

https://pip.pypa.io/en/stable/installing/
https://www.raspberrypi.org/learning/using-pip-on-windows/worksheet/

Gpiozero Documentation, Release 1.4.0

$ PIGPIO_ADDR=192.168.1.3 python3 led.py

will flash the LED connected to pin 17 of the Raspberry Pi with the IP address 192.168.1.3. And:

$ PIGPIO_ADDR=192.168.1.4 python3 led.py

will flash the LED connected to pin 17 of the Raspberry Pi with the IP address 192.168.1.4, without any code
changes, as long as the Raspberry Pi has the pigpio daemon running.

Note: When running code directly on a Raspberry Pi, any pin factory can be used (assuming the relevant library
is installed), but when a device is used remotely, only PiGPIOFactory can be used, as pigpio is the only pin
library which supports remote GPIO.

Pin objects

An alternative (or additional) method of configuring gpiozero objects to use remote pins is to create instances of
PiGPIOFactory objects, and use them when instantiating device objects. For example, with no environment
variables set:

from gpiozero import LED
from gpiozero.pins.pigpio import PiGPIOFactory
from time import sleep

factory = PiGPIOFactory(host='192.168.1.3')
led = LED(17, pin_factory=factory)

while True:
led.on()
sleep(1)
led.off()
sleep(1)

This allows devices on multiple Raspberry Pis to be used in the same script:

from gpiozero import LED
from gpiozero.pins.pigpio import PiGPIOFactory
from time import sleep

factory3 = PiGPIOFactory(host='192.168.1.3')
factory4 = PiGPIOFactory(host='192.168.1.4')
led_1 = LED(17, pin_factory=factory3)
led_2 = LED(17, pin_factory=factory4)

while True:
led_1.on()
led_2.off()
sleep(1)
led_1.off()
led_2.on()
sleep(1)

You can, of course, continue to create gpiozero device objects as normal, and create others using remote pins. For
example, if run on a Raspberry Pi, the following script will flash an LED on the controller Pi, and also on another
Pi on the network:

from gpiozero import LED
from gpiozero.pins.pigpio import PiGPIOFactory
from time import sleep

4.4. Pin objects 39

Gpiozero Documentation, Release 1.4.0

remote_factory = PiGPIOFactory(host='192.168.1.3')
led_1 = LED(17) # local pin
led_2 = LED(17, pin_factory=remote_factory) # remote pin

while True:
led_1.on()
led_2.off()
sleep(1)
led_1.off()
led_2.on()
sleep(1)

Alternatively, when run with the environment variables GPIOZERO_PIN_FACTORY=pigpio
PIGPIO_ADDR=192.168.1.3 set, the following script will behave exactly the same as the previous
one:

from gpiozero import LED
from gpiozero.pins.rpigpio import RPiGPIOFactory
from time import sleep

local_factory = RPiGPIOFactory()
led_1 = LED(17, pin_factory=local_factory) # local pin
led_2 = LED(17) # remote pin

while True:
led_1.on()
led_2.off()
sleep(1)
led_1.off()
led_2.on()
sleep(1)

Of course, multiple IP addresses can be used:

from gpiozero import LED
from gpiozero.pins.pigpio import PiGPIOFactory
from time import sleep

factory3 = PiGPIOFactory(host='192.168.1.3')
factory4 = PiGPIOFactory(host='192.168.1.4')

led_1 = LED(17) # local pin
led_2 = LED(17, pin_factory=factory3) # remote pin on one pi
led_3 = LED(17, pin_factory=factory4) # remote pin on another pi

while True:
led_1.on()
led_2.off()
led_3.on()
sleep(1)
led_1.off()
led_2.on()
led_3.off()
sleep(1)

Note that these examples use the LED (page 81) class, which takes a pin argument to initialise. Some classes,
particularly those representing HATs and other add-on boards, do not require their pin numbers to be specified.
However, it is still possible to use remote pins with these devices, either using environment variables, Device.
pin_factory, or the pin_factory keyword argument:

40 Chapter 4. Configuring Remote GPIO

Gpiozero Documentation, Release 1.4.0

import gpiozero
from gpiozero import TrafficHat
from gpiozero.pins.pigpio import PiGPIOFactory
from time import sleep

gpiozero.Device.pin_factory = PiGPIOFactory(host='192.168.1.3')
th = TrafficHat() # traffic hat on 192.168.1.3 using remote pins

This also allows you to swap between two IP addresses and create instances of multiple HATs connected to
different Pis:

import gpiozero
from gpiozero import TrafficHat
from gpiozero.pins.pigpio import PiGPIOFactory
from time import sleep

remote_factory = PiGPIOFactory(host='192.168.1.3')

th_1 = TrafficHat() # traffic hat using local pins
th_2 = TrafficHat(pin_factory=remote_factory) # traffic hat on 192.168.1.3 using
→˓remote pins

You could even use a HAT which is not supported by GPIO Zero (such as the Sense HAT26) on one Pi, and use
remote pins to control another over the network:

from gpiozero import MotionSensor
from gpiozero.pins.pigpio import PiGPIOFactory
from sense_hat import SenseHat

remote_factory = PiGPIOFactory(host='192.198.1.4')
pir = MotionSensor(4, pin_factory=remote_factory) # remote motion sensor
sense = SenseHat() # local sense hat

while True:
pir.wait_for_motion()
sense.show_message(sense.temperature)

Note that in this case, the Sense HAT code must be run locally, and the GPIO remotely.

Pi Zero USB OTG

The Raspberry Pi Zero27 and Pi Zero W28 feature a USB OTG port, allowing users to configure the device as
(amongst other things) an Ethernet device. In this mode, it is possible to control the Pi Zero’s GPIO pins over
USB from another computer using remote pins.

First, configure the boot partition of the SD card:

1. Edit config.txt and add dtoverlay=dwc2 on a new line, then save the file.

2. Create an empty file called ssh (no file extension) and save it in the boot partition.

3. Edit cmdline.txt and insert modules-load=dwc2,g_ether after rootwait.

(See guides on blog.gbaman.info29 and learn.adafruit.com30 for more detailed instructions)

Then connect the Pi Zero to your computer using a micro USB cable (connecting it to the USB port, not the power
port). You’ll see the indicator LED flashing as the Pi Zero boots. When it’s ready, you will be able to ping and

26 https://www.raspberrypi.org/products/sense-hat/
27 https://www.raspberrypi.org/products/raspberry-pi-zero/
28 https://www.raspberrypi.org/products/raspberry-pi-zero-w/
29 http://blog.gbaman.info/?p=791
30 https://learn.adafruit.com/turning-your-raspberry-pi-zero-into-a-usb-gadget/ethernet-gadget

4.5. Pi Zero USB OTG 41

https://www.raspberrypi.org/products/sense-hat/
https://www.raspberrypi.org/products/raspberry-pi-zero/
https://www.raspberrypi.org/products/raspberry-pi-zero-w/
http://blog.gbaman.info/?p=791
https://learn.adafruit.com/turning-your-raspberry-pi-zero-into-a-usb-gadget/ethernet-gadget

Gpiozero Documentation, Release 1.4.0

SSH into it using the hostname raspberrypi.local. SSH into the Pi Zero, install pigpio and run the pigpio
daemon.

Then, drop out of the SSH session and you can run Python code on your computer to control devices attached to
the Pi Zero, referencing it by its hostname (or IP address if you know it), for example:

$ GPIOZERO_PIN_FACTORY=pigpio PIGPIO_ADDR=raspberrypi.local python3 led.py

42 Chapter 4. Configuring Remote GPIO

CHAPTER 5

Remote GPIO Recipes

The following recipes demonstrate some of the capabilities of the remote GPIO feature of the GPIO Zero library.
Before you start following these examples, please read up on preparing your Pi and your host PC to work with
Configuring Remote GPIO (page 35).

Please note that all recipes are written assuming Python 3. Recipes may work under Python 2, but no guarantees!

LED + Button

Let a button on one Raspberry Pi control the LED of another:

from gpiozero import LED
from gpiozero.pins.pigpio import PiGPIOFactory
from signal import pause

factory = PiGPIOFactory(host='192.168.1.3')

button = Button(2)
led = LED(17, pin_factory=factory)

led.source = button.values

pause()

LED + 2 Buttons

The LED will come on when both buttons are pressed:

from gpiozero import LED
from gpiozero.pins.pigpio import PiGPIOFactory
from gpiozero.tools import all_values
from signal import pause

factory3 = PiGPIOFactory(host='192.168.1.3')
factory4 = PiGPIOFactory(host='192.168.1.4')

43

Gpiozero Documentation, Release 1.4.0

led = LED(17)
button_1 = Button(17, pin_factory=factory3)
button_2 = Button(17, pin_factory=factory4)

led.source = all_values(button_1.values, button_2.values)

pause()

Multi-room motion alert

Install a Raspberry Pi with a motion sensor in each room of your house, and have an LED indicator showing when
there’s motion in each room:

from gpiozero import LEDBoard, MotionSensor
from gpiozero.pins.pigpio import PiGPIOFactory
from signal import pause

ips = ['192.168.1.3', '192.168.1.4', '192.168.1.5', '192.168.1.6']
remotes = [PiGPIOFactory(host=ip) for ip in ips]

leds = LEDBoard(2, 3, 4, 5) # leds on this pi
sensors = [MotionSensor(17, pin_factory=r) for r in remotes] # remote sensors

for led, sensor in zip(leds, sensors):
led.source = sensor.values

pause()

Multi-room doorbell

Install a Raspberry Pi with a buzzer attached in each room you want to hear the doorbell, and use a push button as
the doorbell:

from gpiozero import LEDBoard, MotionSensor
from gpiozero.pins.pigpio import PiGPIOFactory
from signal import pause

ips = ['192.168.1.3', '192.168.1.4', '192.168.1.5', '192.168.1.6']
remotes = [PiGPIOFactory(host=ip) for ip in ips]

button = Button(17) # button on this pi
buzzers = [Buzzer(pin, pin_factory=r) for r in remotes] # buzzers on remote pins

for buzzer in buzzers:
buzzer.source = button.values

pause()

This could also be used as an internal doorbell (tell people it’s time for dinner from the kitchen).

Remote button robot

Similarly to the simple recipe for the button controlled robot, this example uses four buttons to control the direction
of a robot. However, using remote pins for the robot means the control buttons can be separate from the robot:

44 Chapter 5. Remote GPIO Recipes

Gpiozero Documentation, Release 1.4.0

from gpiozero import Button, Robot
from gpiozero.pins.pigpio import PiGPIOFactory
from signal import pause

factory = PiGPIOFactory(host='192.168.1.17')
robot = Robot(left=(4, 14), right=(17, 18), pin_factory=factory) # remote pins

local buttons
left = Button(26)
right = Button(16)
fw = Button(21)
bw = Button(20)

fw.when_pressed = robot.forward
fw.when_released = robot.stop

left.when_pressed = robot.left
left.when_released = robot.stop

right.when_pressed = robot.right
right.when_released = robot.stop

bw.when_pressed = robot.backward
bw.when_released = robot.stop

pause()

Light sensor + Sense HAT

The Sense HAT31 (not supported by GPIO Zero) includes temperature, humidity and pressure sensors, but no light
sensor. Remote GPIO allows an external light sensor to be used as well. The Sense HAT LED display can be used
to show different colours according to the light levels:

from gpiozero import LightSensor
from gpiozero.pins.pigpio import PiGPIOFactory
from sense_hat import SenseHat

remote_factory = PiGPIOFactory(host='192.168.1.4')
light = LightSensor(4, pin_factory=remote_factory) # remote motion sensor
sense = SenseHat() # local sense hat

blue = (0, 0, 255)
yellow = (255, 255, 0)

while True:
if light.value > 0.5:

sense.clear(yellow)
else:

sense.clear(blue)

Note that in this case, the Sense HAT code must be run locally, and the GPIO remotely.

31 https://www.raspberrypi.org/products/sense-hat/

5.6. Light sensor + Sense HAT 45

https://www.raspberrypi.org/products/sense-hat/

Gpiozero Documentation, Release 1.4.0

46 Chapter 5. Remote GPIO Recipes

CHAPTER 6

Source/Values

GPIO Zero provides a method of using the declarative programming paradigm to connect devices together: feeding
the values of one device into another, for example the values of a button into an LED:

from gpiozero import LED, Button
from signal import pause

led = LED(17)
button = Button(2)

led.source = button.values

pause()

which is equivalent to:

from gpiozero import LED, Button
from time import sleep

led = LED(17)
button = Button(2)

while True:
led.value = button.value
sleep(0.01)

Every device has a value (page 147) property (the device’s current value). Input devices can only have their
values read, but output devices can also have their value set to alter the state of the device:

>>> led = PWMLED(17)
>>> led.value # LED is initially off
0.0
>>> led.on() # LED is now on
>>> led.value
1.0
>>> led.value = 0 # LED is now off

Every device also has a values (page 148) property (a generator continuously yielding the device’s current
value). All output devices have a source (page 148) property which can be set to any iterator. The device will it-
erate over the values provided, setting the device’s value to each element at a rate specified in the source_delay

47

Gpiozero Documentation, Release 1.4.0

(page 148) property.

The most common use case for this is to set the source of an output device to the values of an input device, like
the example above. A more interesting example would be a potentiometer controlling the brightness of an LED:

from gpiozero import PWMLED, MCP3008
from signal import pause

led = PWMLED(17)
pot = MCP3008()

led.source = pot.values

pause()

It is also possible to set an output device’s source (page 148) to the values (page 148) of another output
device, to keep them matching:

from gpiozero import LED, Button
from signal import pause

red = LED(14)
green = LED(15)
button = Button(17)

red.source = button.values
green.source = red.values

pause()

The device’s values can also be processed before they are passed to the source:

For example:

48 Chapter 6. Source/Values

Gpiozero Documentation, Release 1.4.0

from gpiozero import Button, LED
from signal import pause

def opposite(values):
for value in values:

yield not value

led = LED(4)
btn = Button(17)

led.source = opposite(btn.values)

pause()

Alternatively, a custom generator can be used to provide values from an artificial source:

For example:

from gpiozero import LED
from random import randint
from signal import pause

def rand():
while True:

yield randint(0, 1)

led = LED(17)
led.source = rand()

pause()

If the iterator is infinite (i.e. an infinite generator), the elements will be processed until the source (page 148) is
changed or set to None.

If the iterator is finite (e.g. a list), this will terminate once all elements are processed (leaving the device’s value at
the final element):

from gpiozero import LED
from signal import pause

led = LED(17)
led.source = [1, 0, 1, 1, 1, 0, 0, 1, 0, 1]

pause()

49

Gpiozero Documentation, Release 1.4.0

Composite devices

Most devices have a value (page 147) range between 0 and 1. Some have a range between -1 and 1 (e.g. Motor
(page 87)). The value (page 147) of a composite device is a namedtuple of such values. For example, the Robot
(page 126) class:

>>> from gpiozero import Robot
>>> robot = Robot(left=(14, 15), right=(17, 18))
>>> robot.value
RobotValue(left_motor=0.0, right_motor=0.0)
>>> tuple(robot.value)
(0.0, 0.0)
>>> robot.forward()
>>> tuple(robot.value)
(1.0, 1.0)
>>> robot.backward()
>>> tuple(robot.value)
(-1.0, -1.0)
>>> robot.value = (1, 1) # robot is now driven forwards

Source Tools

GPIO Zero provides a set of ready-made functions for dealing with source/values, called source tools. These are
available by importing from gpiozero.tools (page 151).

Some of these source tools are artificial sources which require no input:

In this example, random values between 0 and 1 are passed to the LED, giving it a flickering candle effect:

from gpiozero import PWMLED
from gpiozero.tools import random_values
from signal import pause

led = PWMLED(4)
led.source = random_values()
led.source_delay = 0.1

pause()

Some tools take a single source and process its values:

50 Chapter 6. Source/Values

Gpiozero Documentation, Release 1.4.0

In this example, the LED is lit only when the button is not pressed:

from gpiozero import Button, LED
from gpiozero.tools import negated
from signal import pause

led = LED(4)
btn = Button(17)

led.source = negated(btn.values)

pause()

Some tools combine the values of multiple sources:

In this example, the LED is lit only if both buttons are pressed (like an AND32 gate):

from gpiozero import Button, LED
from gpiozero.tools import all_values
from signal import pause

button_a = Button(2)
button_b = Button(3)
led = LED(17)

led.source = all_values(button_a.values, button_b.values)

pause()

32 https://en.wikipedia.org/wiki/AND_gate

6.2. Source Tools 51

https://en.wikipedia.org/wiki/AND_gate

Gpiozero Documentation, Release 1.4.0

52 Chapter 6. Source/Values

CHAPTER 7

Command-line Tools

The gpiozero package contains a database of information about the various revisions of Raspberry Pi. This is
queried by the pinout command-line tool to output details of the GPIO pins available.

53

Gpiozero Documentation, Release 1.4.0

54 Chapter 7. Command-line Tools

Gpiozero Documentation, Release 1.4.0

pinout

7.1. pinout 55

Gpiozero Documentation, Release 1.4.0

Synopsis

pinout [-h] [-r REVISION] [-c] [-m]

Description

A utility for querying Raspberry Pi GPIO pin-out information. Running pinout on its own will output a board
diagram, and GPIO header diagram for the current Raspberry Pi. It is also possible to manually specify a revision
of Pi, or (by Configuring Remote GPIO (page 35)) to output information about a remote Pi.

Options

-h, --help
show this help message and exit

-r REVISION, --revision REVISION
RPi revision. Default is to autodetect revision of current device

-c, --color
Force colored output (by default, the output will include ANSI color codes if run in a color-capable termi-
nal). See also --monochrome (page 56)

-m, --monochrome
Force monochrome output. See also --color (page 56)

Examples

To output information about the current Raspberry Pi:

$ pinout

For a Raspberry Pi model 3B, this will output something like the following:

,--------------------------------.
| oooooooooooooooooooo J8 +====
| 1ooooooooooooooooooo | USB
| +====
| Pi Model 3B V1.1 |
| +----+ +====
| |D| |SoC | | USB
| |S| | | +====
| |I| +----+ |
| |C| +======
| |S| | Net
| pwr |HDMI| |I||A| +======
`-| |--------| |----|V|-------'

Revision : a02082
SoC : BCM2837
RAM : 1024Mb
Storage : MicroSD
USB ports : 4 (excluding power)
Ethernet ports : 1
Wi-fi : True
Bluetooth : True
Camera ports (CSI) : 1
Display ports (DSI): 1

J8:

56 Chapter 7. Command-line Tools

Gpiozero Documentation, Release 1.4.0

3V3 (1) (2) 5V
GPIO2 (3) (4) 5V
GPIO3 (5) (6) GND
GPIO4 (7) (8) GPIO14
GND (9) (10) GPIO15

GPIO17 (11) (12) GPIO18
GPIO27 (13) (14) GND
GPIO22 (15) (16) GPIO23

3V3 (17) (18) GPIO24
GPIO10 (19) (20) GND
GPIO9 (21) (22) GPIO25

GPIO11 (23) (24) GPIO8
GND (25) (26) GPIO7

GPIO0 (27) (28) GPIO1
GPIO5 (29) (30) GND
GPIO6 (31) (32) GPIO12

GPIO13 (33) (34) GND
GPIO19 (35) (36) GPIO16
GPIO26 (37) (38) GPIO20

GND (39) (40) GPIO21

By default, if stdout is a console that supports color, ANSI codes will be used to produce color output. Output can
be forced to be --monochrome (page 56):

$ pinout --monochrome

Or forced to be --color (page 56), in case you are redirecting to something capable of supporting ANSI codes:

$ pinout --color | less -SR

To manually specify the revision of Pi you want to query, use --revision (page 56). The tool understands both
old-style revision codes33 (such as for the model B):

$ pinout -r 000d

Or new-style revision codes34 (such as for the Pi Zero W):

$ pinout -r 9000c1

33 http://elinux.org/RPi_HardwareHistory
34 http://elinux.org/RPi_HardwareHistory

7.1. pinout 57

http://elinux.org/RPi_HardwareHistory
http://elinux.org/RPi_HardwareHistory

Gpiozero Documentation, Release 1.4.0

You can also use the tool with Configuring Remote GPIO (page 35) to query remote Raspberry Pi’s:

$ GPIOZERO_PIN_FACTORY=pigpio PIGPIO_ADDR=other_pi pinout

58 Chapter 7. Command-line Tools

Gpiozero Documentation, Release 1.4.0

Or run the tool directly on a PC using the mock pin implementation (although in this case you’ll almost certainly
want to specify the Pi revision manually):

$ GPIOZERO_PIN_FACTORY=mock pinout -r a22042

Environment Variables

GPIOZERO_PIN_FACTORY The library to use when communicating with the GPIO pins. Defaults to attempt-
ing to load RPi.GPIO, then RPIO, then pigpio, and finally uses a native Python implementation. Valid values
include “rpigpio”, “rpio”, “pigpio”, “native”, and “mock”. The latter is most useful on non-Pi platforms as
it emulates a Raspberry Pi model 3B (by default).

PIGPIO_ADDR The hostname of the Raspberry Pi the pigpio library should attempt to connect to (if the pigpio
pin factory is being used). Defaults to localhost.

PIGPIO_PORT The port number the pigpio library should attempt to connect to (if the pigpio pin factory is
being used). Defaults to 8888.

7.1. pinout 59

Gpiozero Documentation, Release 1.4.0

60 Chapter 7. Command-line Tools

CHAPTER 8

Frequently Asked Questions

How do I keep my script running?

The following script looks like it should turn an LED on:

from gpiozero import LED

led = LED(17)
led.on()

And it does, if you’re using the Python (or IPython or IDLE) shell. However, if you saved this script as a Python
file and ran it, it would flash on briefly, then the script would end and it would turn off.

The following file includes an intentional pause()35 to keep the script alive:

from gpiozero import LED
from signal import pause

led = LED(17)
led.on()

pause()

Now the script will stay running, leaving the LED on, until it is terminated manually (e.g. by pressing Ctrl+C).
Similarly, when setting up callbacks on button presses or other input devices, the script needs to be running for
the events to be detected:

from gpiozero import Button
from signal import pause

def hello():
print("Hello")

button = Button(2)
button.when_pressed = hello

pause()

35 https://docs.python.org/3.5/library/signal.html#signal.pause

61

https://docs.python.org/3.5/library/signal.html#signal.pause

Gpiozero Documentation, Release 1.4.0

My event handler isn’t being called?

When assigning event handlers, don’t call the function you’re assigning. For example:

from gpiozero import Button

def pushed():
print("Don't push the button!")

b = Button(17)
b.when_pressed = pushed()

In the case above, when assigning to when_pressed, the thing that is assigned is the result of calling the
pushed function. Because pushed doesn’t explicitly return anything, the result is None. Hence this is equiva-
lent to doing:

b.when_pressed = None

This doesn’t raise an error because it’s perfectly valid: it’s what you assign when you don’t want the event handler
to do anything. Instead, you want to do the following:

b.when_pressed = pushed

This will assign the function to the event handler without calling it. This is the crucial difference between
my_function (a reference to a function) and my_function() (the result of calling a function).

Why do I get PinFactoryFallback warnings when I import gpiozero?

You are most likely working in a virtual Python environment and have forgotten to install a pin driver library
like RPi.GPIO. GPIO Zero relies upon lower level pin drivers to handle interfacing to the GPIO pins on the
Raspberry Pi, so you can eliminate the warning simply by installing GPIO Zero’s first preference:

$ pip install rpi.gpio

When GPIO Zero is imported it attempts to find a pin driver by importing them in a preferred order (detailed in API
- Pins (page 163)). If it fails to load its first preference (RPi.GPIO) it notifies you with a warning, then falls back
to trying its second preference and so on. Eventually it will fall back all the way to the native implementation.
This is a pure Python implementation built into GPIO Zero itself. While this will work for most things it’s almost
certainly not what you want (it doesn’t support PWM, and it’s quite slow at certain things).

If you want to use a pin driver other than the default, and you want to suppress the warnings you’ve got a couple
of options:

1. Explicitly specify what pin driver you want via an environment variable. For example:

$ GPIOZERO_PIN_FACTORY=pigpio python3

In this case no warning is issued because there’s no fallback; either the specified factory loads or it fails in
which case an ImportError36 will be raised.

2. Suppress the warnings and let the fallback mechanism work:

>>> import warnings
>>> warnings.simplefilter('ignore')
>>> import gpiozero

Refer to the warnings37 module documentation for more refined ways to filter out specific warning
classes.

36 https://docs.python.org/3.5/library/exceptions.html#ImportError
37 https://docs.python.org/3.5/library/warnings.html#module-warnings

62 Chapter 8. Frequently Asked Questions

https://docs.python.org/3.5/library/exceptions.html#ImportError
https://docs.python.org/3.5/library/warnings.html#module-warnings

Gpiozero Documentation, Release 1.4.0

How can I tell what version of gpiozero I have installed?

The gpiozero library relies on the setuptools package for installation services. You can use the setuptools
pkg_resources API to query which version of gpiozero is available in your Python environment like so:

>>> from pkg_resources import require
>>> require('gpiozero')
[gpiozero 1.4.0 (/usr/lib/python3/dist-packages)]
>>> require('gpiozero')[0].version
'1.4.0'

If you have multiple versions installed (e.g. from pip and apt) they will not show up in the list returned by the
require method. However, the first entry in the list will be the version that import gpiozero will import.

If you receive the error No module named pkg_resources, you need to install pip. This can be done
with the following command in Raspbian:

$ sudo apt install python3-pip

Alternatively, install pip with get-pip38.

38 https://pip.pypa.io/en/stable/installing/

8.4. How can I tell what version of gpiozero I have installed? 63

https://pip.pypa.io/en/stable/installing/

Gpiozero Documentation, Release 1.4.0

64 Chapter 8. Frequently Asked Questions

CHAPTER 9

Contributing

Contributions to the library are welcome! Here are some guidelines to follow.

Suggestions

Please make suggestions for additional components or enhancements to the codebase by opening an issue39 ex-
plaining your reasoning clearly.

Bugs

Please submit bug reports by opening an issue40 explaining the problem clearly using code examples.

Documentation

The documentation source lives in the docs41 folder. Contributions to the documentation are welcome but should
be easy to read and understand.

Commit messages and pull requests

Commit messages should be concise but descriptive, and in the form of a patch description, i.e. instructional not
past tense (“Add LED example” not “Added LED example”).

Commits which close (or intend to close) an issue should include the phrase “fix #123” or “close #123” where
#123 is the issue number, as well as include a short description, for example: “Add LED example, close #123”,
and pull requests should aim to match or closely match the corresponding issue title.

39 https://github.com/RPi-Distro/python-gpiozero/issues
40 https://github.com/RPi-Distro/python-gpiozero/issues
41 https://github.com/RPi-Distro/python-gpiozero/tree/master/docs

65

https://github.com/RPi-Distro/python-gpiozero/issues
https://github.com/RPi-Distro/python-gpiozero/issues
https://github.com/RPi-Distro/python-gpiozero/tree/master/docs

Gpiozero Documentation, Release 1.4.0

Backwards compatibility

Since this library reached v1.0 we aim to maintain backwards-compatibility thereafter. Changes which break
backwards-compatibility will not be accepted.

Python 2/3

The library is 100% compatible with both Python 2 and 3. We intend to drop Python 2 support in 2020 when
Python 2 reaches end-of-life42.

42 http://legacy.python.org/dev/peps/pep-0373/

66 Chapter 9. Contributing

http://legacy.python.org/dev/peps/pep-0373/

CHAPTER 10

Development

The main GitHub repository for the project can be found at:

https://github.com/RPi-Distro/python-gpiozero

For anybody wishing to hack on the project, we recommend starting off by getting to grips with some simple de-
vice classes. Pick something like LED (page 81) and follow its heritage backward to DigitalOutputDevice
(page 92). Follow that back to OutputDevice (page 95) and you should have a good understanding of simple
output devices along with a grasp of how GPIO Zero relies fairly heavily upon inheritance to refine the function-
ality of devices. The same can be done for input devices, and eventually more complex devices (composites and
SPI based).

Development installation

If you wish to develop GPIO Zero itself, we recommend obtaining the source by cloning the GitHub repository
and then use the “develop” target of the Makefile which will install the package as a link to the cloned repository
allowing in-place development (it also builds a tags file for use with vim/emacs with Exuberant’s ctags utility).
The following example demonstrates this method within a virtual Python environment:

$ sudo apt install lsb-release build-essential git git-core \
> exuberant-ctags virtualenvwrapper python-virtualenv python3-virtualenv \
> python-dev python3-dev
$ cd
$ mkvirtualenv -p /usr/bin/python3 python-gpiozero
$ workon python-gpiozero
(python-gpiozero) $ git clone https://github.com/RPi-Distro/python-gpiozero.git
(python-gpiozero) $ cd python-gpiozero
(python-gpiozero) $ make develop

You will likely wish to install one or more pin implementations within the virtual environment (if you don’t, GPIO
Zero will use the “native” pin implementation which is largely experimental at this stage and not very useful):

(python-gpiozero) $ pip install rpi.gpio pigpio

If you are working on SPI devices you may also wish to install the spidev package to provide hardware SPI
capabilities (again, GPIO Zero will work without this, but a big-banging software SPI implementation will be used
instead):

67

https://github.com/RPi-Distro/python-gpiozero

Gpiozero Documentation, Release 1.4.0

(python-gpiozero) $ pip install spidev

To pull the latest changes from git into your clone and update your installation:

$ workon python-gpiozero
(python-gpiozero) $ cd ~/python-gpiozero
(python-gpiozero) $ git pull
(python-gpiozero) $ make develop

To remove your installation, destroy the sandbox and the clone:

(python-gpiozero) $ deactivate
$ rmvirtualenv python-gpiozero
$ rm -fr ~/python-gpiozero

Building the docs

If you wish to build the docs, you’ll need a few more dependencies. Inkscape is used for conversion of SVGs to
other formats, Graphviz is used for rendering certain charts, and TeX Live is required for building PDF output.
The following command should install all required dependencies:

$ sudo apt install texlive-latex-recommended texlive-latex-extra \
texlive-fonts-recommended graphviz inkscape

Once these are installed, you can use the “doc” target to build the documentation:

$ workon python-gpiozero
(python-gpiozero) $ cd ~/python-gpiozero
(python-gpiozero) $ make doc

The HTML output is written to docs/_build/html while the PDF output goes to docs/_build/latex.

Test suite

If you wish to run the GPIO Zero test suite, follow the instructions in Development installation (page 67) above
and then make the “test” target within the sandbox:

$ workon python-gpiozero
(python-gpiozero) $ cd ~/python-gpiozero
(python-gpiozero) $ make test

The test suite expects pins 22 and 27 (by default) to be wired together in order to run the “real” pin tests. The pins
used by the test suite can be overridden with the environment variables GPIOZERO_TEST_PIN (defaults to 22)
and GPIOZERO_TEST_INPUT_PIN (defaults to 27).

Warning: When wiring GPIOs together, ensure a load (like a 330Ω resistor) is placed between them. Failure
to do so may lead to blown GPIO pins (your humble author has a fried GPIO27 as a result of such laziness,
although it did take many runs of the test suite before this occurred!).

68 Chapter 10. Development

CHAPTER 11

API - Input Devices

These input device component interfaces have been provided for simple use of everyday components. Components
must be wired up correctly before use in code.

Note: All GPIO pin numbers use Broadcom (BCM) numbering. See the Basic Recipes (page 3) page for more
information.

Button

class gpiozero.Button(pin, *, pull_up=True, bounce_time=None, hold_time=1, hold_repeat=False,
pin_factory=None)

Extends DigitalInputDevice (page 77) and represents a simple push button or switch.

Connect one side of the button to a ground pin, and the other to any GPIO pin. Alternatively, connect one
side of the button to the 3V3 pin, and the other to any GPIO pin, then set pull_up to False in the Button
(page 69) constructor.

The following example will print a line of text when the button is pushed:

from gpiozero import Button

button = Button(4)
button.wait_for_press()
print("The button was pressed!")

Parameters

• pin (int43) – The GPIO pin which the button is attached to. See Pin Numbering
(page 3) for valid pin numbers.

• pull_up (bool44) – If True (the default), the GPIO pin will be pulled high by de-
fault. In this case, connect the other side of the button to ground. If False, the GPIO
pin will be pulled low by default. In this case, connect the other side of the button to
3V3.

43 https://docs.python.org/3.5/library/functions.html#int
44 https://docs.python.org/3.5/library/functions.html#bool

69

https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bool

Gpiozero Documentation, Release 1.4.0

• bounce_time (float45) – If None (the default), no software bounce compensation
will be performed. Otherwise, this is the length of time (in seconds) that the component
will ignore changes in state after an initial change.

• hold_time (float46) – The length of time (in seconds) to wait after the button is
pushed, until executing the when_held (page 70) handler. Defaults to 1.

• hold_repeat (bool47) – If True, the when_held (page 70) handler will be re-
peatedly executed as long as the device remains active, every hold_time seconds. If
False (the default) the when_held (page 70) handler will be only be executed once
per hold.

• pin_factory (Factory (page 166)) – See API - Pins (page 163) for more informa-
tion (this is an advanced feature which most users can ignore).

wait_for_press(timeout=None)
Pause the script until the device is activated, or the timeout is reached.

Parameters timeout (float48) – Number of seconds to wait before proceeding. If this
is None (the default), then wait indefinitely until the device is active.

wait_for_release(timeout=None)
Pause the script until the device is deactivated, or the timeout is reached.

Parameters timeout (float49) – Number of seconds to wait before proceeding. If this
is None (the default), then wait indefinitely until the device is inactive.

held_time
The length of time (in seconds) that the device has been held for. This is counted from the first
execution of the when_held (page 70) event rather than when the device activated, in contrast to
active_time (page 149). If the device is not currently held, this is None.

hold_repeat
If True, when_held (page 70) will be executed repeatedly with hold_time (page 70) seconds
between each invocation.

hold_time
The length of time (in seconds) to wait after the device is activated, until executing the when_held
(page 70) handler. If hold_repeat (page 70) is True, this is also the length of time between invo-
cations of when_held (page 70).

is_held
When True, the device has been active for at least hold_time (page 70) seconds.

is_pressed
Returns True if the device is currently active and False otherwise. This property is usually derived
from value. Unlike value, this is always a boolean.

pin
The Pin (page 167) that the device is connected to. This will be None if the device has been closed
(see the close() method). When dealing with GPIO pins, query pin.number to discover the
GPIO pin (in BCM numbering) that the device is connected to.

pull_up
If True, the device uses a pull-up resistor to set the GPIO pin “high” by default.

when_held
The function to run when the device has remained active for hold_time (page 70) seconds.

45 https://docs.python.org/3.5/library/functions.html#float
46 https://docs.python.org/3.5/library/functions.html#float
47 https://docs.python.org/3.5/library/functions.html#bool
48 https://docs.python.org/3.5/library/functions.html#float
49 https://docs.python.org/3.5/library/functions.html#float

70 Chapter 11. API - Input Devices

https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float

Gpiozero Documentation, Release 1.4.0

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated will be passed as that parameter.

Set this property to None (the default) to disable the event.

when_pressed
The function to run when the device changes state from inactive to active.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated will be passed as that parameter.

Set this property to None (the default) to disable the event.

when_released
The function to run when the device changes state from active to inactive.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that deactivated will be passed as that parameter.

Set this property to None (the default) to disable the event.

Line Sensor (TRCT5000)

class gpiozero.LineSensor(pin, *, queue_len=5, sample_rate=100, threshold=0.5, partial=False,
pin_factory=None)

Extends SmoothedInputDevice (page 78) and represents a single pin line sensor like the TCRT5000
infra-red proximity sensor found in the CamJam #3 EduKit50.

A typical line sensor has a small circuit board with three pins: VCC, GND, and OUT. VCC should be
connected to a 3V3 pin, GND to one of the ground pins, and finally OUT to the GPIO specified as the value
of the pin parameter in the constructor.

The following code will print a line of text indicating when the sensor detects a line, or stops detecting a
line:

from gpiozero import LineSensor
from signal import pause

sensor = LineSensor(4)
sensor.when_line = lambda: print('Line detected')
sensor.when_no_line = lambda: print('No line detected')
pause()

Parameters

• pin (int51) – The GPIO pin which the sensor is attached to. See Pin Numbering
(page 3) for valid pin numbers.

• queue_len (int52) – The length of the queue used to store values read from the
sensor. This defaults to 5.

• sample_rate (float53) – The number of values to read from the device (and ap-
pend to the internal queue) per second. Defaults to 100.

50 http://camjam.me/?page_id=1035
51 https://docs.python.org/3.5/library/functions.html#int
52 https://docs.python.org/3.5/library/functions.html#int
53 https://docs.python.org/3.5/library/functions.html#float

11.2. Line Sensor (TRCT5000) 71

http://camjam.me/?page_id=1035
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#float

Gpiozero Documentation, Release 1.4.0

• threshold (float54) – Defaults to 0.5. When the mean of all values in the internal
queue rises above this value, the sensor will be considered “active” by the is_active
(page 79) property, and all appropriate events will be fired.

• partial (bool55) – When False (the default), the object will not return a value for
is_active (page 79) until the internal queue has filled with values. Only set this to
True if you require values immediately after object construction.

• pin_factory (Factory (page 166)) – See API - Pins (page 163) for more informa-
tion (this is an advanced feature which most users can ignore).

wait_for_line(timeout=None)
Pause the script until the device is deactivated, or the timeout is reached.

Parameters timeout (float56) – Number of seconds to wait before proceeding. If this
is None (the default), then wait indefinitely until the device is inactive.

wait_for_no_line(timeout=None)
Pause the script until the device is activated, or the timeout is reached.

Parameters timeout (float57) – Number of seconds to wait before proceeding. If this
is None (the default), then wait indefinitely until the device is active.

pin
The Pin (page 167) that the device is connected to. This will be None if the device has been closed
(see the close() method). When dealing with GPIO pins, query pin.number to discover the
GPIO pin (in BCM numbering) that the device is connected to.

when_line
The function to run when the device changes state from active to inactive.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that deactivated will be passed as that parameter.

Set this property to None (the default) to disable the event.

when_no_line
The function to run when the device changes state from inactive to active.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated will be passed as that parameter.

Set this property to None (the default) to disable the event.

Motion Sensor (D-SUN PIR)

class gpiozero.MotionSensor(pin, *, queue_len=1, sample_rate=10, threshold=0.5, par-
tial=False, pin_factory=None)

Extends SmoothedInputDevice (page 78) and represents a passive infra-red (PIR) motion sensor like
the sort found in the CamJam #2 EduKit58.

A typical PIR device has a small circuit board with three pins: VCC, OUT, and GND. VCC should be
connected to a 5V pin, GND to one of the ground pins, and finally OUT to the GPIO specified as the value
of the pin parameter in the constructor.

The following code will print a line of text when motion is detected:

54 https://docs.python.org/3.5/library/functions.html#float
55 https://docs.python.org/3.5/library/functions.html#bool
56 https://docs.python.org/3.5/library/functions.html#float
57 https://docs.python.org/3.5/library/functions.html#float
58 http://camjam.me/?page_id=623

72 Chapter 11. API - Input Devices

https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
http://camjam.me/?page_id=623

Gpiozero Documentation, Release 1.4.0

from gpiozero import MotionSensor

pir = MotionSensor(4)
pir.wait_for_motion()
print("Motion detected!")

Parameters

• pin (int59) – The GPIO pin which the sensor is attached to. See Pin Numbering
(page 3) for valid pin numbers.

• queue_len (int60) – The length of the queue used to store values read from the
sensor. This defaults to 1 which effectively disables the queue. If your motion sensor is
particularly “twitchy” you may wish to increase this value.

• sample_rate (float61) – The number of values to read from the device (and ap-
pend to the internal queue) per second. Defaults to 100.

• threshold (float62) – Defaults to 0.5. When the mean of all values in the internal
queue rises above this value, the sensor will be considered “active” by the is_active
(page 79) property, and all appropriate events will be fired.

• partial (bool63) – When False (the default), the object will not return a value for
is_active (page 79) until the internal queue has filled with values. Only set this to
True if you require values immediately after object construction.

• pin_factory (Factory (page 166)) – See API - Pins (page 163) for more informa-
tion (this is an advanced feature which most users can ignore).

wait_for_motion(timeout=None)
Pause the script until the device is activated, or the timeout is reached.

Parameters timeout (float64) – Number of seconds to wait before proceeding. If this
is None (the default), then wait indefinitely until the device is active.

wait_for_no_motion(timeout=None)
Pause the script until the device is deactivated, or the timeout is reached.

Parameters timeout (float65) – Number of seconds to wait before proceeding. If this
is None (the default), then wait indefinitely until the device is inactive.

motion_detected
Returns True if the device is currently active and False otherwise.

pin
The Pin (page 167) that the device is connected to. This will be None if the device has been closed
(see the close() method). When dealing with GPIO pins, query pin.number to discover the
GPIO pin (in BCM numbering) that the device is connected to.

when_motion
The function to run when the device changes state from inactive to active.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated will be passed as that parameter.

Set this property to None (the default) to disable the event.

59 https://docs.python.org/3.5/library/functions.html#int
60 https://docs.python.org/3.5/library/functions.html#int
61 https://docs.python.org/3.5/library/functions.html#float
62 https://docs.python.org/3.5/library/functions.html#float
63 https://docs.python.org/3.5/library/functions.html#bool
64 https://docs.python.org/3.5/library/functions.html#float
65 https://docs.python.org/3.5/library/functions.html#float

11.3. Motion Sensor (D-SUN PIR) 73

https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float

Gpiozero Documentation, Release 1.4.0

when_no_motion
The function to run when the device changes state from active to inactive.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that deactivated will be passed as that parameter.

Set this property to None (the default) to disable the event.

Light Sensor (LDR)

class gpiozero.LightSensor(pin, *, queue_len=5, charge_time_limit=0.01, threshold=0.1, par-
tial=False, pin_factory=None)

Extends SmoothedInputDevice (page 78) and represents a light dependent resistor (LDR).

Connect one leg of the LDR to the 3V3 pin; connect one leg of a 1µF capacitor to a ground pin; connect
the other leg of the LDR and the other leg of the capacitor to the same GPIO pin. This class repeatedly
discharges the capacitor, then times the duration it takes to charge (which will vary according to the light
falling on the LDR).

The following code will print a line of text when light is detected:

from gpiozero import LightSensor

ldr = LightSensor(18)
ldr.wait_for_light()
print("Light detected!")

Parameters

• pin (int66) – The GPIO pin which the sensor is attached to. See Pin Numbering
(page 3) for valid pin numbers.

• queue_len (int67) – The length of the queue used to store values read from the
circuit. This defaults to 5.

• charge_time_limit (float68) – If the capacitor in the circuit takes longer than
this length of time to charge, it is assumed to be dark. The default (0.01 seconds) is
appropriate for a 1µF capacitor coupled with the LDR from the CamJam #2 EduKit69.
You may need to adjust this value for different valued capacitors or LDRs.

• threshold (float70) – Defaults to 0.1. When the mean of all values in the internal
queue rises above this value, the area will be considered “light”, and all appropriate
events will be fired.

• partial (bool71) – When False (the default), the object will not return a value for
is_active (page 79) until the internal queue has filled with values. Only set this to
True if you require values immediately after object construction.

• pin_factory (Factory (page 166)) – See API - Pins (page 163) for more informa-
tion (this is an advanced feature which most users can ignore).

wait_for_dark(timeout=None)
Pause the script until the device is deactivated, or the timeout is reached.

66 https://docs.python.org/3.5/library/functions.html#int
67 https://docs.python.org/3.5/library/functions.html#int
68 https://docs.python.org/3.5/library/functions.html#float
69 http://camjam.me/?page_id=623
70 https://docs.python.org/3.5/library/functions.html#float
71 https://docs.python.org/3.5/library/functions.html#bool

74 Chapter 11. API - Input Devices

https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#float
http://camjam.me/?page_id=623
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#bool

Gpiozero Documentation, Release 1.4.0

Parameters timeout (float72) – Number of seconds to wait before proceeding. If this
is None (the default), then wait indefinitely until the device is inactive.

wait_for_light(timeout=None)
Pause the script until the device is activated, or the timeout is reached.

Parameters timeout (float73) – Number of seconds to wait before proceeding. If this
is None (the default), then wait indefinitely until the device is active.

light_detected
Returns True if the device is currently active and False otherwise.

pin
The Pin (page 167) that the device is connected to. This will be None if the device has been closed
(see the close() method). When dealing with GPIO pins, query pin.number to discover the
GPIO pin (in BCM numbering) that the device is connected to.

when_dark
The function to run when the device changes state from active to inactive.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that deactivated will be passed as that parameter.

Set this property to None (the default) to disable the event.

when_light
The function to run when the device changes state from inactive to active.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated will be passed as that parameter.

Set this property to None (the default) to disable the event.

Distance Sensor (HC-SR04)

class gpiozero.DistanceSensor(echo, trigger, *, queue_len=30, max_distance=1, thresh-
old_distance=0.3, partial=False, pin_factory=None)

Extends SmoothedInputDevice (page 78) and represents an HC-SR04 ultrasonic distance sensor, as
found in the CamJam #3 EduKit74.

The distance sensor requires two GPIO pins: one for the trigger (marked TRIG on the sensor) and another
for the echo (marked ECHO on the sensor). However, a voltage divider is required to ensure the 5V from
the ECHO pin doesn’t damage the Pi. Wire your sensor according to the following instructions:

1.Connect the GND pin of the sensor to a ground pin on the Pi.

2.Connect the TRIG pin of the sensor a GPIO pin.

3.Connect a 330Ω resistor from the ECHO pin of the sensor to a different GPIO pin.

4.Connect a 470Ω resistor from ground to the ECHO GPIO pin. This forms the required voltage divider.

5.Finally, connect the VCC pin of the sensor to a 5V pin on the Pi.

The following code will periodically report the distance measured by the sensor in cm assuming the TRIG
pin is connected to GPIO17, and the ECHO pin to GPIO18:

from gpiozero import DistanceSensor
from time import sleep

72 https://docs.python.org/3.5/library/functions.html#float
73 https://docs.python.org/3.5/library/functions.html#float
74 http://camjam.me/?page_id=1035

11.5. Distance Sensor (HC-SR04) 75

https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
http://camjam.me/?page_id=1035

Gpiozero Documentation, Release 1.4.0

sensor = DistanceSensor(echo=18, trigger=17)
while True:

print('Distance: ', sensor.distance * 100)
sleep(1)

Parameters

• echo (int75) – The GPIO pin which the ECHO pin is attached to. See Pin Numbering
(page 3) for valid pin numbers.

• trigger (int76) – The GPIO pin which the TRIG pin is attached to. See Pin Num-
bering (page 3) for valid pin numbers.

• queue_len (int77) – The length of the queue used to store values read from the
sensor. This defaults to 30.

• max_distance (float78) – The value attribute reports a normalized value be-
tween 0 (too close to measure) and 1 (maximum distance). This parameter specifies the
maximum distance expected in meters. This defaults to 1.

• threshold_distance (float79) – Defaults to 0.3. This is the distance (in meters)
that will trigger the in_range and out_of_range events when crossed.

• partial (bool80) – When False (the default), the object will not return a value for
is_active (page 79) until the internal queue has filled with values. Only set this to
True if you require values immediately after object construction.

• pin_factory (Factory (page 166)) – See API - Pins (page 163) for more informa-
tion (this is an advanced feature which most users can ignore).

wait_for_in_range(timeout=None)
Pause the script until the device is deactivated, or the timeout is reached.

Parameters timeout (float81) – Number of seconds to wait before proceeding. If this
is None (the default), then wait indefinitely until the device is inactive.

wait_for_out_of_range(timeout=None)
Pause the script until the device is activated, or the timeout is reached.

Parameters timeout (float82) – Number of seconds to wait before proceeding. If this
is None (the default), then wait indefinitely until the device is active.

distance
Returns the current distance measured by the sensor in meters. Note that this property will have a
value between 0 and max_distance (page 76).

echo
Returns the Pin (page 167) that the sensor’s echo is connected to. This is simply an alias for the usual
pin attribute.

max_distance
The maximum distance that the sensor will measure in meters. This value is specified in the constructor
and is used to provide the scaling for the value attribute. When distance (page 76) is equal to
max_distance (page 76), value will be 1.

threshold_distance
The distance, measured in meters, that will trigger the when_in_range (page 77) and

75 https://docs.python.org/3.5/library/functions.html#int
76 https://docs.python.org/3.5/library/functions.html#int
77 https://docs.python.org/3.5/library/functions.html#int
78 https://docs.python.org/3.5/library/functions.html#float
79 https://docs.python.org/3.5/library/functions.html#float
80 https://docs.python.org/3.5/library/functions.html#bool
81 https://docs.python.org/3.5/library/functions.html#float
82 https://docs.python.org/3.5/library/functions.html#float

76 Chapter 11. API - Input Devices

https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float

Gpiozero Documentation, Release 1.4.0

when_out_of_range (page 77) events when crossed. This is simply a meter-scaled variant of
the usual threshold attribute.

trigger
Returns the Pin (page 167) that the sensor’s trigger is connected to.

when_in_range
The function to run when the device changes state from active to inactive.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that deactivated will be passed as that parameter.

Set this property to None (the default) to disable the event.

when_out_of_range
The function to run when the device changes state from inactive to active.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated will be passed as that parameter.

Set this property to None (the default) to disable the event.

Base Classes

The classes in the sections above are derived from a series of base classes, some of which are effectively abstract.
The classes form the (partial) hierarchy displayed in the graph below (abstract classes are shaded lighter than
concrete classes):

Device GPIODevice

SmoothedInputDevice

InputDevice

DigitalInputDevice

Button

MotionSensor

LightSensor

LineSensor

DistanceSensor

The following sections document these base classes for advanced users that wish to construct classes for their own
devices.

DigitalInputDevice

class gpiozero.DigitalInputDevice(pin, *, pull_up=False, bounce_time=None,
pin_factory=None)

Represents a generic input device with typical on/off behaviour.

11.6. Base Classes 77

Gpiozero Documentation, Release 1.4.0

This class extends InputDevice (page 79) with machinery to fire the active and inactive events for
devices that operate in a typical digital manner: straight forward on / off states with (reasonably) clean
transitions between the two.

Parameters

• bounce_time (float83) – Specifies the length of time (in seconds) that the compo-
nent will ignore changes in state after an initial change. This defaults to None which
indicates that no bounce compensation will be performed.

• pin_factory (Factory (page 166)) – See API - Pins (page 163) for more informa-
tion (this is an advanced feature which most users can ignore).

SmoothedInputDevice

class gpiozero.SmoothedInputDevice(pin, *, pull_up=False, threshold=0.5, queue_len=5, sam-
ple_wait=0.0, partial=False, pin_factory=None)

Represents a generic input device which takes its value from the mean of a queue of historical values.

This class extends InputDevice (page 79) with a queue which is filled by a background thread which
continually polls the state of the underlying device. The mean of the values in the queue is compared to a
threshold which is used to determine the state of the is_active (page 79) property.

Note: The background queue is not automatically started upon construction. This is to allow descendents
to set up additional components before the queue starts reading values. Effectively this is an abstract base
class.

This class is intended for use with devices which either exhibit analog behaviour (such as the charging time
of a capacitor with an LDR), or those which exhibit “twitchy” behaviour (such as certain motion sensors).

Parameters

• threshold (float84) – The value above which the device will be considered “on”.

• queue_len (int85) – The length of the internal queue which is filled by the back-
ground thread.

• sample_wait (float86) – The length of time to wait between retrieving the state
of the underlying device. Defaults to 0.0 indicating that values are retrieved as fast as
possible.

• partial (bool87) – If False (the default), attempts to read the state of the device
(from the is_active (page 79) property) will block until the queue has filled. If
True, a value will be returned immediately, but be aware that this value is likely to
fluctuate excessively.

• pin_factory (Factory (page 166)) – See API - Pins (page 163) for more informa-
tion (this is an advanced feature which most users can ignore).

close()
Shut down the device and release all associated resources. This method can be called on an already
closed device without raising an exception.

This method is primarily intended for interactive use at the command line. It disables the device and
releases its pin(s) for use by another device.

83 https://docs.python.org/3.5/library/functions.html#float
84 https://docs.python.org/3.5/library/functions.html#float
85 https://docs.python.org/3.5/library/functions.html#int
86 https://docs.python.org/3.5/library/functions.html#float
87 https://docs.python.org/3.5/library/functions.html#bool

78 Chapter 11. API - Input Devices

https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#bool

Gpiozero Documentation, Release 1.4.0

You can attempt to do this simply by deleting an object, but unless you’ve cleaned up all references
to the object this may not work (even if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By contrast, the close method provides
a means of ensuring that the object is shut down.

For example, if you have a breadboard with a buzzer connected to pin 16, but then wish to attach an
LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device (page 147) descendents can also be used as context managers using the with88 statement.
For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

is_active
Returns True if the device is currently active and False otherwise.

partial
If False (the default), attempts to read the value (page 79) or is_active (page 79) properties
will block until the queue has filled.

queue_len
The length of the internal queue of values which is averaged to determine the overall state of the
device. This defaults to 5.

threshold
If value (page 79) exceeds this amount, then is_active (page 79) will return True.

value
Returns the mean of the values in the internal queue. This is compared to threshold (page 79) to
determine whether is_active (page 79) is True.

InputDevice

class gpiozero.InputDevice(pin, *, pull_up=False, pin_factory=None)
Represents a generic GPIO input device.

This class extends GPIODevice (page 80) to add facilities common to GPIO input devices. The construc-
tor adds the optional pull_up parameter to specify how the pin should be pulled by the internal resistors. The
is_active property is adjusted accordingly so that True still means active regardless of the pull_up
(page 80) setting.

Parameters

• pin (int89) – The GPIO pin (in Broadcom numbering) that the device is connected to.
If this is None a GPIODeviceError (page 178) will be raised.

88 https://docs.python.org/3.5/reference/compound_stmts.html#with
89 https://docs.python.org/3.5/library/functions.html#int

11.9. InputDevice 79

https://docs.python.org/3.5/reference/compound_stmts.html#with
https://docs.python.org/3.5/library/functions.html#int

Gpiozero Documentation, Release 1.4.0

• pull_up (bool90) – If True, the pin will be pulled high with an internal resistor. If
False (the default), the pin will be pulled low.

• pin_factory (Factory (page 166)) – See API - Pins (page 163) for more informa-
tion (this is an advanced feature which most users can ignore).

pull_up
If True, the device uses a pull-up resistor to set the GPIO pin “high” by default.

GPIODevice

class gpiozero.GPIODevice(pin, pin_factory=None)
Extends Device (page 147). Represents a generic GPIO device and provides the services common to all
single-pin GPIO devices (like ensuring two GPIO devices do no share a pin (page 80)).

Parameters pin (int91) – The GPIO pin (in BCM numbering) that the device is connected to.
If this is None, GPIOPinMissing (page 178) will be raised. If the pin is already in use
by another device, GPIOPinInUse (page 178) will be raised.

close()
Shut down the device and release all associated resources. This method can be called on an already
closed device without raising an exception.

This method is primarily intended for interactive use at the command line. It disables the device and
releases its pin(s) for use by another device.

You can attempt to do this simply by deleting an object, but unless you’ve cleaned up all references
to the object this may not work (even if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By contrast, the close method provides
a means of ensuring that the object is shut down.

For example, if you have a breadboard with a buzzer connected to pin 16, but then wish to attach an
LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device (page 147) descendents can also be used as context managers using the with92 statement.
For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

pin
The Pin (page 167) that the device is connected to. This will be None if the device has been closed
(see the close() (page 80) method). When dealing with GPIO pins, query pin.number to dis-
cover the GPIO pin (in BCM numbering) that the device is connected to.

90 https://docs.python.org/3.5/library/functions.html#bool
91 https://docs.python.org/3.5/library/functions.html#int
92 https://docs.python.org/3.5/reference/compound_stmts.html#with

80 Chapter 11. API - Input Devices

https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/reference/compound_stmts.html#with

CHAPTER 12

API - Output Devices

These output device component interfaces have been provided for simple use of everyday components. Compo-
nents must be wired up correctly before use in code.

Note: All GPIO pin numbers use Broadcom (BCM) numbering. See the Basic Recipes (page 3) page for more
information.

LED

class gpiozero.LED(pin, *, active_high=True, initial_value=False, pin_factory=None)
Extends DigitalOutputDevice (page 92) and represents a light emitting diode (LED).

Connect the cathode (short leg, flat side) of the LED to a ground pin; connect the anode (longer leg) to a
limiting resistor; connect the other side of the limiting resistor to a GPIO pin (the limiting resistor can be
placed either side of the LED).

The following example will light the LED:

from gpiozero import LED

led = LED(17)
led.on()

Parameters

• pin (int93) – The GPIO pin which the LED is attached to. See Pin Numbering
(page 3) for valid pin numbers.

• active_high (bool94) – If True (the default), the LED will operate normally with
the circuit described above. If False you should wire the cathode to the GPIO pin, and
the anode to a 3V3 pin (via a limiting resistor).

93 https://docs.python.org/3.5/library/functions.html#int
94 https://docs.python.org/3.5/library/functions.html#bool

81

https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bool

Gpiozero Documentation, Release 1.4.0

• initial_value (bool95) – If False (the default), the LED will be off initially. If
None, the LED will be left in whatever state the pin is found in when configured for
output (warning: this can be on). If True, the LED will be switched on initially.

• pin_factory (Factory (page 166)) – See API - Pins (page 163) for more informa-
tion (this is an advanced feature which most users can ignore).

blink(on_time=1, off_time=1, n=None, background=True)
Make the device turn on and off repeatedly.

Parameters

• on_time (float96) – Number of seconds on. Defaults to 1 second.

• off_time (float97) – Number of seconds off. Defaults to 1 second.

• n (int98) – Number of times to blink; None (the default) means forever.

• background (bool99) – If True (the default), start a background thread to con-
tinue blinking and return immediately. If False, only return when the blink is fin-
ished (warning: the default value of n will result in this method never returning).

off()
Turns the device off.

on()
Turns the device on.

toggle()
Reverse the state of the device. If it’s on, turn it off; if it’s off, turn it on.

is_lit
Returns True if the device is currently active and False otherwise. This property is usually derived
from value. Unlike value, this is always a boolean.

pin
The Pin (page 167) that the device is connected to. This will be None if the device has been closed
(see the close() method). When dealing with GPIO pins, query pin.number to discover the
GPIO pin (in BCM numbering) that the device is connected to.

PWMLED

class gpiozero.PWMLED(pin, *, active_high=True, initial_value=0, frequency=100,
pin_factory=None)

Extends PWMOutputDevice (page 93) and represents a light emitting diode (LED) with variable bright-
ness.

A typical configuration of such a device is to connect a GPIO pin to the anode (long leg) of the LED, and
the cathode (short leg) to ground, with an optional resistor to prevent the LED from burning out.

Parameters

• pin (int100) – The GPIO pin which the LED is attached to. See Pin Numbering
(page 3) for valid pin numbers.

• active_high (bool101) – If True (the default), the on() (page 83) method will set
the GPIO to HIGH. If False, the on() (page 83) method will set the GPIO to LOW
(the off() (page 83) method always does the opposite).

95 https://docs.python.org/3.5/library/functions.html#bool
96 https://docs.python.org/3.5/library/functions.html#float
97 https://docs.python.org/3.5/library/functions.html#float
98 https://docs.python.org/3.5/library/functions.html#int
99 https://docs.python.org/3.5/library/functions.html#bool

100 https://docs.python.org/3.5/library/functions.html#int
101 https://docs.python.org/3.5/library/functions.html#bool

82 Chapter 12. API - Output Devices

https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bool

Gpiozero Documentation, Release 1.4.0

• initial_value (float102) – If 0 (the default), the LED will be off initially. Other
values between 0 and 1 can be specified as an initial brightness for the LED. Note that
None cannot be specified (unlike the parent class) as there is no way to tell PWM not
to alter the state of the pin.

• frequency (int103) – The frequency (in Hz) of pulses emitted to drive the LED.
Defaults to 100Hz.

• pin_factory (Factory (page 166)) – See API - Pins (page 163) for more informa-
tion (this is an advanced feature which most users can ignore).

blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, n=None, background=True)
Make the device turn on and off repeatedly.

Parameters

• on_time (float104) – Number of seconds on. Defaults to 1 second.

• off_time (float105) – Number of seconds off. Defaults to 1 second.

• fade_in_time (float106) – Number of seconds to spend fading in. Defaults to 0.

• fade_out_time (float107) – Number of seconds to spend fading out. Defaults
to 0.

• n (int108) – Number of times to blink; None (the default) means forever.

• background (bool109) – If True (the default), start a background thread to con-
tinue blinking and return immediately. If False, only return when the blink is fin-
ished (warning: the default value of n will result in this method never returning).

off()
Turns the device off.

on()
Turns the device on.

pulse(fade_in_time=1, fade_out_time=1, n=None, background=True)
Make the device fade in and out repeatedly.

Parameters

• fade_in_time (float110) – Number of seconds to spend fading in. Defaults to 1.

• fade_out_time (float111) – Number of seconds to spend fading out. Defaults
to 1.

• n (int112) – Number of times to pulse; None (the default) means forever.

• background (bool113) – If True (the default), start a background thread to con-
tinue pulsing and return immediately. If False, only return when the pulse is finished
(warning: the default value of n will result in this method never returning).

toggle()
Toggle the state of the device. If the device is currently off (value (page 84) is 0.0), this changes it
to “fully” on (value (page 84) is 1.0). If the device has a duty cycle (value (page 84)) of 0.1, this
will toggle it to 0.9, and so on.

102 https://docs.python.org/3.5/library/functions.html#float
103 https://docs.python.org/3.5/library/functions.html#int
104 https://docs.python.org/3.5/library/functions.html#float
105 https://docs.python.org/3.5/library/functions.html#float
106 https://docs.python.org/3.5/library/functions.html#float
107 https://docs.python.org/3.5/library/functions.html#float
108 https://docs.python.org/3.5/library/functions.html#int
109 https://docs.python.org/3.5/library/functions.html#bool
110 https://docs.python.org/3.5/library/functions.html#float
111 https://docs.python.org/3.5/library/functions.html#float
112 https://docs.python.org/3.5/library/functions.html#int
113 https://docs.python.org/3.5/library/functions.html#bool

12.2. PWMLED 83

https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bool

Gpiozero Documentation, Release 1.4.0

is_lit
Returns True if the device is currently active (value (page 84) is non-zero) and False otherwise.

pin
The Pin (page 167) that the device is connected to. This will be None if the device has been closed
(see the close() method). When dealing with GPIO pins, query pin.number to discover the
GPIO pin (in BCM numbering) that the device is connected to.

value
The duty cycle of the PWM device. 0.0 is off, 1.0 is fully on. Values in between may be specified for
varying levels of power in the device.

RGBLED

class gpiozero.RGBLED(red, green, blue, *, active_high=True, initial_value=(0, 0, 0), pwm=True,
pin_factory=None)

Extends Device (page 147) and represents a full color LED component (composed of red, green, and blue
LEDs).

Connect the common cathode (longest leg) to a ground pin; connect each of the other legs (representing the
red, green, and blue anodes) to any GPIO pins. You can either use three limiting resistors (one per anode)
or a single limiting resistor on the cathode.

The following code will make the LED purple:

from gpiozero import RGBLED

led = RGBLED(2, 3, 4)
led.color = (1, 0, 1)

Parameters

• red (int114) – The GPIO pin that controls the red component of the RGB LED.

• green (int115) – The GPIO pin that controls the green component of the RGB LED.

• blue (int116) – The GPIO pin that controls the blue component of the RGB LED.

• active_high (bool117) – Set to True (the default) for common cathode RGB
LEDs. If you are using a common anode RGB LED, set this to False.

• initial_value (tuple118) – The initial color for the RGB LED. Defaults to black
(0, 0, 0).

• pwm (bool119) – If True (the default), construct PWMLED (page 82) instances for
each component of the RGBLED. If False, construct regular LED (page 81) instances,
which prevents smooth color graduations.

• pin_factory (Factory (page 166)) – See API - Pins (page 163) for more informa-
tion (this is an advanced feature which most users can ignore).

blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, on_color=(1, 1, 1),
off_color=(0, 0, 0), n=None, background=True)

Make the device turn on and off repeatedly.

Parameters
114 https://docs.python.org/3.5/library/functions.html#int
115 https://docs.python.org/3.5/library/functions.html#int
116 https://docs.python.org/3.5/library/functions.html#int
117 https://docs.python.org/3.5/library/functions.html#bool
118 https://docs.python.org/3.5/library/stdtypes.html#tuple
119 https://docs.python.org/3.5/library/functions.html#bool

84 Chapter 12. API - Output Devices

https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/stdtypes.html#tuple
https://docs.python.org/3.5/library/functions.html#bool

Gpiozero Documentation, Release 1.4.0

• on_time (float120) – Number of seconds on. Defaults to 1 second.

• off_time (float121) – Number of seconds off. Defaults to 1 second.

• fade_in_time (float122) – Number of seconds to spend fading in. Defaults to 0.
Must be 0 if pwm was False when the class was constructed (ValueError123 will
be raised if not).

• fade_out_time (float124) – Number of seconds to spend fading out. Defaults
to 0. Must be 0 if pwm was False when the class was constructed (ValueError125

will be raised if not).

• on_color (tuple126) – The color to use when the LED is “on”. Defaults to white.

• off_color (tuple127) – The color to use when the LED is “off”. Defaults to black.

• n (int128) – Number of times to blink; None (the default) means forever.

• background (bool129) – If True (the default), start a background thread to con-
tinue blinking and return immediately. If False, only return when the blink is fin-
ished (warning: the default value of n will result in this method never returning).

off()
Turn the LED off. This is equivalent to setting the LED color to black (0, 0, 0).

on()
Turn the LED on. This equivalent to setting the LED color to white (1, 1, 1).

pulse(fade_in_time=1, fade_out_time=1, on_color=(1, 1, 1), off_color=(0, 0, 0), n=None, back-
ground=True)

Make the device fade in and out repeatedly.

Parameters

• fade_in_time (float130) – Number of seconds to spend fading in. Defaults to 1.

• fade_out_time (float131) – Number of seconds to spend fading out. Defaults
to 1.

• on_color (tuple132) – The color to use when the LED is “on”. Defaults to white.

• off_color (tuple133) – The color to use when the LED is “off”. Defaults to black.

• n (int134) – Number of times to pulse; None (the default) means forever.

• background (bool135) – If True (the default), start a background thread to con-
tinue pulsing and return immediately. If False, only return when the pulse is finished
(warning: the default value of n will result in this method never returning).

toggle()
Toggle the state of the device. If the device is currently off (value is (0, 0, 0)), this changes it
to “fully” on (value is (1, 1, 1)). If the device has a specific color, this method inverts the color.

120 https://docs.python.org/3.5/library/functions.html#float
121 https://docs.python.org/3.5/library/functions.html#float
122 https://docs.python.org/3.5/library/functions.html#float
123 https://docs.python.org/3.5/library/exceptions.html#ValueError
124 https://docs.python.org/3.5/library/functions.html#float
125 https://docs.python.org/3.5/library/exceptions.html#ValueError
126 https://docs.python.org/3.5/library/stdtypes.html#tuple
127 https://docs.python.org/3.5/library/stdtypes.html#tuple
128 https://docs.python.org/3.5/library/functions.html#int
129 https://docs.python.org/3.5/library/functions.html#bool
130 https://docs.python.org/3.5/library/functions.html#float
131 https://docs.python.org/3.5/library/functions.html#float
132 https://docs.python.org/3.5/library/stdtypes.html#tuple
133 https://docs.python.org/3.5/library/stdtypes.html#tuple
134 https://docs.python.org/3.5/library/functions.html#int
135 https://docs.python.org/3.5/library/functions.html#bool

12.3. RGBLED 85

https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/exceptions.html#ValueError
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/exceptions.html#ValueError
https://docs.python.org/3.5/library/stdtypes.html#tuple
https://docs.python.org/3.5/library/stdtypes.html#tuple
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/stdtypes.html#tuple
https://docs.python.org/3.5/library/stdtypes.html#tuple
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bool

Gpiozero Documentation, Release 1.4.0

color
Represents the color of the LED as an RGB 3-tuple of (red, green, blue) where each value is
between 0 and 1 if pwm was True when the class was constructed (and only 0 or 1 if not).

For example, purple would be (1, 0, 1) and yellow would be (1, 1, 0), while orange would
be (1, 0.5, 0).

is_lit
Returns True if the LED is currently active (not black) and False otherwise.

Buzzer

class gpiozero.Buzzer(pin, *, active_high=True, initial_value=False, pin_factory=None)
Extends DigitalOutputDevice (page 92) and represents a digital buzzer component.

Connect the cathode (negative pin) of the buzzer to a ground pin; connect the other side to any GPIO pin.

The following example will sound the buzzer:

from gpiozero import Buzzer

bz = Buzzer(3)
bz.on()

Parameters

• pin (int136) – The GPIO pin which the buzzer is attached to. See Pin Numbering
(page 3) for valid pin numbers.

• active_high (bool137) – If True (the default), the buzzer will operate normally
with the circuit described above. If False you should wire the cathode to the GPIO
pin, and the anode to a 3V3 pin.

• initial_value (bool138) – If False (the default), the buzzer will be silent ini-
tially. If None, the buzzer will be left in whatever state the pin is found in when con-
figured for output (warning: this can be on). If True, the buzzer will be switched on
initially.

• pin_factory (Factory (page 166)) – See API - Pins (page 163) for more informa-
tion (this is an advanced feature which most users can ignore).

beep(on_time=1, off_time=1, n=None, background=True)
Make the device turn on and off repeatedly.

Parameters

• on_time (float139) – Number of seconds on. Defaults to 1 second.

• off_time (float140) – Number of seconds off. Defaults to 1 second.

• n (int141) – Number of times to blink; None (the default) means forever.

• background (bool142) – If True (the default), start a background thread to con-
tinue blinking and return immediately. If False, only return when the blink is fin-
ished (warning: the default value of n will result in this method never returning).

136 https://docs.python.org/3.5/library/functions.html#int
137 https://docs.python.org/3.5/library/functions.html#bool
138 https://docs.python.org/3.5/library/functions.html#bool
139 https://docs.python.org/3.5/library/functions.html#float
140 https://docs.python.org/3.5/library/functions.html#float
141 https://docs.python.org/3.5/library/functions.html#int
142 https://docs.python.org/3.5/library/functions.html#bool

86 Chapter 12. API - Output Devices

https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bool

Gpiozero Documentation, Release 1.4.0

off()
Turns the device off.

on()
Turns the device on.

toggle()
Reverse the state of the device. If it’s on, turn it off; if it’s off, turn it on.

is_active
Returns True if the device is currently active and False otherwise. This property is usually derived
from value. Unlike value, this is always a boolean.

pin
The Pin (page 167) that the device is connected to. This will be None if the device has been closed
(see the close() method). When dealing with GPIO pins, query pin.number to discover the
GPIO pin (in BCM numbering) that the device is connected to.

Motor

class gpiozero.Motor(forward, backward, *, pwm=True, pin_factory=None)
Extends CompositeDevice (page 138) and represents a generic motor connected to a bi-directional
motor driver circuit (i.e. an H-bridge143).

Attach an H-bridge144 motor controller to your Pi; connect a power source (e.g. a battery pack or the 5V
pin) to the controller; connect the outputs of the controller board to the two terminals of the motor; connect
the inputs of the controller board to two GPIO pins.

The following code will make the motor turn “forwards”:

from gpiozero import Motor

motor = Motor(17, 18)
motor.forward()

Parameters

• forward (int145) – The GPIO pin that the forward input of the motor driver chip is
connected to.

• backward (int146) – The GPIO pin that the backward input of the motor driver chip
is connected to.

• pwm (bool147) – If True (the default), construct PWMOutputDevice (page 93) in-
stances for the motor controller pins, allowing both direction and variable speed control.
If False, construct DigitalOutputDevice (page 92) instances, allowing only di-
rection control.

• pin_factory (Factory (page 166)) – See API - Pins (page 163) for more informa-
tion (this is an advanced feature which most users can ignore).

backward(speed=1)
Drive the motor backwards.

Parameters speed (float148) – The speed at which the motor should turn. Can be any
value between 0 (stopped) and the default 1 (maximum speed) if pwm was True when
the class was constructed (and only 0 or 1 if not).

143 https://en.wikipedia.org/wiki/H_bridge
144 https://en.wikipedia.org/wiki/H_bridge
145 https://docs.python.org/3.5/library/functions.html#int
146 https://docs.python.org/3.5/library/functions.html#int
147 https://docs.python.org/3.5/library/functions.html#bool
148 https://docs.python.org/3.5/library/functions.html#float

12.5. Motor 87

https://en.wikipedia.org/wiki/H_bridge
https://en.wikipedia.org/wiki/H_bridge
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/functions.html#float

Gpiozero Documentation, Release 1.4.0

forward(speed=1)
Drive the motor forwards.

Parameters speed (float149) – The speed at which the motor should turn. Can be any
value between 0 (stopped) and the default 1 (maximum speed) if pwm was True when
the class was constructed (and only 0 or 1 if not).

stop()
Stop the motor.

Servo

class gpiozero.Servo(pin, *, initial_value=0, min_pulse_width=1/1000, max_pulse_width=2/1000,
frame_width=20/1000, pin_factory=None)

Extends CompositeDevice (page 138) and represents a PWM-controlled servo motor connected to a
GPIO pin.

Connect a power source (e.g. a battery pack or the 5V pin) to the power cable of the servo (this is typically
colored red); connect the ground cable of the servo (typically colored black or brown) to the negative of
your battery pack, or a GND pin; connect the final cable (typically colored white or orange) to the GPIO
pin you wish to use for controlling the servo.

The following code will make the servo move between its minimum, maximum, and mid-point positions
with a pause between each:

from gpiozero import Servo
from time import sleep

servo = Servo(17)
while True:

servo.min()
sleep(1)
servo.mid()
sleep(1)
servo.max()
sleep(1)

Parameters

• pin (int150) – The GPIO pin which the device is attached to. See Pin Numbering
(page 3) for valid pin numbers.

• initial_value (float151) – If 0 (the default), the device’s mid-point will be set
initially. Other values between -1 and +1 can be specified as an initial position. None
means to start the servo un-controlled (see value (page 89)).

• min_pulse_width (float152) – The pulse width corresponding to the servo’s min-
imum position. This defaults to 1ms.

• max_pulse_width (float153) – The pulse width corresponding to the servo’s max-
imum position. This defaults to 2ms.

• frame_width (float154) – The length of time between servo control pulses mea-
sured in seconds. This defaults to 20ms which is a common value for servos.

• pin_factory (Factory (page 166)) – See API - Pins (page 163) for more informa-
tion (this is an advanced feature which most users can ignore).

149 https://docs.python.org/3.5/library/functions.html#float
150 https://docs.python.org/3.5/library/functions.html#int
151 https://docs.python.org/3.5/library/functions.html#float
152 https://docs.python.org/3.5/library/functions.html#float
153 https://docs.python.org/3.5/library/functions.html#float
154 https://docs.python.org/3.5/library/functions.html#float

88 Chapter 12. API - Output Devices

https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float

Gpiozero Documentation, Release 1.4.0

detach()
Temporarily disable control of the servo. This is equivalent to setting value (page 89) to None.

max()
Set the servo to its maximum position.

mid()
Set the servo to its mid-point position.

min()
Set the servo to its minimum position.

frame_width
The time between control pulses, measured in seconds.

max_pulse_width
The control pulse width corresponding to the servo’s maximum position, measured in seconds.

min_pulse_width
The control pulse width corresponding to the servo’s minimum position, measured in seconds.

pulse_width
Returns the current pulse width controlling the servo.

source
The iterable to use as a source of values for value (page 89).

source_delay
The delay (measured in seconds) in the loop used to read values from source (page 89). Defaults to
0.01 seconds which is generally sufficient to keep CPU usage to a minimum while providing adequate
responsiveness.

value
Represents the position of the servo as a value between -1 (the minimum position) and +1 (the max-
imum position). This can also be the special value None indicating that the servo is currently “un-
controlled”, i.e. that no control signal is being sent. Typically this means the servo’s position remains
unchanged, but that it can be moved by hand.

values
An infinite iterator of values read from value.

AngularServo

class gpiozero.AngularServo(pin, *, initial_angle=0, min_angle=-90, max_angle=90,
min_pulse_width=1/1000, max_pulse_width=2/1000,
frame_width=20/1000, pin_factory=None)

Extends Servo (page 88) and represents a rotational PWM-controlled servo motor which can be set to
particular angles (assuming valid minimum and maximum angles are provided to the constructor).

Connect a power source (e.g. a battery pack or the 5V pin) to the power cable of the servo (this is typically
colored red); connect the ground cable of the servo (typically colored black or brown) to the negative of
your battery pack, or a GND pin; connect the final cable (typically colored white or orange) to the GPIO
pin you wish to use for controlling the servo.

Next, calibrate the angles that the servo can rotate to. In an interactive Python session, construct a Servo
(page 88) instance. The servo should move to its mid-point by default. Set the servo to its minimum value,
and measure the angle from the mid-point. Set the servo to its maximum value, and again measure the angle:

>>> from gpiozero import Servo
>>> s = Servo(17)
>>> s.min() # measure the angle
>>> s.max() # measure the angle

12.7. AngularServo 89

Gpiozero Documentation, Release 1.4.0

You should now be able to construct an AngularServo (page 89) instance with the correct bounds:

>>> from gpiozero import AngularServo
>>> s = AngularServo(17, min_angle=-42, max_angle=44)
>>> s.angle = 0.0
>>> s.angle
0.0
>>> s.angle = 15
>>> s.angle
15.0

Note: You can set min_angle greater than max_angle if you wish to reverse the sense of the angles (e.g.
min_angle=45, max_angle=-45). This can be useful with servos that rotate in the opposite direction
to your expectations of minimum and maximum.

Parameters

• pin (int155) – The GPIO pin which the device is attached to. See Pin Numbering
(page 3) for valid pin numbers.

• initial_angle (float156) – Sets the servo’s initial angle to the specified value.
The default is 0. The value specified must be between min_angle and max_angle inclu-
sive. None means to start the servo un-controlled (see value (page 91)).

• min_angle (float157) – Sets the minimum angle that the servo can rotate to. This
defaults to -90, but should be set to whatever you measure from your servo during
calibration.

• max_angle (float158) – Sets the maximum angle that the servo can rotate to. This
defaults to 90, but should be set to whatever you measure from your servo during cali-
bration.

• min_pulse_width (float159) – The pulse width corresponding to the servo’s min-
imum position. This defaults to 1ms.

• max_pulse_width (float160) – The pulse width corresponding to the servo’s max-
imum position. This defaults to 2ms.

• frame_width (float161) – The length of time between servo control pulses mea-
sured in seconds. This defaults to 20ms which is a common value for servos.

• pin_factory (Factory (page 166)) – See API - Pins (page 163) for more informa-
tion (this is an advanced feature which most users can ignore).

detach()
Temporarily disable control of the servo. This is equivalent to setting value (page 91) to None.

max()
Set the servo to its maximum position.

mid()
Set the servo to its mid-point position.

min()
Set the servo to its minimum position.

155 https://docs.python.org/3.5/library/functions.html#int
156 https://docs.python.org/3.5/library/functions.html#float
157 https://docs.python.org/3.5/library/functions.html#float
158 https://docs.python.org/3.5/library/functions.html#float
159 https://docs.python.org/3.5/library/functions.html#float
160 https://docs.python.org/3.5/library/functions.html#float
161 https://docs.python.org/3.5/library/functions.html#float

90 Chapter 12. API - Output Devices

https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float

Gpiozero Documentation, Release 1.4.0

angle
The position of the servo as an angle measured in degrees. This will only be accurate if min_angle and
max_angle have been set appropriately in the constructor.

This can also be the special value None indicating that the servo is currently “uncontrolled”, i.e. that
no control signal is being sent. Typically this means the servo’s position remains unchanged, but that
it can be moved by hand.

frame_width
The time between control pulses, measured in seconds.

max_angle
The maximum angle that the servo will rotate to when max() (page 90) is called.

max_pulse_width
The control pulse width corresponding to the servo’s maximum position, measured in seconds.

min_angle
The minimum angle that the servo will rotate to when min() (page 90) is called.

min_pulse_width
The control pulse width corresponding to the servo’s minimum position, measured in seconds.

pulse_width
Returns the current pulse width controlling the servo.

source
The iterable to use as a source of values for value (page 91).

source_delay
The delay (measured in seconds) in the loop used to read values from source (page 91). Defaults to
0.01 seconds which is generally sufficient to keep CPU usage to a minimum while providing adequate
responsiveness.

value
Represents the position of the servo as a value between -1 (the minimum position) and +1 (the max-
imum position). This can also be the special value None indicating that the servo is currently “un-
controlled”, i.e. that no control signal is being sent. Typically this means the servo’s position remains
unchanged, but that it can be moved by hand.

values
An infinite iterator of values read from value.

Base Classes

The classes in the sections above are derived from a series of base classes, some of which are effectively abstract.
The classes form the (partial) hierarchy displayed in the graph below (abstract classes are shaded lighter than
concrete classes):

Device

GPIODevice OutputDevice

DigitalOutputDevice

LED

Buzzer

PWMOutputDevice PWMLED

RGBLED LedBorg

12.8. Base Classes 91

Gpiozero Documentation, Release 1.4.0

The following sections document these base classes for advanced users that wish to construct classes for their own
devices.

DigitalOutputDevice

class gpiozero.DigitalOutputDevice(pin, *, active_high=True, initial_value=False,
pin_factory=None)

Represents a generic output device with typical on/off behaviour.

This class extends OutputDevice (page 95) with a blink() (page 92) method which uses an optional
background thread to handle toggling the device state without further interaction.

blink(on_time=1, off_time=1, n=None, background=True)
Make the device turn on and off repeatedly.

Parameters

• on_time (float162) – Number of seconds on. Defaults to 1 second.

• off_time (float163) – Number of seconds off. Defaults to 1 second.

• n (int164) – Number of times to blink; None (the default) means forever.

• background (bool165) – If True (the default), start a background thread to con-
tinue blinking and return immediately. If False, only return when the blink is fin-
ished (warning: the default value of n will result in this method never returning).

close()
Shut down the device and release all associated resources. This method can be called on an already
closed device without raising an exception.

This method is primarily intended for interactive use at the command line. It disables the device and
releases its pin(s) for use by another device.

You can attempt to do this simply by deleting an object, but unless you’ve cleaned up all references
to the object this may not work (even if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By contrast, the close method provides
a means of ensuring that the object is shut down.

For example, if you have a breadboard with a buzzer connected to pin 16, but then wish to attach an
LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device (page 147) descendents can also be used as context managers using the with166 statement.
For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:

162 https://docs.python.org/3.5/library/functions.html#float
163 https://docs.python.org/3.5/library/functions.html#float
164 https://docs.python.org/3.5/library/functions.html#int
165 https://docs.python.org/3.5/library/functions.html#bool
166 https://docs.python.org/3.5/reference/compound_stmts.html#with

92 Chapter 12. API - Output Devices

https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/reference/compound_stmts.html#with

Gpiozero Documentation, Release 1.4.0

... led.on()

...

off()
Turns the device off.

on()
Turns the device on.

PWMOutputDevice

class gpiozero.PWMOutputDevice(pin, *, active_high=True, initial_value=0, frequency=100,
pin_factory=None)

Generic output device configured for pulse-width modulation (PWM).

Parameters

• pin (int167) – The GPIO pin which the device is attached to. See Pin Numbering
(page 3) for valid pin numbers.

• active_high (bool168) – If True (the default), the on() (page 94) method will set
the GPIO to HIGH. If False, the on() (page 94) method will set the GPIO to LOW
(the off() (page 94) method always does the opposite).

• initial_value (float169) – If 0 (the default), the device’s duty cycle will be 0
initially. Other values between 0 and 1 can be specified as an initial duty cycle. Note
that None cannot be specified (unlike the parent class) as there is no way to tell PWM
not to alter the state of the pin.

• frequency (int170) – The frequency (in Hz) of pulses emitted to drive the device.
Defaults to 100Hz.

• pin_factory (Factory (page 166)) – See API - Pins (page 163) for more informa-
tion (this is an advanced feature which most users can ignore).

blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, n=None, background=True)
Make the device turn on and off repeatedly.

Parameters

• on_time (float171) – Number of seconds on. Defaults to 1 second.

• off_time (float172) – Number of seconds off. Defaults to 1 second.

• fade_in_time (float173) – Number of seconds to spend fading in. Defaults to 0.

• fade_out_time (float174) – Number of seconds to spend fading out. Defaults
to 0.

• n (int175) – Number of times to blink; None (the default) means forever.

• background (bool176) – If True (the default), start a background thread to con-
tinue blinking and return immediately. If False, only return when the blink is fin-
ished (warning: the default value of n will result in this method never returning).

167 https://docs.python.org/3.5/library/functions.html#int
168 https://docs.python.org/3.5/library/functions.html#bool
169 https://docs.python.org/3.5/library/functions.html#float
170 https://docs.python.org/3.5/library/functions.html#int
171 https://docs.python.org/3.5/library/functions.html#float
172 https://docs.python.org/3.5/library/functions.html#float
173 https://docs.python.org/3.5/library/functions.html#float
174 https://docs.python.org/3.5/library/functions.html#float
175 https://docs.python.org/3.5/library/functions.html#int
176 https://docs.python.org/3.5/library/functions.html#bool

12.10. PWMOutputDevice 93

https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bool

Gpiozero Documentation, Release 1.4.0

close()
Shut down the device and release all associated resources. This method can be called on an already
closed device without raising an exception.

This method is primarily intended for interactive use at the command line. It disables the device and
releases its pin(s) for use by another device.

You can attempt to do this simply by deleting an object, but unless you’ve cleaned up all references
to the object this may not work (even if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By contrast, the close method provides
a means of ensuring that the object is shut down.

For example, if you have a breadboard with a buzzer connected to pin 16, but then wish to attach an
LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device (page 147) descendents can also be used as context managers using the with177 statement.
For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

off()
Turns the device off.

on()
Turns the device on.

pulse(fade_in_time=1, fade_out_time=1, n=None, background=True)
Make the device fade in and out repeatedly.

Parameters

• fade_in_time (float178) – Number of seconds to spend fading in. Defaults to 1.

• fade_out_time (float179) – Number of seconds to spend fading out. Defaults
to 1.

• n (int180) – Number of times to pulse; None (the default) means forever.

• background (bool181) – If True (the default), start a background thread to con-
tinue pulsing and return immediately. If False, only return when the pulse is finished
(warning: the default value of n will result in this method never returning).

toggle()
Toggle the state of the device. If the device is currently off (value (page 95) is 0.0), this changes it
to “fully” on (value (page 95) is 1.0). If the device has a duty cycle (value (page 95)) of 0.1, this
will toggle it to 0.9, and so on.

177 https://docs.python.org/3.5/reference/compound_stmts.html#with
178 https://docs.python.org/3.5/library/functions.html#float
179 https://docs.python.org/3.5/library/functions.html#float
180 https://docs.python.org/3.5/library/functions.html#int
181 https://docs.python.org/3.5/library/functions.html#bool

94 Chapter 12. API - Output Devices

https://docs.python.org/3.5/reference/compound_stmts.html#with
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bool

Gpiozero Documentation, Release 1.4.0

frequency
The frequency of the pulses used with the PWM device, in Hz. The default is 100Hz.

is_active
Returns True if the device is currently active (value (page 95) is non-zero) and False otherwise.

value
The duty cycle of the PWM device. 0.0 is off, 1.0 is fully on. Values in between may be specified for
varying levels of power in the device.

OutputDevice

class gpiozero.OutputDevice(pin, *, active_high=True, initial_value=False, pin_factory=None)
Represents a generic GPIO output device.

This class extends GPIODevice (page 80) to add facilities common to GPIO output devices: an on()
(page 95) method to switch the device on, a corresponding off() (page 95) method, and a toggle()
(page 95) method.

Parameters

• pin (int182) – The GPIO pin (in BCM numbering) that the device is connected to. If
this is None a GPIOPinMissing (page 178) will be raised.

• active_high (bool183) – If True (the default), the on() (page 95) method will set
the GPIO to HIGH. If False, the on() (page 95) method will set the GPIO to LOW
(the off() (page 95) method always does the opposite).

• initial_value (bool184) – If False (the default), the device will be off initially.
If None, the device will be left in whatever state the pin is found in when configured
for output (warning: this can be on). If True, the device will be switched on initially.

• pin_factory (Factory (page 166)) – See API - Pins (page 163) for more informa-
tion (this is an advanced feature which most users can ignore).

off()
Turns the device off.

on()
Turns the device on.

toggle()
Reverse the state of the device. If it’s on, turn it off; if it’s off, turn it on.

active_high
When True, the value (page 95) property is True when the device’s pin is high. When False
the value (page 95) property is True when the device’s pin is low (i.e. the value is inverted).

This property can be set after construction; be warned that changing it will invert value (page 95)
(i.e. changing this property doesn’t change the device’s pin state - it just changes how that state is
interpreted).

value
Returns True if the device is currently active and False otherwise. Setting this property changes
the state of the device.

182 https://docs.python.org/3.5/library/functions.html#int
183 https://docs.python.org/3.5/library/functions.html#bool
184 https://docs.python.org/3.5/library/functions.html#bool

12.11. OutputDevice 95

https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/functions.html#bool

Gpiozero Documentation, Release 1.4.0

GPIODevice

class gpiozero.GPIODevice(pin, *, pin_factory=None)
Extends Device (page 147). Represents a generic GPIO device and provides the services common to all
single-pin GPIO devices (like ensuring two GPIO devices do no share a pin (page 80)).

Parameters pin (int185) – The GPIO pin (in BCM numbering) that the device is connected
to. If this is None, GPIOPinMissing (page 178) will be raised. If the pin is already in
use by another device, GPIOPinInUse (page 178) will be raised.

close()
Shut down the device and release all associated resources. This method can be called on an already
closed device without raising an exception.

This method is primarily intended for interactive use at the command line. It disables the device and
releases its pin(s) for use by another device.

You can attempt to do this simply by deleting an object, but unless you’ve cleaned up all references
to the object this may not work (even if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By contrast, the close method provides
a means of ensuring that the object is shut down.

For example, if you have a breadboard with a buzzer connected to pin 16, but then wish to attach an
LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device (page 147) descendents can also be used as context managers using the with186 statement.
For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

pin
The Pin (page 167) that the device is connected to. This will be None if the device has been closed
(see the close() (page 80) method). When dealing with GPIO pins, query pin.number to dis-
cover the GPIO pin (in BCM numbering) that the device is connected to.

185 https://docs.python.org/3.5/library/functions.html#int
186 https://docs.python.org/3.5/reference/compound_stmts.html#with

96 Chapter 12. API - Output Devices

https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/reference/compound_stmts.html#with

CHAPTER 13

API - SPI Devices

SPI stands for Serial Peripheral Interface187 and is a mechanism allowing compatible devices to communicate with
the Pi. SPI is a four-wire protocol meaning it usually requires four pins to operate:

• A “clock” pin which provides timing information.

• A “MOSI” pin (Master Out, Slave In) which the Pi uses to send information to the device.

• A “MISO” pin (Master In, Slave Out) which the Pi uses to receive information from the device.

• A “select” pin which the Pi uses to indicate which device it’s talking to. This last pin is necessary because
multiple devices can share the clock, MOSI, and MISO pins, but only one device can be connected to each
select pin.

The gpiozero library provides two SPI implementations:

• A software based implementation. This is always available, can use any four GPIO pins for SPI communi-
cation, but is rather slow and won’t work with all devices.

• A hardware based implementation. This is only available when the SPI kernel module is loaded, and the
Python spidev library is available. It can only use specific pins for SPI communication (GPIO11=clock,
GPIO10=MOSI, GPIO9=MISO, while GPIO8 is select for device 0 and GPIO7 is select for device 1).
However, it is extremely fast and works with all devices.

SPI keyword args

When constructing an SPI device there are two schemes for specifying which pins it is connected to:

• You can specify port and device keyword arguments. The port parameter must be 0 (there is only one user-
accessible hardware SPI interface on the Pi using GPIO11 as the clock pin, GPIO10 as the MOSI pin, and
GPIO9 as the MISO pin), while the device parameter must be 0 or 1. If device is 0, the select pin will be
GPIO8. If device is 1, the select pin will be GPIO7.

• Alternatively you can specify clock_pin, mosi_pin, miso_pin, and select_pin keyword arguments. In this
case the pins can be any 4 GPIO pins (remember that SPI devices can share clock, MOSI, and MISO pins,
but not select pins - the gpiozero library will enforce this restriction).

You cannot mix these two schemes, i.e. attempting to specify port and clock_pin will result in SPIBadArgs
(page 178) being raised. However, you can omit any arguments from either scheme. The defaults are:

187 https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

97

https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

Gpiozero Documentation, Release 1.4.0

• port and device both default to 0.

• clock_pin defaults to 11, mosi_pin defaults to 10, miso_pin defaults to 9, and select_pin defaults to 8.

• As with other GPIO based devices you can optionally specify a pin_factory argument overriding the default
pin factory (see API - Pins (page 163) for more information).

Hence the following constructors are all equivalent:

from gpiozero import MCP3008

MCP3008(channel=0)
MCP3008(channel=0, device=0)
MCP3008(channel=0, port=0, device=0)
MCP3008(channel=0, select_pin=8)
MCP3008(channel=0, clock_pin=11, mosi_pin=10, miso_pin=9, select_pin=8)

Note that the defaults describe equivalent sets of pins and that these pins are compatible with the hardware imple-
mentation. Regardless of which scheme you use, gpiozero will attempt to use the hardware implementation if it is
available and if the selected pins are compatible, falling back to the software implementation if not.

Analog to Digital Converters (ADC)

class gpiozero.MCP3001(**spi_args)
The MCP3001188 is a 10-bit analog to digital converter with 1 channel. Please note that the MCP3001
always operates in differential mode, measuring the value of IN+ relative to IN-.

value
The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for certain
devices operating in differential mode).

class gpiozero.MCP3002(channel=0, differential=False, **spi_args)
The MCP3002189 is a 10-bit analog to digital converter with 2 channels (0-1).

channel
The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the
MCP3004/3204/3302 have 4 channels (0-3), the MCP3002/3202 have 2 channels (0-1), and the
MCP3001/3201/3301 only have 1 channel.

differential
If True, the device is operated in differential mode. In this mode one channel (specified by the
channel attribute) is read relative to the value of a second channel (implied by the chip’s design).

Please refer to the device data-sheet to determine which channel is used as the relative base value (for
example, when using an MCP3008 (page 99) in differential mode, channel 0 is read relative to channel
1).

value
The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for certain
devices operating in differential mode).

class gpiozero.MCP3004(channel=0, differential=False, **spi_args)
The MCP3004190 is a 10-bit analog to digital converter with 4 channels (0-3).

channel
The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the
MCP3004/3204/3302 have 4 channels (0-3), the MCP3002/3202 have 2 channels (0-1), and the
MCP3001/3201/3301 only have 1 channel.

188 http://www.farnell.com/datasheets/630400.pdf
189 http://www.farnell.com/datasheets/1599363.pdf
190 http://www.farnell.com/datasheets/808965.pdf

98 Chapter 13. API - SPI Devices

http://www.farnell.com/datasheets/630400.pdf
http://www.farnell.com/datasheets/1599363.pdf
http://www.farnell.com/datasheets/808965.pdf

Gpiozero Documentation, Release 1.4.0

differential
If True, the device is operated in differential mode. In this mode one channel (specified by the
channel attribute) is read relative to the value of a second channel (implied by the chip’s design).

Please refer to the device data-sheet to determine which channel is used as the relative base value (for
example, when using an MCP3008 (page 99) in differential mode, channel 0 is read relative to channel
1).

value
The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for certain
devices operating in differential mode).

class gpiozero.MCP3008(channel=0, differential=False, **spi_args)
The MCP3008191 is a 10-bit analog to digital converter with 8 channels (0-7).

channel
The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the
MCP3004/3204/3302 have 4 channels (0-3), the MCP3002/3202 have 2 channels (0-1), and the
MCP3001/3201/3301 only have 1 channel.

differential
If True, the device is operated in differential mode. In this mode one channel (specified by the
channel attribute) is read relative to the value of a second channel (implied by the chip’s design).

Please refer to the device data-sheet to determine which channel is used as the relative base value (for
example, when using an MCP3008 (page 99) in differential mode, channel 0 is read relative to channel
1).

value
The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for certain
devices operating in differential mode).

class gpiozero.MCP3201(**spi_args)
The MCP3201192 is a 12-bit analog to digital converter with 1 channel. Please note that the MCP3201
always operates in differential mode, measuring the value of IN+ relative to IN-.

value
The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for certain
devices operating in differential mode).

class gpiozero.MCP3202(channel=0, differential=False, **spi_args)
The MCP3202193 is a 12-bit analog to digital converter with 2 channels (0-1).

channel
The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the
MCP3004/3204/3302 have 4 channels (0-3), the MCP3002/3202 have 2 channels (0-1), and the
MCP3001/3201/3301 only have 1 channel.

differential
If True, the device is operated in differential mode. In this mode one channel (specified by the
channel attribute) is read relative to the value of a second channel (implied by the chip’s design).

Please refer to the device data-sheet to determine which channel is used as the relative base value (for
example, when using an MCP3008 (page 99) in differential mode, channel 0 is read relative to channel
1).

value
The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for certain
devices operating in differential mode).

class gpiozero.MCP3204(channel=0, differential=False, **spi_args)
The MCP3204194 is a 12-bit analog to digital converter with 4 channels (0-3).

191 http://www.farnell.com/datasheets/808965.pdf
192 http://www.farnell.com/datasheets/1669366.pdf
193 http://www.farnell.com/datasheets/1669376.pdf
194 http://www.farnell.com/datasheets/808967.pdf

13.2. Analog to Digital Converters (ADC) 99

http://www.farnell.com/datasheets/808965.pdf
http://www.farnell.com/datasheets/1669366.pdf
http://www.farnell.com/datasheets/1669376.pdf
http://www.farnell.com/datasheets/808967.pdf

Gpiozero Documentation, Release 1.4.0

channel
The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the
MCP3004/3204/3302 have 4 channels (0-3), the MCP3002/3202 have 2 channels (0-1), and the
MCP3001/3201/3301 only have 1 channel.

differential
If True, the device is operated in differential mode. In this mode one channel (specified by the
channel attribute) is read relative to the value of a second channel (implied by the chip’s design).

Please refer to the device data-sheet to determine which channel is used as the relative base value (for
example, when using an MCP3008 (page 99) in differential mode, channel 0 is read relative to channel
1).

value
The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for certain
devices operating in differential mode).

class gpiozero.MCP3208(channel=0, differential=False, **spi_args)
The MCP3208195 is a 12-bit analog to digital converter with 8 channels (0-7).

channel
The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the
MCP3004/3204/3302 have 4 channels (0-3), the MCP3002/3202 have 2 channels (0-1), and the
MCP3001/3201/3301 only have 1 channel.

differential
If True, the device is operated in differential mode. In this mode one channel (specified by the
channel attribute) is read relative to the value of a second channel (implied by the chip’s design).

Please refer to the device data-sheet to determine which channel is used as the relative base value (for
example, when using an MCP3008 (page 99) in differential mode, channel 0 is read relative to channel
1).

value
The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for certain
devices operating in differential mode).

class gpiozero.MCP3301(**spi_args)
The MCP3301196 is a signed 13-bit analog to digital converter. Please note that the MCP3301 always
operates in differential mode measuring the difference between IN+ and IN-. Its output value is scaled from
-1 to +1.

value
The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for devices
operating in differential mode).

class gpiozero.MCP3302(channel=0, differential=False, **spi_args)
The MCP3302197 is a 12/13-bit analog to digital converter with 4 channels (0-3). When operated in dif-
ferential mode, the device outputs a signed 13-bit value which is scaled from -1 to +1. When operated in
single-ended mode (the default), the device outputs an unsigned 12-bit value scaled from 0 to 1.

channel
The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the
MCP3004/3204/3302 have 4 channels (0-3), the MCP3002/3202 have 2 channels (0-1), and the
MCP3001/3201/3301 only have 1 channel.

differential
If True, the device is operated in differential mode. In this mode one channel (specified by the
channel attribute) is read relative to the value of a second channel (implied by the chip’s design).

195 http://www.farnell.com/datasheets/808967.pdf
196 http://www.farnell.com/datasheets/1669397.pdf
197 http://www.farnell.com/datasheets/1486116.pdf

100 Chapter 13. API - SPI Devices

http://www.farnell.com/datasheets/808967.pdf
http://www.farnell.com/datasheets/1669397.pdf
http://www.farnell.com/datasheets/1486116.pdf

Gpiozero Documentation, Release 1.4.0

Please refer to the device data-sheet to determine which channel is used as the relative base value
(for example, when using an MCP3304 (page 101) in differential mode, channel 0 is read relative to
channel 1).

value
The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for devices
operating in differential mode).

class gpiozero.MCP3304(channel=0, differential=False, **spi_args)
The MCP3304198 is a 12/13-bit analog to digital converter with 8 channels (0-7). When operated in dif-
ferential mode, the device outputs a signed 13-bit value which is scaled from -1 to +1. When operated in
single-ended mode (the default), the device outputs an unsigned 12-bit value scaled from 0 to 1.

channel
The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the
MCP3004/3204/3302 have 4 channels (0-3), the MCP3002/3202 have 2 channels (0-1), and the
MCP3001/3201/3301 only have 1 channel.

differential
If True, the device is operated in differential mode. In this mode one channel (specified by the
channel attribute) is read relative to the value of a second channel (implied by the chip’s design).

Please refer to the device data-sheet to determine which channel is used as the relative base value
(for example, when using an MCP3304 (page 101) in differential mode, channel 0 is read relative to
channel 1).

value
The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for devices
operating in differential mode).

Base Classes

The classes in the sections above are derived from a series of base classes, some of which are effectively abstract.
The classes form the (partial) hierarchy displayed in the graph below (abstract classes are shaded lighter than
concrete classes):

198 http://www.farnell.com/datasheets/1486116.pdf

13.3. Base Classes 101

http://www.farnell.com/datasheets/1486116.pdf

Gpiozero Documentation, Release 1.4.0

Device SPIDevice AnalogInputDevice MCP3xxx

MCP30xx

MCP32xx

MCP3xx2

MCP33xx

MCP3001

MCP3002

MCP3004

MCP3008

MCP3201

MCP3202

MCP3204

MCP3208

MCP3301

MCP3302

MCP3304

The following sections document these base classes for advanced users that wish to construct classes for their own
devices.

AnalogInputDevice

class gpiozero.AnalogInputDevice(bits, **spi_args)
Represents an analog input device connected to SPI (serial interface).

Typical analog input devices are analog to digital converters199 (ADCs). Several classes are provided for spe-
cific ADC chips, including MCP3004 (page 98), MCP3008 (page 99), MCP3204 (page 99), and MCP3208
(page 100).

The following code demonstrates reading the first channel of an MCP3008 chip attached to the Pi’s SPI
pins:

from gpiozero import MCP3008

pot = MCP3008(0)
print(pot.value)

199 https://en.wikipedia.org/wiki/Analog-to-digital_converter

102 Chapter 13. API - SPI Devices

https://en.wikipedia.org/wiki/Analog-to-digital_converter

Gpiozero Documentation, Release 1.4.0

The value (page 103) attribute is normalized such that its value is always between 0.0 and 1.0 (or in special
cases, such as differential sampling, -1 to +1). Hence, you can use an analog input to control the brightness
of a PWMLED (page 82) like so:

from gpiozero import MCP3008, PWMLED

pot = MCP3008(0)
led = PWMLED(17)
led.source = pot.values

bits
The bit-resolution of the device/channel.

raw_value
The raw value as read from the device.

value
The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for certain
devices operating in differential mode).

SPIDevice

class gpiozero.SPIDevice(**spi_args)
Extends Device (page 147). Represents a device that communicates via the SPI protocol.

See SPI keyword args (page 97) for information on the keyword arguments that can be specified with the
constructor.

close()
Shut down the device and release all associated resources. This method can be called on an already
closed device without raising an exception.

This method is primarily intended for interactive use at the command line. It disables the device and
releases its pin(s) for use by another device.

You can attempt to do this simply by deleting an object, but unless you’ve cleaned up all references
to the object this may not work (even if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By contrast, the close method provides
a means of ensuring that the object is shut down.

For example, if you have a breadboard with a buzzer connected to pin 16, but then wish to attach an
LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device (page 147) descendents can also be used as context managers using the with200 statement.
For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:

200 https://docs.python.org/3.5/reference/compound_stmts.html#with

13.5. SPIDevice 103

https://docs.python.org/3.5/reference/compound_stmts.html#with

Gpiozero Documentation, Release 1.4.0

... led.on()

...

104 Chapter 13. API - SPI Devices

CHAPTER 14

API - Boards and Accessories

These additional interfaces are provided to group collections of components together for ease of use, and as
examples. They are composites made up of components from the various API - Input Devices (page 69) and API
- Output Devices (page 81) provided by GPIO Zero. See those pages for more information on using components
individually.

Note: All GPIO pin numbers use Broadcom (BCM) numbering. See the Basic Recipes (page 3) page for more
information.

LEDBoard

class gpiozero.LEDBoard(*pins, pwm=False, active_high=True, initial_value=False,
pin_factory=None, **named_pins)

Extends LEDCollection (page 137) and represents a generic LED board or collection of LEDs.

The following example turns on all the LEDs on a board containing 5 LEDs attached to GPIO pins 2 through
6:

from gpiozero import LEDBoard

leds = LEDBoard(2, 3, 4, 5, 6)
leds.on()

Parameters

• *pins (int201) – Specify the GPIO pins that the LEDs of the board are attached
to. You can designate as many pins as necessary. You can also specify LEDBoard
(page 105) instances to create trees of LEDs.

• pwm (bool202) – If True, construct PWMLED (page 82) instances for each pin. If
False (the default), construct regular LED (page 81) instances. This parameter can
only be specified as a keyword parameter.

201 https://docs.python.org/3.5/library/functions.html#int
202 https://docs.python.org/3.5/library/functions.html#bool

105

https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bool

Gpiozero Documentation, Release 1.4.0

• active_high (bool203) – If True (the default), the on() (page 107) method will
set all the associated pins to HIGH. If False, the on() (page 107) method will set all
pins to LOW (the off() (page 107) method always does the opposite). This parameter
can only be specified as a keyword parameter.

• initial_value (bool204) – If False (the default), all LEDs will be off initially.
If None, each device will be left in whatever state the pin is found in when configured
for output (warning: this can be on). If True, the device will be switched on initially.
This parameter can only be specified as a keyword parameter.

• pin_factory (Factory (page 166)) – See API - Pins (page 163) for more informa-
tion (this is an advanced feature which most users can ignore).

• **named_pins – Specify GPIO pins that LEDs of the board are attached to, asso-
ciating each LED with a property name. You can designate as many pins as necessary
and use any names, provided they’re not already in use by something else. You can also
specify LEDBoard (page 105) instances to create trees of LEDs.

blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, n=None, background=True)
Make all the LEDs turn on and off repeatedly.

Parameters

• on_time (float205) – Number of seconds on. Defaults to 1 second.

• off_time (float206) – Number of seconds off. Defaults to 1 second.

• fade_in_time (float207) – Number of seconds to spend fading in. Defaults to 0.
Must be 0 if pwm was False when the class was constructed (ValueError208 will
be raised if not).

• fade_out_time (float209) – Number of seconds to spend fading out. Defaults
to 0. Must be 0 if pwm was False when the class was constructed (ValueError210

will be raised if not).

• n (int211) – Number of times to blink; None (the default) means forever.

• background (bool212) – If True, start a background thread to continue blinking
and return immediately. If False, only return when the blink is finished (warning:
the default value of n will result in this method never returning).

close()
Shut down the device and release all associated resources. This method can be called on an already
closed device without raising an exception.

This method is primarily intended for interactive use at the command line. It disables the device and
releases its pin(s) for use by another device.

You can attempt to do this simply by deleting an object, but unless you’ve cleaned up all references
to the object this may not work (even if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By contrast, the close method provides
a means of ensuring that the object is shut down.

For example, if you have a breadboard with a buzzer connected to pin 16, but then wish to attach an
LED instead:

203 https://docs.python.org/3.5/library/functions.html#bool
204 https://docs.python.org/3.5/library/functions.html#bool
205 https://docs.python.org/3.5/library/functions.html#float
206 https://docs.python.org/3.5/library/functions.html#float
207 https://docs.python.org/3.5/library/functions.html#float
208 https://docs.python.org/3.5/library/exceptions.html#ValueError
209 https://docs.python.org/3.5/library/functions.html#float
210 https://docs.python.org/3.5/library/exceptions.html#ValueError
211 https://docs.python.org/3.5/library/functions.html#int
212 https://docs.python.org/3.5/library/functions.html#bool

106 Chapter 14. API - Boards and Accessories

https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/exceptions.html#ValueError
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/exceptions.html#ValueError
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bool

Gpiozero Documentation, Release 1.4.0

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device (page 147) descendents can also be used as context managers using the with213 statement.
For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

off(*args)
Turn all the output devices off.

on(*args)
Turn all the output devices on.

pulse(fade_in_time=1, fade_out_time=1, n=None, background=True)
Make the device fade in and out repeatedly.

Parameters

• fade_in_time (float214) – Number of seconds to spend fading in. Defaults to 1.

• fade_out_time (float215) – Number of seconds to spend fading out. Defaults
to 1.

• n (int216) – Number of times to blink; None (the default) means forever.

• background (bool217) – If True (the default), start a background thread to con-
tinue blinking and return immediately. If False, only return when the blink is fin-
ished (warning: the default value of n will result in this method never returning).

toggle(*args)
Toggle all the output devices. For each device, if it’s on, turn it off; if it’s off, turn it on.

leds
A flat tuple of all LEDs contained in this collection (and all sub-collections).

source
The iterable to use as a source of values for value (page 107).

source_delay
The delay (measured in seconds) in the loop used to read values from source (page 107). Defaults to
0.01 seconds which is generally sufficient to keep CPU usage to a minimum while providing adequate
responsiveness.

value
A tuple containing a value for each subordinate device. This property can also be set to update the
state of all subordinate output devices.

values
An infinite iterator of values read from value.

213 https://docs.python.org/3.5/reference/compound_stmts.html#with
214 https://docs.python.org/3.5/library/functions.html#float
215 https://docs.python.org/3.5/library/functions.html#float
216 https://docs.python.org/3.5/library/functions.html#int
217 https://docs.python.org/3.5/library/functions.html#bool

14.1. LEDBoard 107

https://docs.python.org/3.5/reference/compound_stmts.html#with
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bool

Gpiozero Documentation, Release 1.4.0

LEDBarGraph

class gpiozero.LEDBarGraph(*pins, pwm=False, active_high=True, initial_value=0,
pin_factory=None)

Extends LEDCollection (page 137) to control a line of LEDs representing a bar graph. Positive values
(0 to 1) light the LEDs from first to last. Negative values (-1 to 0) light the LEDs from last to first.

The following example demonstrates turning on the first two and last two LEDs in a board containing five
LEDs attached to GPIOs 2 through 6:

from gpiozero import LEDBarGraph
from time import sleep

graph = LEDBarGraph(2, 3, 4, 5, 6)
graph.value = 2/5 # Light the first two LEDs only
sleep(1)
graph.value = -2/5 # Light the last two LEDs only
sleep(1)
graph.off()

As with other output devices, source (page 109) and values (page 109) are supported:

from gpiozero import LEDBarGraph, MCP3008
from signal import pause

graph = LEDBarGraph(2, 3, 4, 5, 6, pwm=True)
pot = MCP3008(channel=0)
graph.source = pot.values
pause()

Parameters

• *pins (int218) – Specify the GPIO pins that the LEDs of the bar graph are attached
to. You can designate as many pins as necessary.

• pwm (bool219) – If True, construct PWMLED (page 82) instances for each pin. If
False (the default), construct regular LED (page 81) instances. This parameter can
only be specified as a keyword parameter.

• active_high (bool220) – If True (the default), the on() (page 108) method will
set all the associated pins to HIGH. If False, the on() (page 108) method will set all
pins to LOW (the off() (page 108) method always does the opposite). This parameter
can only be specified as a keyword parameter.

• initial_value (float221) – The initial value (page 109) of the graph given as
a float between -1 and +1. Defaults to 0.0. This parameter can only be specified as a
keyword parameter.

• pin_factory (Factory (page 166)) – See API - Pins (page 163) for more informa-
tion (this is an advanced feature which most users can ignore).

off()
Turn all the output devices off.

on()
Turn all the output devices on.

toggle()
Toggle all the output devices. For each device, if it’s on, turn it off; if it’s off, turn it on.

218 https://docs.python.org/3.5/library/functions.html#int
219 https://docs.python.org/3.5/library/functions.html#bool
220 https://docs.python.org/3.5/library/functions.html#bool
221 https://docs.python.org/3.5/library/functions.html#float

108 Chapter 14. API - Boards and Accessories

https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/functions.html#float

Gpiozero Documentation, Release 1.4.0

leds
A flat tuple of all LEDs contained in this collection (and all sub-collections).

source
The iterable to use as a source of values for value (page 109).

source_delay
The delay (measured in seconds) in the loop used to read values from source (page 109). Defaults to
0.01 seconds which is generally sufficient to keep CPU usage to a minimum while providing adequate
responsiveness.

value
The value of the LED bar graph. When no LEDs are lit, the value is 0. When all LEDs are lit, the
value is 1. Values between 0 and 1 light LEDs linearly from first to last. Values between 0 and -1 light
LEDs linearly from last to first.

To light a particular number of LEDs, simply divide that number by the number of LEDs. For example,
if your graph contains 3 LEDs, the following will light the first:

from gpiozero import LEDBarGraph

graph = LEDBarGraph(12, 16, 19)
graph.value = 1/3

Note: Setting value to -1 will light all LEDs. However, querying it subsequently will return 1 as both
representations are the same in hardware. The readable range of value (page 109) is effectively -1 <
value <= 1.

values
An infinite iterator of values read from value.

ButtonBoard

class gpiozero.ButtonBoard(*pins, pull_up=True, bounce_time=None, hold_time=1,
hold_repeat=False, pin_factory=None, **named_pins)

Extends CompositeDevice (page 138) and represents a generic button board or collection of buttons.

Parameters

• *pins (int222) – Specify the GPIO pins that the buttons of the board are attached to.
You can designate as many pins as necessary.

• pull_up (bool223) – If True (the default), the GPIO pins will be pulled high by
default. In this case, connect the other side of the buttons to ground. If False, the
GPIO pins will be pulled low by default. In this case, connect the other side of the
buttons to 3V3. This parameter can only be specified as a keyword parameter.

• bounce_time (float224) – If None (the default), no software bounce compensation
will be performed. Otherwise, this is the length of time (in seconds) that the buttons will
ignore changes in state after an initial change. This parameter can only be specified as
a keyword parameter.

• hold_time (float225) – The length of time (in seconds) to wait after any button
is pushed, until executing the when_held (page 111) handler. Defaults to 1. This
parameter can only be specified as a keyword parameter.

222 https://docs.python.org/3.5/library/functions.html#int
223 https://docs.python.org/3.5/library/functions.html#bool
224 https://docs.python.org/3.5/library/functions.html#float
225 https://docs.python.org/3.5/library/functions.html#float

14.3. ButtonBoard 109

https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float

Gpiozero Documentation, Release 1.4.0

• hold_repeat (bool226) – If True, the when_held (page 111) handler will be
repeatedly executed as long as any buttons remain held, every hold_time seconds. If
False (the default) the when_held (page 111) handler will be only be executed
once per hold. This parameter can only be specified as a keyword parameter.

• pin_factory (Factory (page 166)) – See API - Pins (page 163) for more informa-
tion (this is an advanced feature which most users can ignore).

• **named_pins – Specify GPIO pins that buttons of the board are attached to, asso-
ciating each button with a property name. You can designate as many pins as necessary
and use any names, provided they’re not already in use by something else.

wait_for_active(timeout=None)
Pause the script until the device is activated, or the timeout is reached.

Parameters timeout (float227) – Number of seconds to wait before proceeding. If this
is None (the default), then wait indefinitely until the device is active.

wait_for_inactive(timeout=None)
Pause the script until the device is deactivated, or the timeout is reached.

Parameters timeout (float228) – Number of seconds to wait before proceeding. If this
is None (the default), then wait indefinitely until the device is inactive.

wait_for_press(timeout=None)
Pause the script until the device is activated, or the timeout is reached.

Parameters timeout (float229) – Number of seconds to wait before proceeding. If this
is None (the default), then wait indefinitely until the device is active.

wait_for_release(timeout=None)
Pause the script until the device is deactivated, or the timeout is reached.

Parameters timeout (float230) – Number of seconds to wait before proceeding. If this
is None (the default), then wait indefinitely until the device is inactive.

active_time
The length of time (in seconds) that the device has been active for. When the device is inactive, this is
None.

held_time
The length of time (in seconds) that the device has been held for. This is counted from the first
execution of the when_held (page 111) event rather than when the device activated, in contrast to
active_time (page 149). If the device is not currently held, this is None.

hold_repeat
If True, when_held (page 111) will be executed repeatedly with hold_time (page 110) seconds
between each invocation.

hold_time
The length of time (in seconds) to wait after the device is activated, until executing the when_held
(page 111) handler. If hold_repeat (page 110) is True, this is also the length of time between
invocations of when_held (page 111).

inactive_time
The length of time (in seconds) that the device has been inactive for. When the device is active, this is
None.

is_held
When True, the device has been active for at least hold_time (page 110) seconds.

226 https://docs.python.org/3.5/library/functions.html#bool
227 https://docs.python.org/3.5/library/functions.html#float
228 https://docs.python.org/3.5/library/functions.html#float
229 https://docs.python.org/3.5/library/functions.html#float
230 https://docs.python.org/3.5/library/functions.html#float

110 Chapter 14. API - Boards and Accessories

https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float

Gpiozero Documentation, Release 1.4.0

pressed_time
The length of time (in seconds) that the device has been active for. When the device is inactive, this is
None.

pull_up
If True, the device uses a pull-up resistor to set the GPIO pin “high” by default.

values
An infinite iterator of values read from value.

when_activated
The function to run when the device changes state from inactive to active.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated will be passed as that parameter.

Set this property to None (the default) to disable the event.

when_deactivated
The function to run when the device changes state from active to inactive.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that deactivated will be passed as that parameter.

Set this property to None (the default) to disable the event.

when_held
The function to run when the device has remained active for hold_time (page 110) seconds.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated will be passed as that parameter.

Set this property to None (the default) to disable the event.

when_pressed
The function to run when the device changes state from inactive to active.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated will be passed as that parameter.

Set this property to None (the default) to disable the event.

when_released
The function to run when the device changes state from active to inactive.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that deactivated will be passed as that parameter.

Set this property to None (the default) to disable the event.

TrafficLights

class gpiozero.TrafficLights(red=None, amber=None, green=None, pwm=False, ini-
tial_value=False, yellow=None, pin_factory=None)

Extends LEDBoard (page 105) for devices containing red, yellow, and green LEDs.

The following example initializes a device connected to GPIO pins 2, 3, and 4, then lights the amber (yellow)
LED attached to GPIO 3:

14.4. TrafficLights 111

Gpiozero Documentation, Release 1.4.0

from gpiozero import TrafficLights

traffic = TrafficLights(2, 3, 4)
traffic.amber.on()

Parameters

• red (int231) – The GPIO pin that the red LED is attached to.

• amber (int232) – The GPIO pin that the amber LED is attached to.

• green (int233) – The GPIO pin that the green LED is attached to.

• pwm (bool234) – If True, construct PWMLED (page 82) instances to represent each
LED. If False (the default), construct regular LED (page 81) instances.

• initial_value (bool235) – If False (the default), all LEDs will be off initially.
If None, each device will be left in whatever state the pin is found in when configured
for output (warning: this can be on). If True, the device will be switched on initially.

• yellow (int236) – The GPIO pin that the yellow LED is attached to. This is merely
an alias for the amber parameter - you can’t specify both amber and yellow.

• pin_factory (Factory (page 166)) – See API - Pins (page 163) for more informa-
tion (this is an advanced feature which most users can ignore).

blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, n=None, background=True)
Make all the LEDs turn on and off repeatedly.

Parameters

• on_time (float237) – Number of seconds on. Defaults to 1 second.

• off_time (float238) – Number of seconds off. Defaults to 1 second.

• fade_in_time (float239) – Number of seconds to spend fading in. Defaults to 0.
Must be 0 if pwm was False when the class was constructed (ValueError240 will
be raised if not).

• fade_out_time (float241) – Number of seconds to spend fading out. Defaults
to 0. Must be 0 if pwm was False when the class was constructed (ValueError242

will be raised if not).

• n (int243) – Number of times to blink; None (the default) means forever.

• background (bool244) – If True, start a background thread to continue blinking
and return immediately. If False, only return when the blink is finished (warning:
the default value of n will result in this method never returning).

close()
Shut down the device and release all associated resources. This method can be called on an already
closed device without raising an exception.

231 https://docs.python.org/3.5/library/functions.html#int
232 https://docs.python.org/3.5/library/functions.html#int
233 https://docs.python.org/3.5/library/functions.html#int
234 https://docs.python.org/3.5/library/functions.html#bool
235 https://docs.python.org/3.5/library/functions.html#bool
236 https://docs.python.org/3.5/library/functions.html#int
237 https://docs.python.org/3.5/library/functions.html#float
238 https://docs.python.org/3.5/library/functions.html#float
239 https://docs.python.org/3.5/library/functions.html#float
240 https://docs.python.org/3.5/library/exceptions.html#ValueError
241 https://docs.python.org/3.5/library/functions.html#float
242 https://docs.python.org/3.5/library/exceptions.html#ValueError
243 https://docs.python.org/3.5/library/functions.html#int
244 https://docs.python.org/3.5/library/functions.html#bool

112 Chapter 14. API - Boards and Accessories

https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/exceptions.html#ValueError
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/exceptions.html#ValueError
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bool

Gpiozero Documentation, Release 1.4.0

This method is primarily intended for interactive use at the command line. It disables the device and
releases its pin(s) for use by another device.

You can attempt to do this simply by deleting an object, but unless you’ve cleaned up all references
to the object this may not work (even if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By contrast, the close method provides
a means of ensuring that the object is shut down.

For example, if you have a breadboard with a buzzer connected to pin 16, but then wish to attach an
LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device (page 147) descendents can also be used as context managers using the with245 statement.
For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

off(*args)
Turn all the output devices off.

on(*args)
Turn all the output devices on.

pulse(fade_in_time=1, fade_out_time=1, n=None, background=True)
Make the device fade in and out repeatedly.

Parameters

• fade_in_time (float246) – Number of seconds to spend fading in. Defaults to 1.

• fade_out_time (float247) – Number of seconds to spend fading out. Defaults
to 1.

• n (int248) – Number of times to blink; None (the default) means forever.

• background (bool249) – If True (the default), start a background thread to con-
tinue blinking and return immediately. If False, only return when the blink is fin-
ished (warning: the default value of n will result in this method never returning).

toggle(*args)
Toggle all the output devices. For each device, if it’s on, turn it off; if it’s off, turn it on.

leds
A flat tuple of all LEDs contained in this collection (and all sub-collections).

source
The iterable to use as a source of values for value (page 114).

245 https://docs.python.org/3.5/reference/compound_stmts.html#with
246 https://docs.python.org/3.5/library/functions.html#float
247 https://docs.python.org/3.5/library/functions.html#float
248 https://docs.python.org/3.5/library/functions.html#int
249 https://docs.python.org/3.5/library/functions.html#bool

14.4. TrafficLights 113

https://docs.python.org/3.5/reference/compound_stmts.html#with
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bool

Gpiozero Documentation, Release 1.4.0

source_delay
The delay (measured in seconds) in the loop used to read values from source (page 113). Defaults to
0.01 seconds which is generally sufficient to keep CPU usage to a minimum while providing adequate
responsiveness.

value
A tuple containing a value for each subordinate device. This property can also be set to update the
state of all subordinate output devices.

values
An infinite iterator of values read from value.

LedBorg

class gpiozero.LedBorg(initial_value=(0, 0, 0), pwm=True, pin_factory=None)
Extends RGBLED (page 84) for the PiBorg LedBorg250: an add-on board containing a very bright RGB
LED.

The LedBorg pins are fixed and therefore there’s no need to specify them when constructing this class. The
following example turns the LedBorg purple:

from gpiozero import LedBorg

led = LedBorg()
led.color = (1, 0, 1)

Parameters

• initial_value (tuple251) – The initial color for the LedBorg. Defaults to black
(0, 0, 0).

• pwm (bool252) – If True (the default), construct PWMLED (page 82) instances for
each component of the LedBorg. If False, construct regular LED (page 81) instances,
which prevents smooth color graduations.

• pin_factory (Factory (page 166)) – See API - Pins (page 163) for more informa-
tion (this is an advanced feature which most users can ignore).

blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, on_color=(1, 1, 1),
off_color=(0, 0, 0), n=None, background=True)

Make the device turn on and off repeatedly.

Parameters

• on_time (float253) – Number of seconds on. Defaults to 1 second.

• off_time (float254) – Number of seconds off. Defaults to 1 second.

• fade_in_time (float255) – Number of seconds to spend fading in. Defaults to 0.
Must be 0 if pwm was False when the class was constructed (ValueError256 will
be raised if not).

• fade_out_time (float257) – Number of seconds to spend fading out. Defaults
to 0. Must be 0 if pwm was False when the class was constructed (ValueError258

250 https://www.piborg.org/ledborg
251 https://docs.python.org/3.5/library/stdtypes.html#tuple
252 https://docs.python.org/3.5/library/functions.html#bool
253 https://docs.python.org/3.5/library/functions.html#float
254 https://docs.python.org/3.5/library/functions.html#float
255 https://docs.python.org/3.5/library/functions.html#float
256 https://docs.python.org/3.5/library/exceptions.html#ValueError
257 https://docs.python.org/3.5/library/functions.html#float
258 https://docs.python.org/3.5/library/exceptions.html#ValueError

114 Chapter 14. API - Boards and Accessories

https://www.piborg.org/ledborg
https://docs.python.org/3.5/library/stdtypes.html#tuple
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/exceptions.html#ValueError
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/exceptions.html#ValueError

Gpiozero Documentation, Release 1.4.0

will be raised if not).

• on_color (tuple259) – The color to use when the LED is “on”. Defaults to white.

• off_color (tuple260) – The color to use when the LED is “off”. Defaults to black.

• n (int261) – Number of times to blink; None (the default) means forever.

• background (bool262) – If True (the default), start a background thread to con-
tinue blinking and return immediately. If False, only return when the blink is fin-
ished (warning: the default value of n will result in this method never returning).

close()
Shut down the device and release all associated resources. This method can be called on an already
closed device without raising an exception.

This method is primarily intended for interactive use at the command line. It disables the device and
releases its pin(s) for use by another device.

You can attempt to do this simply by deleting an object, but unless you’ve cleaned up all references
to the object this may not work (even if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By contrast, the close method provides
a means of ensuring that the object is shut down.

For example, if you have a breadboard with a buzzer connected to pin 16, but then wish to attach an
LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device (page 147) descendents can also be used as context managers using the with263 statement.
For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

off()
Turn the LED off. This is equivalent to setting the LED color to black (0, 0, 0).

on()
Turn the LED on. This equivalent to setting the LED color to white (1, 1, 1).

pulse(fade_in_time=1, fade_out_time=1, on_color=(1, 1, 1), off_color=(0, 0, 0), n=None, back-
ground=True)

Make the device fade in and out repeatedly.

Parameters

• fade_in_time (float264) – Number of seconds to spend fading in. Defaults to 1.

259 https://docs.python.org/3.5/library/stdtypes.html#tuple
260 https://docs.python.org/3.5/library/stdtypes.html#tuple
261 https://docs.python.org/3.5/library/functions.html#int
262 https://docs.python.org/3.5/library/functions.html#bool
263 https://docs.python.org/3.5/reference/compound_stmts.html#with
264 https://docs.python.org/3.5/library/functions.html#float

14.5. LedBorg 115

https://docs.python.org/3.5/library/stdtypes.html#tuple
https://docs.python.org/3.5/library/stdtypes.html#tuple
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/reference/compound_stmts.html#with
https://docs.python.org/3.5/library/functions.html#float

Gpiozero Documentation, Release 1.4.0

• fade_out_time (float265) – Number of seconds to spend fading out. Defaults
to 1.

• on_color (tuple266) – The color to use when the LED is “on”. Defaults to white.

• off_color (tuple267) – The color to use when the LED is “off”. Defaults to black.

• n (int268) – Number of times to pulse; None (the default) means forever.

• background (bool269) – If True (the default), start a background thread to con-
tinue pulsing and return immediately. If False, only return when the pulse is finished
(warning: the default value of n will result in this method never returning).

toggle()
Toggle the state of the device. If the device is currently off (value (page 116) is (0, 0, 0)), this
changes it to “fully” on (value (page 116) is (1, 1, 1)). If the device has a specific color, this
method inverts the color.

color
Represents the color of the LED as an RGB 3-tuple of (red, green, blue) where each value is
between 0 and 1 if pwm was True when the class was constructed (and only 0 or 1 if not).

For example, purple would be (1, 0, 1) and yellow would be (1, 1, 0), while orange would
be (1, 0.5, 0).

is_active
Returns True if the LED is currently active (not black) and False otherwise.

is_lit
Returns True if the LED is currently active (not black) and False otherwise.

source
The iterable to use as a source of values for value (page 116).

source_delay
The delay (measured in seconds) in the loop used to read values from source (page 116). Defaults to
0.01 seconds which is generally sufficient to keep CPU usage to a minimum while providing adequate
responsiveness.

value
Represents the color of the LED as an RGB 3-tuple of (red, green, blue) where each value is
between 0 and 1 if pwm was True when the class was constructed (and only 0 or 1 if not).

For example, purple would be (1, 0, 1) and yellow would be (1, 1, 0), while orange would
be (1, 0.5, 0).

values
An infinite iterator of values read from value.

PiLITEr

class gpiozero.PiLiter(pwm=False, initial_value=False, pin_factory=None)
Extends LEDBoard (page 105) for the Ciseco Pi-LITEr270: a strip of 8 very bright LEDs.

The Pi-LITEr pins are fixed and therefore there’s no need to specify them when constructing this class. The
following example turns on all the LEDs of the Pi-LITEr:

265 https://docs.python.org/3.5/library/functions.html#float
266 https://docs.python.org/3.5/library/stdtypes.html#tuple
267 https://docs.python.org/3.5/library/stdtypes.html#tuple
268 https://docs.python.org/3.5/library/functions.html#int
269 https://docs.python.org/3.5/library/functions.html#bool
270 http://shop.ciseco.co.uk/pi-liter-8-led-strip-for-the-raspberry-pi/

116 Chapter 14. API - Boards and Accessories

https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/stdtypes.html#tuple
https://docs.python.org/3.5/library/stdtypes.html#tuple
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bool
http://shop.ciseco.co.uk/pi-liter-8-led-strip-for-the-raspberry-pi/

Gpiozero Documentation, Release 1.4.0

from gpiozero import PiLiter

lite = PiLiter()
lite.on()

Parameters

• pwm (bool271) – If True, construct PWMLED (page 82) instances for each pin. If
False (the default), construct regular LED (page 81) instances.

• initial_value (bool272) – If False (the default), all LEDs will be off initially.
If None, each device will be left in whatever state the pin is found in when configured
for output (warning: this can be on). If True, the device will be switched on initially.

• pin_factory (Factory (page 166)) – See API - Pins (page 163) for more informa-
tion (this is an advanced feature which most users can ignore).

blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, n=None, background=True)
Make all the LEDs turn on and off repeatedly.

Parameters

• on_time (float273) – Number of seconds on. Defaults to 1 second.

• off_time (float274) – Number of seconds off. Defaults to 1 second.

• fade_in_time (float275) – Number of seconds to spend fading in. Defaults to 0.
Must be 0 if pwm was False when the class was constructed (ValueError276 will
be raised if not).

• fade_out_time (float277) – Number of seconds to spend fading out. Defaults
to 0. Must be 0 if pwm was False when the class was constructed (ValueError278

will be raised if not).

• n (int279) – Number of times to blink; None (the default) means forever.

• background (bool280) – If True, start a background thread to continue blinking
and return immediately. If False, only return when the blink is finished (warning:
the default value of n will result in this method never returning).

close()
Shut down the device and release all associated resources. This method can be called on an already
closed device without raising an exception.

This method is primarily intended for interactive use at the command line. It disables the device and
releases its pin(s) for use by another device.

You can attempt to do this simply by deleting an object, but unless you’ve cleaned up all references
to the object this may not work (even if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By contrast, the close method provides
a means of ensuring that the object is shut down.

For example, if you have a breadboard with a buzzer connected to pin 16, but then wish to attach an
LED instead:

271 https://docs.python.org/3.5/library/functions.html#bool
272 https://docs.python.org/3.5/library/functions.html#bool
273 https://docs.python.org/3.5/library/functions.html#float
274 https://docs.python.org/3.5/library/functions.html#float
275 https://docs.python.org/3.5/library/functions.html#float
276 https://docs.python.org/3.5/library/exceptions.html#ValueError
277 https://docs.python.org/3.5/library/functions.html#float
278 https://docs.python.org/3.5/library/exceptions.html#ValueError
279 https://docs.python.org/3.5/library/functions.html#int
280 https://docs.python.org/3.5/library/functions.html#bool

14.6. PiLITEr 117

https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/exceptions.html#ValueError
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/exceptions.html#ValueError
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bool

Gpiozero Documentation, Release 1.4.0

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device (page 147) descendents can also be used as context managers using the with281 statement.
For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

off(*args)
Turn all the output devices off.

on(*args)
Turn all the output devices on.

pulse(fade_in_time=1, fade_out_time=1, n=None, background=True)
Make the device fade in and out repeatedly.

Parameters

• fade_in_time (float282) – Number of seconds to spend fading in. Defaults to 1.

• fade_out_time (float283) – Number of seconds to spend fading out. Defaults
to 1.

• n (int284) – Number of times to blink; None (the default) means forever.

• background (bool285) – If True (the default), start a background thread to con-
tinue blinking and return immediately. If False, only return when the blink is fin-
ished (warning: the default value of n will result in this method never returning).

toggle(*args)
Toggle all the output devices. For each device, if it’s on, turn it off; if it’s off, turn it on.

leds
A flat tuple of all LEDs contained in this collection (and all sub-collections).

source
The iterable to use as a source of values for value (page 118).

source_delay
The delay (measured in seconds) in the loop used to read values from source (page 118). Defaults to
0.01 seconds which is generally sufficient to keep CPU usage to a minimum while providing adequate
responsiveness.

value
A tuple containing a value for each subordinate device. This property can also be set to update the
state of all subordinate output devices.

values
An infinite iterator of values read from value.

281 https://docs.python.org/3.5/reference/compound_stmts.html#with
282 https://docs.python.org/3.5/library/functions.html#float
283 https://docs.python.org/3.5/library/functions.html#float
284 https://docs.python.org/3.5/library/functions.html#int
285 https://docs.python.org/3.5/library/functions.html#bool

118 Chapter 14. API - Boards and Accessories

https://docs.python.org/3.5/reference/compound_stmts.html#with
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bool

Gpiozero Documentation, Release 1.4.0

PiLITEr Bar Graph

class gpiozero.PiLiterBarGraph(pwm=False, initial_value=0.0, pin_factory=None)
Extends LEDBarGraph (page 108) to treat the Ciseco Pi-LITEr286 as an 8-segment bar graph.

The Pi-LITEr pins are fixed and therefore there’s no need to specify them when constructing this class. The
following example sets the graph value to 0.5:

from gpiozero import PiLiterBarGraph

graph = PiLiterBarGraph()
graph.value = 0.5

Parameters

• pwm (bool287) – If True, construct PWMLED (page 82) instances for each pin. If
False (the default), construct regular LED (page 81) instances.

• initial_value (float288) – The initial value (page 119) of the graph given as a
float between -1 and +1. Defaults to 0.0.

• pin_factory (Factory (page 166)) – See API - Pins (page 163) for more informa-
tion (this is an advanced feature which most users can ignore).

off()
Turn all the output devices off.

on()
Turn all the output devices on.

toggle()
Toggle all the output devices. For each device, if it’s on, turn it off; if it’s off, turn it on.

leds
A flat tuple of all LEDs contained in this collection (and all sub-collections).

source
The iterable to use as a source of values for value (page 119).

source_delay
The delay (measured in seconds) in the loop used to read values from source (page 119). Defaults to
0.01 seconds which is generally sufficient to keep CPU usage to a minimum while providing adequate
responsiveness.

value
The value of the LED bar graph. When no LEDs are lit, the value is 0. When all LEDs are lit, the
value is 1. Values between 0 and 1 light LEDs linearly from first to last. Values between 0 and -1 light
LEDs linearly from last to first.

To light a particular number of LEDs, simply divide that number by the number of LEDs. For example,
if your graph contains 3 LEDs, the following will light the first:

from gpiozero import LEDBarGraph

graph = LEDBarGraph(12, 16, 19)
graph.value = 1/3

Note: Setting value to -1 will light all LEDs. However, querying it subsequently will return 1 as both
representations are the same in hardware. The readable range of value (page 119) is effectively -1 <

286 http://shop.ciseco.co.uk/pi-liter-8-led-strip-for-the-raspberry-pi/
287 https://docs.python.org/3.5/library/functions.html#bool
288 https://docs.python.org/3.5/library/functions.html#float

14.7. PiLITEr Bar Graph 119

http://shop.ciseco.co.uk/pi-liter-8-led-strip-for-the-raspberry-pi/
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/functions.html#float

Gpiozero Documentation, Release 1.4.0

value <= 1.

values
An infinite iterator of values read from value.

PI-TRAFFIC

class gpiozero.PiTraffic(pwm=False, initial_value=False, pin_factory=None)
Extends TrafficLights (page 111) for the Low Voltage Labs PI-TRAFFIC289 vertical traffic lights
board when attached to GPIO pins 9, 10, and 11.

There’s no need to specify the pins if the PI-TRAFFIC is connected to the default pins (9, 10, 11). The
following example turns on the amber LED on the PI-TRAFFIC:

from gpiozero import PiTraffic

traffic = PiTraffic()
traffic.amber.on()

To use the PI-TRAFFIC board when attached to a non-standard set of pins, simply use the parent class,
TrafficLights (page 111).

Parameters

• pwm (bool290) – If True, construct PWMLED (page 82) instances to represent each
LED. If False (the default), construct regular LED (page 81) instances.

• initial_value (bool291) – If False (the default), all LEDs will be off initially.
If None, each device will be left in whatever state the pin is found in when configured
for output (warning: this can be on). If True, the device will be switched on initially.

• pin_factory (Factory (page 166)) – See API - Pins (page 163) for more informa-
tion (this is an advanced feature which most users can ignore).

blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, n=None, background=True)
Make all the LEDs turn on and off repeatedly.

Parameters

• on_time (float292) – Number of seconds on. Defaults to 1 second.

• off_time (float293) – Number of seconds off. Defaults to 1 second.

• fade_in_time (float294) – Number of seconds to spend fading in. Defaults to 0.
Must be 0 if pwm was False when the class was constructed (ValueError295 will
be raised if not).

• fade_out_time (float296) – Number of seconds to spend fading out. Defaults
to 0. Must be 0 if pwm was False when the class was constructed (ValueError297

will be raised if not).

• n (int298) – Number of times to blink; None (the default) means forever.

• background (bool299) – If True, start a background thread to continue blinking
289 http://lowvoltagelabs.com/products/pi-traffic/
290 https://docs.python.org/3.5/library/functions.html#bool
291 https://docs.python.org/3.5/library/functions.html#bool
292 https://docs.python.org/3.5/library/functions.html#float
293 https://docs.python.org/3.5/library/functions.html#float
294 https://docs.python.org/3.5/library/functions.html#float
295 https://docs.python.org/3.5/library/exceptions.html#ValueError
296 https://docs.python.org/3.5/library/functions.html#float
297 https://docs.python.org/3.5/library/exceptions.html#ValueError
298 https://docs.python.org/3.5/library/functions.html#int
299 https://docs.python.org/3.5/library/functions.html#bool

120 Chapter 14. API - Boards and Accessories

http://lowvoltagelabs.com/products/pi-traffic/
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/exceptions.html#ValueError
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/exceptions.html#ValueError
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bool

Gpiozero Documentation, Release 1.4.0

and return immediately. If False, only return when the blink is finished (warning:
the default value of n will result in this method never returning).

close()
Shut down the device and release all associated resources. This method can be called on an already
closed device without raising an exception.

This method is primarily intended for interactive use at the command line. It disables the device and
releases its pin(s) for use by another device.

You can attempt to do this simply by deleting an object, but unless you’ve cleaned up all references
to the object this may not work (even if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By contrast, the close method provides
a means of ensuring that the object is shut down.

For example, if you have a breadboard with a buzzer connected to pin 16, but then wish to attach an
LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device (page 147) descendents can also be used as context managers using the with300 statement.
For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

off(*args)
Turn all the output devices off.

on(*args)
Turn all the output devices on.

pulse(fade_in_time=1, fade_out_time=1, n=None, background=True)
Make the device fade in and out repeatedly.

Parameters

• fade_in_time (float301) – Number of seconds to spend fading in. Defaults to 1.

• fade_out_time (float302) – Number of seconds to spend fading out. Defaults
to 1.

• n (int303) – Number of times to blink; None (the default) means forever.

• background (bool304) – If True (the default), start a background thread to con-
tinue blinking and return immediately. If False, only return when the blink is fin-
ished (warning: the default value of n will result in this method never returning).

toggle(*args)
Toggle all the output devices. For each device, if it’s on, turn it off; if it’s off, turn it on.

300 https://docs.python.org/3.5/reference/compound_stmts.html#with
301 https://docs.python.org/3.5/library/functions.html#float
302 https://docs.python.org/3.5/library/functions.html#float
303 https://docs.python.org/3.5/library/functions.html#int
304 https://docs.python.org/3.5/library/functions.html#bool

14.8. PI-TRAFFIC 121

https://docs.python.org/3.5/reference/compound_stmts.html#with
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bool

Gpiozero Documentation, Release 1.4.0

leds
A flat tuple of all LEDs contained in this collection (and all sub-collections).

source
The iterable to use as a source of values for value (page 122).

source_delay
The delay (measured in seconds) in the loop used to read values from source (page 122). Defaults to
0.01 seconds which is generally sufficient to keep CPU usage to a minimum while providing adequate
responsiveness.

value
A tuple containing a value for each subordinate device. This property can also be set to update the
state of all subordinate output devices.

values
An infinite iterator of values read from value.

Pi-Stop

class gpiozero.PiStop(location=None, pwm=False, initial_value=False, pin_factory=None)
Extends TrafficLights (page 111) for the PiHardware Pi-Stop305: a vertical traffic lights board.

The following example turns on the amber LED on a Pi-Stop connected to location A+:

from gpiozero import PiStop

traffic = PiStop('A+')
traffic.amber.on()

Parameters

• location (str306) – The location307 on the GPIO header to which the Pi-Stop is
connected. Must be one of: A, A+, B, B+, C, D.

• pwm (bool308) – If True, construct PWMLED (page 82) instances to represent each
LED. If False (the default), construct regular LED (page 81) instances.

• initial_value (bool309) – If False (the default), all LEDs will be off initially.
If None, each device will be left in whatever state the pin is found in when configured
for output (warning: this can be on). If True, the device will be switched on initially.

• pin_factory (Factory (page 166)) – See API - Pins (page 163) for more informa-
tion (this is an advanced feature which most users can ignore).

blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, n=None, background=True)
Make all the LEDs turn on and off repeatedly.

Parameters

• on_time (float310) – Number of seconds on. Defaults to 1 second.

• off_time (float311) – Number of seconds off. Defaults to 1 second.
305 https://pihw.wordpress.com/meltwaters-pi-hardware-kits/pi-stop/
306 https://docs.python.org/3.5/library/stdtypes.html#str
307 https://github.com/PiHw/Pi-Stop/blob/master/markdown_source/markdown/Discover-PiStop.md
308 https://docs.python.org/3.5/library/functions.html#bool
309 https://docs.python.org/3.5/library/functions.html#bool
310 https://docs.python.org/3.5/library/functions.html#float
311 https://docs.python.org/3.5/library/functions.html#float

122 Chapter 14. API - Boards and Accessories

https://pihw.wordpress.com/meltwaters-pi-hardware-kits/pi-stop/
https://docs.python.org/3.5/library/stdtypes.html#str
https://github.com/PiHw/Pi-Stop/blob/master/markdown_source/markdown/Discover-PiStop.md
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float

Gpiozero Documentation, Release 1.4.0

• fade_in_time (float312) – Number of seconds to spend fading in. Defaults to 0.
Must be 0 if pwm was False when the class was constructed (ValueError313 will
be raised if not).

• fade_out_time (float314) – Number of seconds to spend fading out. Defaults
to 0. Must be 0 if pwm was False when the class was constructed (ValueError315

will be raised if not).

• n (int316) – Number of times to blink; None (the default) means forever.

• background (bool317) – If True, start a background thread to continue blinking
and return immediately. If False, only return when the blink is finished (warning:
the default value of n will result in this method never returning).

close()
Shut down the device and release all associated resources. This method can be called on an already
closed device without raising an exception.

This method is primarily intended for interactive use at the command line. It disables the device and
releases its pin(s) for use by another device.

You can attempt to do this simply by deleting an object, but unless you’ve cleaned up all references
to the object this may not work (even if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By contrast, the close method provides
a means of ensuring that the object is shut down.

For example, if you have a breadboard with a buzzer connected to pin 16, but then wish to attach an
LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device (page 147) descendents can also be used as context managers using the with318 statement.
For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

off(*args)
Turn all the output devices off.

on(*args)
Turn all the output devices on.

pulse(fade_in_time=1, fade_out_time=1, n=None, background=True)
Make the device fade in and out repeatedly.

Parameters
312 https://docs.python.org/3.5/library/functions.html#float
313 https://docs.python.org/3.5/library/exceptions.html#ValueError
314 https://docs.python.org/3.5/library/functions.html#float
315 https://docs.python.org/3.5/library/exceptions.html#ValueError
316 https://docs.python.org/3.5/library/functions.html#int
317 https://docs.python.org/3.5/library/functions.html#bool
318 https://docs.python.org/3.5/reference/compound_stmts.html#with

14.9. Pi-Stop 123

https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/exceptions.html#ValueError
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/exceptions.html#ValueError
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/reference/compound_stmts.html#with

Gpiozero Documentation, Release 1.4.0

• fade_in_time (float319) – Number of seconds to spend fading in. Defaults to 1.

• fade_out_time (float320) – Number of seconds to spend fading out. Defaults
to 1.

• n (int321) – Number of times to blink; None (the default) means forever.

• background (bool322) – If True (the default), start a background thread to con-
tinue blinking and return immediately. If False, only return when the blink is fin-
ished (warning: the default value of n will result in this method never returning).

toggle(*args)
Toggle all the output devices. For each device, if it’s on, turn it off; if it’s off, turn it on.

leds
A flat tuple of all LEDs contained in this collection (and all sub-collections).

source
The iterable to use as a source of values for value (page 124).

source_delay
The delay (measured in seconds) in the loop used to read values from source (page 124). Defaults to
0.01 seconds which is generally sufficient to keep CPU usage to a minimum while providing adequate
responsiveness.

value
A tuple containing a value for each subordinate device. This property can also be set to update the
state of all subordinate output devices.

values
An infinite iterator of values read from value.

TrafficLightsBuzzer

class gpiozero.TrafficLightsBuzzer(lights, buzzer, button, pin_factory=None)
Extends CompositeOutputDevice (page 137) and is a generic class for HATs with traffic lights, a
button and a buzzer.

Parameters

• lights (TrafficLights (page 111)) – An instance of TrafficLights
(page 111) representing the traffic lights of the HAT.

• buzzer (Buzzer (page 86)) – An instance of Buzzer (page 86) representing the
buzzer on the HAT.

• button (Button (page 69)) – An instance of Button (page 69) representing the
button on the HAT.

• pin_factory (Factory (page 166)) – See API - Pins (page 163) for more informa-
tion (this is an advanced feature which most users can ignore).

off()
Turn all the output devices off.

on()
Turn all the output devices on.

toggle()
Toggle all the output devices. For each device, if it’s on, turn it off; if it’s off, turn it on.

319 https://docs.python.org/3.5/library/functions.html#float
320 https://docs.python.org/3.5/library/functions.html#float
321 https://docs.python.org/3.5/library/functions.html#int
322 https://docs.python.org/3.5/library/functions.html#bool

124 Chapter 14. API - Boards and Accessories

https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bool

Gpiozero Documentation, Release 1.4.0

source
The iterable to use as a source of values for value (page 125).

source_delay
The delay (measured in seconds) in the loop used to read values from source (page 124). Defaults to
0.01 seconds which is generally sufficient to keep CPU usage to a minimum while providing adequate
responsiveness.

value
A tuple containing a value for each subordinate device. This property can also be set to update the
state of all subordinate output devices.

values
An infinite iterator of values read from value.

Fish Dish

class gpiozero.FishDish(pwm=False, pin_factory=None)
Extends TrafficLightsBuzzer (page 124) for the Pi Supply FishDish323: traffic light LEDs, a button
and a buzzer.

The FishDish pins are fixed and therefore there’s no need to specify them when constructing this class. The
following example waits for the button to be pressed on the FishDish, then turns on all the LEDs:

from gpiozero import FishDish

fish = FishDish()
fish.button.wait_for_press()
fish.lights.on()

Parameters

• pwm (bool324) – If True, construct PWMLED (page 82) instances to represent each
LED. If False (the default), construct regular LED (page 81) instances.

• pin_factory (Factory (page 166)) – See API - Pins (page 163) for more informa-
tion (this is an advanced feature which most users can ignore).

off()
Turn all the output devices off.

on()
Turn all the output devices on.

toggle()
Toggle all the output devices. For each device, if it’s on, turn it off; if it’s off, turn it on.

source
The iterable to use as a source of values for value (page 125).

source_delay
The delay (measured in seconds) in the loop used to read values from source (page 125). Defaults to
0.01 seconds which is generally sufficient to keep CPU usage to a minimum while providing adequate
responsiveness.

value
A tuple containing a value for each subordinate device. This property can also be set to update the
state of all subordinate output devices.

323 https://www.pi-supply.com/product/fish-dish-raspberry-pi-led-buzzer-board/
324 https://docs.python.org/3.5/library/functions.html#bool

14.11. Fish Dish 125

https://www.pi-supply.com/product/fish-dish-raspberry-pi-led-buzzer-board/
https://docs.python.org/3.5/library/functions.html#bool

Gpiozero Documentation, Release 1.4.0

values
An infinite iterator of values read from value.

Traffic HAT

class gpiozero.TrafficHat(pwm=False, pin_factory=None)
Extends TrafficLightsBuzzer (page 124) for the Ryanteck Traffic HAT325: traffic light LEDs, a
button and a buzzer.

The Traffic HAT pins are fixed and therefore there’s no need to specify them when constructing this class.
The following example waits for the button to be pressed on the Traffic HAT, then turns on all the LEDs:

from gpiozero import TrafficHat

hat = TrafficHat()
hat.button.wait_for_press()
hat.lights.on()

Parameters

• pwm (bool326) – If True, construct PWMLED (page 82) instances to represent each
LED. If False (the default), construct regular LED (page 81) instances.

• pin_factory (Factory (page 166)) – See API - Pins (page 163) for more informa-
tion (this is an advanced feature which most users can ignore).

off()
Turn all the output devices off.

on()
Turn all the output devices on.

toggle()
Toggle all the output devices. For each device, if it’s on, turn it off; if it’s off, turn it on.

source
The iterable to use as a source of values for value (page 126).

source_delay
The delay (measured in seconds) in the loop used to read values from source (page 126). Defaults to
0.01 seconds which is generally sufficient to keep CPU usage to a minimum while providing adequate
responsiveness.

value
A tuple containing a value for each subordinate device. This property can also be set to update the
state of all subordinate output devices.

values
An infinite iterator of values read from value.

Robot

class gpiozero.Robot(left=None, right=None, pin_factory=None)
Extends CompositeDevice (page 138) to represent a generic dual-motor robot.

This class is constructed with two tuples representing the forward and backward pins of the left and right
controllers respectively. For example, if the left motor’s controller is connected to GPIOs 4 and 14, while

325 https://ryanteck.uk/hats/1-traffichat-0635648607122.html
326 https://docs.python.org/3.5/library/functions.html#bool

126 Chapter 14. API - Boards and Accessories

https://ryanteck.uk/hats/1-traffichat-0635648607122.html
https://docs.python.org/3.5/library/functions.html#bool

Gpiozero Documentation, Release 1.4.0

the right motor’s controller is connected to GPIOs 17 and 18 then the following example will drive the robot
forward:

from gpiozero import Robot

robot = Robot(left=(4, 14), right=(17, 18))
robot.forward()

Parameters

• left (tuple327) – A tuple of two GPIO pins representing the forward and backward
inputs of the left motor’s controller.

• right (tuple328) – A tuple of two GPIO pins representing the forward and backward
inputs of the right motor’s controller.

• pin_factory (Factory (page 166)) – See API - Pins (page 163) for more informa-
tion (this is an advanced feature which most users can ignore).

backward(speed=1)
Drive the robot backward by running both motors backward.

Parameters speed (float329) – Speed at which to drive the motors, as a value between
0 (stopped) and 1 (full speed). The default is 1.

forward(speed=1)
Drive the robot forward by running both motors forward.

Parameters speed (float330) – Speed at which to drive the motors, as a value between
0 (stopped) and 1 (full speed). The default is 1.

left(speed=1)
Make the robot turn left by running the right motor forward and left motor backward.

Parameters speed (float331) – Speed at which to drive the motors, as a value between
0 (stopped) and 1 (full speed). The default is 1.

reverse()
Reverse the robot’s current motor directions. If the robot is currently running full speed forward, it
will run full speed backward. If the robot is turning left at half-speed, it will turn right at half-speed.
If the robot is currently stopped it will remain stopped.

right(speed=1)
Make the robot turn right by running the left motor forward and right motor backward.

Parameters speed (float332) – Speed at which to drive the motors, as a value between
0 (stopped) and 1 (full speed). The default is 1.

stop()
Stop the robot.

source
The iterable to use as a source of values for value (page 127).

source_delay
The delay (measured in seconds) in the loop used to read values from source (page 127). Defaults to
0.01 seconds which is generally sufficient to keep CPU usage to a minimum while providing adequate
responsiveness.

327 https://docs.python.org/3.5/library/stdtypes.html#tuple
328 https://docs.python.org/3.5/library/stdtypes.html#tuple
329 https://docs.python.org/3.5/library/functions.html#float
330 https://docs.python.org/3.5/library/functions.html#float
331 https://docs.python.org/3.5/library/functions.html#float
332 https://docs.python.org/3.5/library/functions.html#float

14.13. Robot 127

https://docs.python.org/3.5/library/stdtypes.html#tuple
https://docs.python.org/3.5/library/stdtypes.html#tuple
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float

Gpiozero Documentation, Release 1.4.0

value
Represents the motion of the robot as a tuple of (left_motor_speed, right_motor_speed) with (-1,
-1) representing full speed backwards, (1, 1) representing full speed forwards, and (0, 0) rep-
resenting stopped.

values
An infinite iterator of values read from value.

Ryanteck MCB Robot

class gpiozero.RyanteckRobot(pin_factory=None)
Extends Robot (page 126) for the Ryanteck motor controller board333.

The Ryanteck MCB pins are fixed and therefore there’s no need to specify them when constructing this
class. The following example drives the robot forward:

from gpiozero import RyanteckRobot

robot = RyanteckRobot()
robot.forward()

Parameters pin_factory (Factory (page 166)) – See API - Pins (page 163) for more
information (this is an advanced feature which most users can ignore).

backward(speed=1)
Drive the robot backward by running both motors backward.

Parameters speed (float334) – Speed at which to drive the motors, as a value between
0 (stopped) and 1 (full speed). The default is 1.

forward(speed=1)
Drive the robot forward by running both motors forward.

Parameters speed (float335) – Speed at which to drive the motors, as a value between
0 (stopped) and 1 (full speed). The default is 1.

left(speed=1)
Make the robot turn left by running the right motor forward and left motor backward.

Parameters speed (float336) – Speed at which to drive the motors, as a value between
0 (stopped) and 1 (full speed). The default is 1.

reverse()
Reverse the robot’s current motor directions. If the robot is currently running full speed forward, it
will run full speed backward. If the robot is turning left at half-speed, it will turn right at half-speed.
If the robot is currently stopped it will remain stopped.

right(speed=1)
Make the robot turn right by running the left motor forward and right motor backward.

Parameters speed (float337) – Speed at which to drive the motors, as a value between
0 (stopped) and 1 (full speed). The default is 1.

stop()
Stop the robot.

source
The iterable to use as a source of values for value (page 129).

333 https://ryanteck.uk/add-ons/6-ryanteck-rpi-motor-controller-board-0635648607160.html
334 https://docs.python.org/3.5/library/functions.html#float
335 https://docs.python.org/3.5/library/functions.html#float
336 https://docs.python.org/3.5/library/functions.html#float
337 https://docs.python.org/3.5/library/functions.html#float

128 Chapter 14. API - Boards and Accessories

https://ryanteck.uk/add-ons/6-ryanteck-rpi-motor-controller-board-0635648607160.html
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float

Gpiozero Documentation, Release 1.4.0

source_delay
The delay (measured in seconds) in the loop used to read values from source (page 128). Defaults to
0.01 seconds which is generally sufficient to keep CPU usage to a minimum while providing adequate
responsiveness.

value
Represents the motion of the robot as a tuple of (left_motor_speed, right_motor_speed) with (-1,
-1) representing full speed backwards, (1, 1) representing full speed forwards, and (0, 0) rep-
resenting stopped.

values
An infinite iterator of values read from value.

CamJam #3 Kit Robot

class gpiozero.CamJamKitRobot(pin_factory=None)
Extends Robot (page 126) for the CamJam #3 EduKit338 motor controller board.

The CamJam robot controller pins are fixed and therefore there’s no need to specify them when constructing
this class. The following example drives the robot forward:

from gpiozero import CamJamKitRobot

robot = CamJamKitRobot()
robot.forward()

Parameters pin_factory (Factory (page 166)) – See API - Pins (page 163) for more
information (this is an advanced feature which most users can ignore).

backward(speed=1)
Drive the robot backward by running both motors backward.

Parameters speed (float339) – Speed at which to drive the motors, as a value between
0 (stopped) and 1 (full speed). The default is 1.

forward(speed=1)
Drive the robot forward by running both motors forward.

Parameters speed (float340) – Speed at which to drive the motors, as a value between
0 (stopped) and 1 (full speed). The default is 1.

left(speed=1)
Make the robot turn left by running the right motor forward and left motor backward.

Parameters speed (float341) – Speed at which to drive the motors, as a value between
0 (stopped) and 1 (full speed). The default is 1.

reverse()
Reverse the robot’s current motor directions. If the robot is currently running full speed forward, it
will run full speed backward. If the robot is turning left at half-speed, it will turn right at half-speed.
If the robot is currently stopped it will remain stopped.

right(speed=1)
Make the robot turn right by running the left motor forward and right motor backward.

Parameters speed (float342) – Speed at which to drive the motors, as a value between
0 (stopped) and 1 (full speed). The default is 1.

338 http://camjam.me/?page_id=1035
339 https://docs.python.org/3.5/library/functions.html#float
340 https://docs.python.org/3.5/library/functions.html#float
341 https://docs.python.org/3.5/library/functions.html#float
342 https://docs.python.org/3.5/library/functions.html#float

14.15. CamJam #3 Kit Robot 129

http://camjam.me/?page_id=1035
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float

Gpiozero Documentation, Release 1.4.0

stop()
Stop the robot.

source
The iterable to use as a source of values for value (page 130).

source_delay
The delay (measured in seconds) in the loop used to read values from source (page 130). Defaults to
0.01 seconds which is generally sufficient to keep CPU usage to a minimum while providing adequate
responsiveness.

value
Represents the motion of the robot as a tuple of (left_motor_speed, right_motor_speed) with (-1,
-1) representing full speed backwards, (1, 1) representing full speed forwards, and (0, 0) rep-
resenting stopped.

values
An infinite iterator of values read from value.

Energenie

class gpiozero.Energenie(socket=None, initial_value=False, pin_factory=None)
Extends Device (page 147) to represent an Energenie socket343 controller.

This class is constructed with a socket number and an optional initial state (defaults to False, meaning
off). Instances of this class can be used to switch peripherals on and off. For example:

from gpiozero import Energenie

lamp = Energenie(1)
lamp.on()

Parameters

• socket (int344) – Which socket this instance should control. This is an integer num-
ber between 1 and 4.

• initial_value (bool345) – The initial state of the socket. As Energenie sockets
provide no means of reading their state, you must provide an initial state for the socket,
which will be set upon construction. This defaults to False which will switch the
socket off.

• pin_factory (Factory (page 166)) – See API - Pins (page 163) for more informa-
tion (this is an advanced feature which most users can ignore).

close()
Shut down the device and release all associated resources. This method can be called on an already
closed device without raising an exception.

This method is primarily intended for interactive use at the command line. It disables the device and
releases its pin(s) for use by another device.

You can attempt to do this simply by deleting an object, but unless you’ve cleaned up all references
to the object this may not work (even if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By contrast, the close method provides
a means of ensuring that the object is shut down.

For example, if you have a breadboard with a buzzer connected to pin 16, but then wish to attach an
LED instead:

343 https://energenie4u.co.uk/index.php/catalogue/product/ENER002-2PI
344 https://docs.python.org/3.5/library/functions.html#int
345 https://docs.python.org/3.5/library/functions.html#bool

130 Chapter 14. API - Boards and Accessories

https://energenie4u.co.uk/index.php/catalogue/product/ENER002-2PI
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bool

Gpiozero Documentation, Release 1.4.0

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device (page 147) descendents can also be used as context managers using the with346 statement.
For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

is_active
Returns True if the device is currently active and False otherwise. This property is usually derived
from value. Unlike value, this is always a boolean.

source
The iterable to use as a source of values for value.

source_delay
The delay (measured in seconds) in the loop used to read values from source (page 131). Defaults to
0.01 seconds which is generally sufficient to keep CPU usage to a minimum while providing adequate
responsiveness.

values
An infinite iterator of values read from value.

StatusZero

class gpiozero.StatusZero(*labels, pwm=False, active_high=True, initial_value=False,
pin_factory=None)

Extends LEDBoard (page 105) for The Pi Hut’s STATUS Zero347: a Pi Zero sized add-on board with three
sets of red/green LEDs to provide a status indicator.

The following example designates the first strip the label “wifi” and the second “raining”, and turns them
green and red respectfully:

from gpiozero import StatusZero

status = StatusZero('wifi', 'raining')
status.wifi.green.on()
status.raining.red.on()

Parameters

• *labels (str348) – Specify the names of the labels you wish to designate the strips
to. You can list up to three labels. If no labels are given, three strips will be initialised
with names ‘one’, ‘two’, and ‘three’. If some, but not all strips are given labels, any
remaining strips will not be initialised.

346 https://docs.python.org/3.5/reference/compound_stmts.html#with
347 https://thepihut.com/statuszero
348 https://docs.python.org/3.5/library/stdtypes.html#str

14.17. StatusZero 131

https://docs.python.org/3.5/reference/compound_stmts.html#with
https://thepihut.com/statuszero
https://docs.python.org/3.5/library/stdtypes.html#str

Gpiozero Documentation, Release 1.4.0

• pin_factory (Factory (page 166)) – See API - Pins (page 163) for more informa-
tion (this is an advanced feature which most users can ignore).

blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, n=None, background=True)
Make all the LEDs turn on and off repeatedly.

Parameters

• on_time (float349) – Number of seconds on. Defaults to 1 second.

• off_time (float350) – Number of seconds off. Defaults to 1 second.

• fade_in_time (float351) – Number of seconds to spend fading in. Defaults to 0.
Must be 0 if pwm was False when the class was constructed (ValueError352 will
be raised if not).

• fade_out_time (float353) – Number of seconds to spend fading out. Defaults
to 0. Must be 0 if pwm was False when the class was constructed (ValueError354

will be raised if not).

• n (int355) – Number of times to blink; None (the default) means forever.

• background (bool356) – If True, start a background thread to continue blinking
and return immediately. If False, only return when the blink is finished (warning:
the default value of n will result in this method never returning).

close()
Shut down the device and release all associated resources. This method can be called on an already
closed device without raising an exception.

This method is primarily intended for interactive use at the command line. It disables the device and
releases its pin(s) for use by another device.

You can attempt to do this simply by deleting an object, but unless you’ve cleaned up all references
to the object this may not work (even if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By contrast, the close method provides
a means of ensuring that the object is shut down.

For example, if you have a breadboard with a buzzer connected to pin 16, but then wish to attach an
LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device (page 147) descendents can also be used as context managers using the with357 statement.
For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:

349 https://docs.python.org/3.5/library/functions.html#float
350 https://docs.python.org/3.5/library/functions.html#float
351 https://docs.python.org/3.5/library/functions.html#float
352 https://docs.python.org/3.5/library/exceptions.html#ValueError
353 https://docs.python.org/3.5/library/functions.html#float
354 https://docs.python.org/3.5/library/exceptions.html#ValueError
355 https://docs.python.org/3.5/library/functions.html#int
356 https://docs.python.org/3.5/library/functions.html#bool
357 https://docs.python.org/3.5/reference/compound_stmts.html#with

132 Chapter 14. API - Boards and Accessories

https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/exceptions.html#ValueError
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/exceptions.html#ValueError
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/reference/compound_stmts.html#with

Gpiozero Documentation, Release 1.4.0

... led.on()

...

off(*args)
Turn all the output devices off.

on(*args)
Turn all the output devices on.

pulse(fade_in_time=1, fade_out_time=1, n=None, background=True)
Make the device fade in and out repeatedly.

Parameters

• fade_in_time (float358) – Number of seconds to spend fading in. Defaults to 1.

• fade_out_time (float359) – Number of seconds to spend fading out. Defaults
to 1.

• n (int360) – Number of times to blink; None (the default) means forever.

• background (bool361) – If True (the default), start a background thread to con-
tinue blinking and return immediately. If False, only return when the blink is fin-
ished (warning: the default value of n will result in this method never returning).

toggle(*args)
Toggle all the output devices. For each device, if it’s on, turn it off; if it’s off, turn it on.

leds
A flat tuple of all LEDs contained in this collection (and all sub-collections).

source
The iterable to use as a source of values for value (page 133).

source_delay
The delay (measured in seconds) in the loop used to read values from source (page 133). Defaults to
0.01 seconds which is generally sufficient to keep CPU usage to a minimum while providing adequate
responsiveness.

value
A tuple containing a value for each subordinate device. This property can also be set to update the
state of all subordinate output devices.

values
An infinite iterator of values read from value.

StatusBoard

class gpiozero.StatusBoard(*labels, pwm=False, active_high=True, initial_value=False,
pin_factory=None)

Extends CompositeOutputDevice (page 137) for The Pi Hut’s STATUS362 board: a HAT sized add-on
board with five sets of red/green LEDs and buttons to provide a status indicator with additional input.

The following example designates the first strip the label “wifi” and the second “raining”, turns the wifi
green and then activates the button to toggle its lights when pressed:

358 https://docs.python.org/3.5/library/functions.html#float
359 https://docs.python.org/3.5/library/functions.html#float
360 https://docs.python.org/3.5/library/functions.html#int
361 https://docs.python.org/3.5/library/functions.html#bool
362 https://thepihut.com/status

14.18. StatusBoard 133

https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bool
https://thepihut.com/status

Gpiozero Documentation, Release 1.4.0

from gpiozero import StatusBoard

status = StatusBoard('wifi', 'raining')
status.wifi.lights.green.on()
status.wifi.button.when_pressed = status.wifi.lights.toggle

Parameters

• *labels (str363) – Specify the names of the labels you wish to designate the strips
to. You can list up to five labels. If no labels are given, five strips will be initialised with
names ‘one’ to ‘five’. If some, but not all strips are given labels, any remaining strips
will not be initialised.

• pin_factory (Factory (page 166)) – See API - Pins (page 163) for more informa-
tion (this is an advanced feature which most users can ignore).

off()
Turn all the output devices off.

on()
Turn all the output devices on.

toggle()
Toggle all the output devices. For each device, if it’s on, turn it off; if it’s off, turn it on.

source
The iterable to use as a source of values for value (page 134).

source_delay
The delay (measured in seconds) in the loop used to read values from source (page 134). Defaults to
0.01 seconds which is generally sufficient to keep CPU usage to a minimum while providing adequate
responsiveness.

value
A tuple containing a value for each subordinate device. This property can also be set to update the
state of all subordinate output devices.

values
An infinite iterator of values read from value.

SnowPi

class gpiozero.SnowPi(pwm=False, initial_value=False, pin_factory=None)
Extends LEDBoard (page 105) for the Ryanteck SnowPi364 board.

The SnowPi pins are fixed and therefore there’s no need to specify them when constructing this class. The
following example turns on the eyes, sets the nose pulsing, and the arms blinking:

from gpiozero import SnowPi

snowman = SnowPi(pwm=True)
snowman.eyes.on()
snowman.nose.pulse()
snowman.arms.blink()

Parameters
363 https://docs.python.org/3.5/library/stdtypes.html#str
364 https://ryanteck.uk/raspberry-pi/114-snowpi-the-gpio-snowman-for-raspberry-pi-0635648608303.html

134 Chapter 14. API - Boards and Accessories

https://docs.python.org/3.5/library/stdtypes.html#str
https://ryanteck.uk/raspberry-pi/114-snowpi-the-gpio-snowman-for-raspberry-pi-0635648608303.html

Gpiozero Documentation, Release 1.4.0

• pwm (bool365) – If True, construct PWMLED (page 82) instances to represent each
LED. If False (the default), construct regular LED (page 81) instances.

• initial_value (bool366) – If False (the default), all LEDs will be off initially.
If None, each device will be left in whatever state the pin is found in when configured
for output (warning: this can be on). If True, the device will be switched on initially.

• pin_factory (Factory (page 166)) – See API - Pins (page 163) for more informa-
tion (this is an advanced feature which most users can ignore).

blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, n=None, background=True)
Make all the LEDs turn on and off repeatedly.

Parameters

• on_time (float367) – Number of seconds on. Defaults to 1 second.

• off_time (float368) – Number of seconds off. Defaults to 1 second.

• fade_in_time (float369) – Number of seconds to spend fading in. Defaults to 0.
Must be 0 if pwm was False when the class was constructed (ValueError370 will
be raised if not).

• fade_out_time (float371) – Number of seconds to spend fading out. Defaults
to 0. Must be 0 if pwm was False when the class was constructed (ValueError372

will be raised if not).

• n (int373) – Number of times to blink; None (the default) means forever.

• background (bool374) – If True, start a background thread to continue blinking
and return immediately. If False, only return when the blink is finished (warning:
the default value of n will result in this method never returning).

close()
Shut down the device and release all associated resources. This method can be called on an already
closed device without raising an exception.

This method is primarily intended for interactive use at the command line. It disables the device and
releases its pin(s) for use by another device.

You can attempt to do this simply by deleting an object, but unless you’ve cleaned up all references
to the object this may not work (even if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By contrast, the close method provides
a means of ensuring that the object is shut down.

For example, if you have a breadboard with a buzzer connected to pin 16, but then wish to attach an
LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

365 https://docs.python.org/3.5/library/functions.html#bool
366 https://docs.python.org/3.5/library/functions.html#bool
367 https://docs.python.org/3.5/library/functions.html#float
368 https://docs.python.org/3.5/library/functions.html#float
369 https://docs.python.org/3.5/library/functions.html#float
370 https://docs.python.org/3.5/library/exceptions.html#ValueError
371 https://docs.python.org/3.5/library/functions.html#float
372 https://docs.python.org/3.5/library/exceptions.html#ValueError
373 https://docs.python.org/3.5/library/functions.html#int
374 https://docs.python.org/3.5/library/functions.html#bool

14.19. SnowPi 135

https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/exceptions.html#ValueError
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/exceptions.html#ValueError
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bool

Gpiozero Documentation, Release 1.4.0

Device (page 147) descendents can also be used as context managers using the with375 statement.
For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

off(*args)
Turn all the output devices off.

on(*args)
Turn all the output devices on.

pulse(fade_in_time=1, fade_out_time=1, n=None, background=True)
Make the device fade in and out repeatedly.

Parameters

• fade_in_time (float376) – Number of seconds to spend fading in. Defaults to 1.

• fade_out_time (float377) – Number of seconds to spend fading out. Defaults
to 1.

• n (int378) – Number of times to blink; None (the default) means forever.

• background (bool379) – If True (the default), start a background thread to con-
tinue blinking and return immediately. If False, only return when the blink is fin-
ished (warning: the default value of n will result in this method never returning).

toggle(*args)
Toggle all the output devices. For each device, if it’s on, turn it off; if it’s off, turn it on.

leds
A flat tuple of all LEDs contained in this collection (and all sub-collections).

source
The iterable to use as a source of values for value (page 136).

source_delay
The delay (measured in seconds) in the loop used to read values from source (page 136). Defaults to
0.01 seconds which is generally sufficient to keep CPU usage to a minimum while providing adequate
responsiveness.

value
A tuple containing a value for each subordinate device. This property can also be set to update the
state of all subordinate output devices.

values
An infinite iterator of values read from value.

Base Classes

The classes in the sections above are derived from a series of base classes, some of which are effectively abstract.
The classes form the (partial) hierarchy displayed in the graph below:

375 https://docs.python.org/3.5/reference/compound_stmts.html#with
376 https://docs.python.org/3.5/library/functions.html#float
377 https://docs.python.org/3.5/library/functions.html#float
378 https://docs.python.org/3.5/library/functions.html#int
379 https://docs.python.org/3.5/library/functions.html#bool

136 Chapter 14. API - Boards and Accessories

https://docs.python.org/3.5/reference/compound_stmts.html#with
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bool

Gpiozero Documentation, Release 1.4.0

Device

CompositeDevice

CompositeOutputDevice

LEDCollection

LEDBoard

LEDBarGraph

PiLiter

PiLiterBarGraph

TrafficLights

SnowPi

PiTraffic

PiStop

TrafficLightsBuzzer FishDish

TrafficHatRobot RyanteckRobot

CamJamKitRobotMotor

Servo AngularServoEnergenie

ButtonBoard

For composite devices, the following chart shows which devices are composed of which other devices:

RGBLED

LED PWMLED

LEDBoard LEDBarGraph ButtonBoard

Button

TrafficLightsBuzzer

TrafficLights Buzzer

Robot

Motor

DigitalOutputDevice PWMOutputDevice

Servo

The following sections document these base classes for advanced users that wish to construct classes for their own
devices.

LEDCollection

class gpiozero.LEDCollection(*pins, pwm=False, active_high=True, initial_value=False,
pin_factory=None, **named_pins)

Extends CompositeOutputDevice (page 137). Abstract base class for LEDBoard (page 105) and
LEDBarGraph (page 108).

leds
A flat tuple of all LEDs contained in this collection (and all sub-collections).

CompositeOutputDevice

class gpiozero.CompositeOutputDevice(*args, _order=None, pin_factory=None, **kwargs)
Extends CompositeDevice (page 138) with on() (page 138), off() (page 138), and toggle()
(page 138) methods for controlling subordinate output devices. Also extends value (page 138) to be
writeable.

Parameters

14.21. LEDCollection 137

Gpiozero Documentation, Release 1.4.0

• _order (list380) – If specified, this is the order of named items specified by key-
word arguments (to ensure that the value (page 138) tuple is constructed with a spe-
cific order). All keyword arguments must be included in the collection. If omitted, an
alphabetically sorted order will be selected for keyword arguments.

• pin_factory (Factory (page 166)) – See API - Pins (page 163) for more informa-
tion (this is an advanced feature which most users can ignore).

off()
Turn all the output devices off.

on()
Turn all the output devices on.

toggle()
Toggle all the output devices. For each device, if it’s on, turn it off; if it’s off, turn it on.

value
A tuple containing a value for each subordinate device. This property can also be set to update the
state of all subordinate output devices.

CompositeDevice

class gpiozero.CompositeDevice(*args, _order=None, pin_factory=None, **kwargs)
Extends Device (page 147). Represents a device composed of multiple devices like simple HATs, H-
bridge motor controllers, robots composed of multiple motors, etc.

The constructor accepts subordinate devices as positional or keyword arguments. Positional arguments form
unnamed devices accessed via the all attribute, while keyword arguments are added to the device as named
(read-only) attributes.

Parameters _order (list381) – If specified, this is the order of named items specified by
keyword arguments (to ensure that the value tuple is constructed with a specific order).
All keyword arguments must be included in the collection. If omitted, an alphabetically
sorted order will be selected for keyword arguments.

close()
Shut down the device and release all associated resources. This method can be called on an already
closed device without raising an exception.

This method is primarily intended for interactive use at the command line. It disables the device and
releases its pin(s) for use by another device.

You can attempt to do this simply by deleting an object, but unless you’ve cleaned up all references
to the object this may not work (even if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By contrast, the close method provides
a means of ensuring that the object is shut down.

For example, if you have a breadboard with a buzzer connected to pin 16, but then wish to attach an
LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

380 https://docs.python.org/3.5/library/stdtypes.html#list
381 https://docs.python.org/3.5/library/stdtypes.html#list

138 Chapter 14. API - Boards and Accessories

https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/stdtypes.html#list

Gpiozero Documentation, Release 1.4.0

Device (page 147) descendents can also be used as context managers using the with382 statement.
For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

382 https://docs.python.org/3.5/reference/compound_stmts.html#with

14.23. CompositeDevice 139

https://docs.python.org/3.5/reference/compound_stmts.html#with

Gpiozero Documentation, Release 1.4.0

140 Chapter 14. API - Boards and Accessories

CHAPTER 15

API - Internal Devices

GPIO Zero also provides several “internal” devices which represent facilities provided by the operating system
itself. These can be used to react to things like the time of day, or whether a server is available on the network.

Warning: These devices are experimental and their API is not yet considered stable. We welcome any
comments from testers, especially regarding new “internal devices” that you’d find useful!

TimeOfDay

class gpiozero.TimeOfDay(start_time, end_time, utc=True)
Extends InternalDevice (page 143) to provide a device which is active when the computer’s clock
indicates that the current time is between start_time and end_time (inclusive) which are time383 instances.

The following example turns on a lamp attached to an Energenie (page 130) plug between 7 and 8 AM:

from gpiozero import TimeOfDay, Energenie
from datetime import time
from signal import pause

lamp = Energenie(0)
morning = TimeOfDay(time(7), time(8))

lamp.source = morning.values

pause()

Parameters

• start_time (time384) – The time from which the device will be considered active.

• end_time (time385) – The time after which the device will be considered inactive.
383 https://docs.python.org/3.5/library/datetime.html#datetime.time
384 https://docs.python.org/3.5/library/datetime.html#datetime.time
385 https://docs.python.org/3.5/library/datetime.html#datetime.time

141

https://docs.python.org/3.5/library/datetime.html#datetime.time
https://docs.python.org/3.5/library/datetime.html#datetime.time
https://docs.python.org/3.5/library/datetime.html#datetime.time

Gpiozero Documentation, Release 1.4.0

• utc (bool386) – If True (the default), a naive UTC time will be used for the compar-
ison rather than a local time-zone reading.

PingServer

class gpiozero.PingServer(host)
Extends InternalDevice (page 143) to provide a device which is active when a host on the network
can be pinged.

The following example lights an LED while a server is reachable (note the use of source_delay
(page 148) to ensure the server is not flooded with pings):

from gpiozero import PingServer, LED
from signal import pause

google = PingServer('google.com')
led = LED(4)

led.source_delay = 60 # check once per minute
led.source = google.values

pause()

Parameters host (str387) – The hostname or IP address to attempt to ping.

CPUTemperature

class gpiozero.CPUTemperature(sensor_file=’/sys/class/thermal/thermal_zone0/temp’,
min_temp=0.0, max_temp=100.0, threshold=80.0)

Extends InternalDevice (page 143) to provide a device which is active when the CPU temperature
exceeds the threshold value.

The following example plots the CPU’s temperature on an LED bar graph:

from gpiozero import LEDBarGraph, CPUTemperature
from signal import pause

Use minimums and maximums that are closer to "normal" usage so the
bar graph is a bit more "lively"
cpu = CPUTemperature(min_temp=50, max_temp=90)

print('Initial temperature: {}C'.format(cpu.temperature))

graph = LEDBarGraph(5, 6, 13, 19, 25, pwm=True)
graph.source = cpu.values

pause()

Parameters

• sensor_file (str388) – The file from which to read the temperature. This defaults
to the sysfs file /sys/class/thermal/thermal_zone0/temp. Whatever file
is specified is expected to contain a single line containing the temperature in milli-
degrees celsius.

386 https://docs.python.org/3.5/library/functions.html#bool
387 https://docs.python.org/3.5/library/stdtypes.html#str
388 https://docs.python.org/3.5/library/stdtypes.html#str

142 Chapter 15. API - Internal Devices

https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str

Gpiozero Documentation, Release 1.4.0

• min_temp (float389) – The temperature at which valuewill read 0.0. This defaults
to 0.0.

• max_temp (float390) – The temperature at which valuewill read 1.0. This defaults
to 100.0.

• threshold (float391) – The temperature above which the device will be considered
“active”. This defaults to 80.0.

is_active
Returns True when the CPU temperature (page 143) exceeds the threshold.

temperature
Returns the current CPU temperature in degrees celsius.

Base Classes

The classes in the sections above are derived from a series of base classes, some of which are effectively abstract.
The classes form the (partial) hierarchy displayed in the graph below (abstract classes are shaded lighter than
concrete classes):

Device InternalDevice

TimeOfDay

PingServer

CPUTemperature

The following sections document these base classes for advanced users that wish to construct classes for their own
devices.

InternalDevice

class gpiozero.InternalDevice
Extends Device (page 147) to provide a basis for devices which have no specific hardware representation.
These are effectively pseudo-devices and usually represent operating system services like the internal clock,
file systems or network facilities.

389 https://docs.python.org/3.5/library/functions.html#float
390 https://docs.python.org/3.5/library/functions.html#float
391 https://docs.python.org/3.5/library/functions.html#float

15.4. Base Classes 143

https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float

Gpiozero Documentation, Release 1.4.0

144 Chapter 15. API - Internal Devices

CHAPTER 16

API - Generic Classes

The GPIO Zero class hierarchy is quite extensive. It contains several base classes (most of which are documented
in their corresponding chapters):

• Device (page 147) is the root of the hierarchy, implementing base functionality like close() (page 147)
and context manager handlers.

• GPIODevice (page 80) represents individual devices that attach to a single GPIO pin

• SPIDevice (page 103) represents devices that communicate over an SPI interface (implemented as four
GPIO pins)

• InternalDevice (page 143) represents devices that are entirely internal to the Pi (usually operating
system related services)

• CompositeDevice (page 138) represents devices composed of multiple other devices like HATs

There are also several mixin classes392 for adding important functionality at numerous points in the hierarchy,
which is illustrated below (mixin classes are represented in purple, while abstract classes are shaded lighter):

392 https://en.wikipedia.org/wiki/Mixin

145

https://en.wikipedia.org/wiki/Mixin

Gpiozero Documentation, Release 1.4.0

ValuesMixin

SourceMixin

SharedMixin

EventsMixin

HoldMixin

Device

GPIODevice

SmoothedInputDevice

InputDevice

AnalogInputDevice

SPIDevice

MCP3xxx

MCP33xx

CompositeDevice

CompositeOutputDevice

LEDCollection

InternalDevice

DigitalInputDevice

Button

MotionSensor

LightSensor

LineSensor

DistanceSensor

OutputDevice

DigitalOutputDevice LED

Buzzer

PWMOutputDevice PWMLED

RGBLED

MCP30xx

MCP32xx

MCP3xx2

MCP3001

MCP3002

MCP3004

MCP3008

MCP3201

MCP3202

MCP3204

MCP3208

MCP3301

MCP3302

MCP3304

LEDBoard

LEDBarGraph

LedBorg

ButtonBoard

PiLiter

PiLiterBarGraph

StatusZero

TrafficLights

SnowPi

PiTraffic

PiStop

TrafficLightsBuzzer

StatusBoard

FishDish

TrafficHat

Robot

Energenie

RyanteckRobot

CamJamKitRobot

Motor

Servo

AngularServo

TimeOfDay

PingServer

CPUTemperature

146 Chapter 16. API - Generic Classes

Gpiozero Documentation, Release 1.4.0

Device

class gpiozero.Device(*, pin_factory=None)
Represents a single device of any type; GPIO-based, SPI-based, I2C-based, etc. This is the base class of
the device hierarchy. It defines the basic services applicable to all devices (specifically the is_active
(page 147) property, the value (page 147) property, and the close() (page 147) method).

close()
Shut down the device and release all associated resources. This method can be called on an already
closed device without raising an exception.

This method is primarily intended for interactive use at the command line. It disables the device and
releases its pin(s) for use by another device.

You can attempt to do this simply by deleting an object, but unless you’ve cleaned up all references
to the object this may not work (even if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By contrast, the close method provides
a means of ensuring that the object is shut down.

For example, if you have a breadboard with a buzzer connected to pin 16, but then wish to attach an
LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device (page 147) descendents can also be used as context managers using the with393 statement.
For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

closed
Returns True if the device is closed (see the close() (page 147) method). Once a device is closed
you can no longer use any other methods or properties to control or query the device.

is_active
Returns True if the device is currently active and False otherwise. This property is usually derived
from value (page 147). Unlike value (page 147), this is always a boolean.

value
Returns a value representing the device’s state. Frequently, this is a boolean value, or a number
between 0 and 1 but some devices use larger ranges (e.g. -1 to +1) and composite devices usually
use tuples to return the states of all their subordinate components.

ValuesMixin

class gpiozero.ValuesMixin(...)
Adds a values (page 148) property to the class which returns an infinite generator of readings from the

393 https://docs.python.org/3.5/reference/compound_stmts.html#with

16.1. Device 147

https://docs.python.org/3.5/reference/compound_stmts.html#with

Gpiozero Documentation, Release 1.4.0

value property. There is rarely a need to use this mixin directly as all base classes in GPIO Zero include
it.

Note: Use this mixin first in the parent class list.

values
An infinite iterator of values read from value.

SourceMixin

class gpiozero.SourceMixin(...)
Adds a source (page 148) property to the class which, given an iterable, sets value to each member of
that iterable until it is exhausted. This mixin is generally included in novel output devices to allow their
state to be driven from another device.

Note: Use this mixin first in the parent class list.

source
The iterable to use as a source of values for value.

source_delay
The delay (measured in seconds) in the loop used to read values from source (page 148). Defaults to
0.01 seconds which is generally sufficient to keep CPU usage to a minimum while providing adequate
responsiveness.

SharedMixin

class gpiozero.SharedMixin(...)
This mixin marks a class as “shared”. In this case, the meta-class (GPIOMeta) will use _shared_key()
(page 148) to convert the constructor arguments to an immutable key, and will check whether any existing
instances match that key. If they do, they will be returned by the constructor instead of a new instance. An
internal reference counter is used to determine how many times an instance has been “constructed” in this
way.

When close() is called, an internal reference counter will be decremented and the instance will only
close when it reaches zero.

classmethod _shared_key(*args, **kwargs)
Given the constructor arguments, returns an immutable key representing the instance. The default
simply assumes all positional arguments are immutable.

EventsMixin

class gpiozero.EventsMixin(...)
Adds edge-detected when_activated() (page 149) and when_deactivated() (page 149) events
to a device based on changes to the is_active (page 147) property common to all devices. Also
adds wait_for_active() (page 148) and wait_for_inactive() (page 149) methods for level-
waiting.

Note: Note that this mixin provides no means of actually firing its events; call _fire_events() in
sub-classes when device state changes to trigger the events. This should also be called once at the end of

148 Chapter 16. API - Generic Classes

Gpiozero Documentation, Release 1.4.0

initialization to set initial states.

wait_for_active(timeout=None)
Pause the script until the device is activated, or the timeout is reached.

Parameters timeout (float394) – Number of seconds to wait before proceeding. If this
is None (the default), then wait indefinitely until the device is active.

wait_for_inactive(timeout=None)
Pause the script until the device is deactivated, or the timeout is reached.

Parameters timeout (float395) – Number of seconds to wait before proceeding. If this
is None (the default), then wait indefinitely until the device is inactive.

active_time
The length of time (in seconds) that the device has been active for. When the device is inactive, this is
None.

inactive_time
The length of time (in seconds) that the device has been inactive for. When the device is active, this is
None.

when_activated
The function to run when the device changes state from inactive to active.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated will be passed as that parameter.

Set this property to None (the default) to disable the event.

when_deactivated
The function to run when the device changes state from active to inactive.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that deactivated will be passed as that parameter.

Set this property to None (the default) to disable the event.

HoldMixin

class gpiozero.HoldMixin(...)
Extends EventsMixin (page 148) to add the when_held (page 149) event and the machinery to fire
that event repeatedly (when hold_repeat (page 149) is True) at internals defined by hold_time
(page 149).

held_time
The length of time (in seconds) that the device has been held for. This is counted from the first
execution of the when_held (page 149) event rather than when the device activated, in contrast to
active_time (page 149). If the device is not currently held, this is None.

hold_repeat
If True, when_held (page 149) will be executed repeatedly with hold_time (page 149) seconds
between each invocation.

hold_time
The length of time (in seconds) to wait after the device is activated, until executing the when_held
(page 149) handler. If hold_repeat (page 149) is True, this is also the length of time between
invocations of when_held (page 149).

394 https://docs.python.org/3.5/library/functions.html#float
395 https://docs.python.org/3.5/library/functions.html#float

16.6. HoldMixin 149

https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float

Gpiozero Documentation, Release 1.4.0

is_held
When True, the device has been active for at least hold_time (page 149) seconds.

when_held
The function to run when the device has remained active for hold_time (page 149) seconds.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated will be passed as that parameter.

Set this property to None (the default) to disable the event.

150 Chapter 16. API - Generic Classes

CHAPTER 17

API - Device Source Tools

GPIO Zero includes several utility routines which are intended to be used with the Source/Values (page 47) at-
tributes common to most devices in the library. These utility routines are in the tools module of GPIO Zero and
are typically imported as follows:

from gpiozero.tools import scaled, negated, all_values

Given that source (page 148) and values (page 148) deal with infinite iterators, another excellent source of
utilities is the itertools396 module in the standard library.

Warning: While the devices API is now considered stable and won’t change in backwards incompatible
ways, the tools API is not yet considered stable. It is potentially subject to change in future versions. We
welcome any comments from testers!

Single source conversions

gpiozero.tools.absoluted(values)
Returns values with all negative elements negated (so that they’re positive). For example:

from gpiozero import PWMLED, Motor, MCP3008
from gpiozero.tools import absoluted, scaled
from signal import pause

led = PWMLED(4)
motor = Motor(22, 27)
pot = MCP3008(channel=0)

motor.source = scaled(pot.values, -1, 1)
led.source = absoluted(motor.values)

pause()

gpiozero.tools.booleanized(values, min_value, max_value, hysteresis=0)
Returns True for each item in values between min_value and max_value, and False otherwise. hysteresis

396 https://docs.python.org/3.5/library/itertools.html#module-itertools

151

https://docs.python.org/3.5/library/itertools.html#module-itertools

Gpiozero Documentation, Release 1.4.0

can optionally be used to add hysteresis397 which prevents the output value rapidly flipping when the input
value is fluctuating near the min_value or max_value thresholds. For example, to light an LED only when a
potentiometer is between 1/4 and 3/4 of its full range:

from gpiozero import LED, MCP3008
from gpiozero.tools import booleanized
from signal import pause

led = LED(4)
pot = MCP3008(channel=0)
led.source = booleanized(pot.values, 0.25, 0.75)
pause()

gpiozero.tools.clamped(values, output_min=0, output_max=1)
Returns values clamped from output_min to output_max, i.e. any items less than output_min will be returned
as output_min and any items larger than output_max will be returned as output_max (these default to 0 and
1 respectively). For example:

from gpiozero import PWMLED, MCP3008
from gpiozero.tools import clamped
from signal import pause

led = PWMLED(4)
pot = MCP3008(channel=0)

led.source = clamped(pot.values, 0.5, 1.0)

pause()

gpiozero.tools.inverted(values, input_min=0, input_max=1)
Returns the inversion of the supplied values (input_min becomes input_max, input_max becomes input_min,
input_min + 0.1 becomes input_max - 0.1, etc.). All items in values are assumed to be between input_min
and input_max (which default to 0 and 1 respectively), and the output will be in the same range. For
example:

from gpiozero import MCP3008, PWMLED
from gpiozero.tools import inverted
from signal import pause

led = PWMLED(4)
pot = MCP3008(channel=0)
led.source = inverted(pot.values)
pause()

gpiozero.tools.negated(values)
Returns the negation of the supplied values (True becomes False, and False becomes True). For
example:

from gpiozero import Button, LED
from gpiozero.tools import negated
from signal import pause

led = LED(4)
btn = Button(17)
led.source = negated(btn.values)
pause()

gpiozero.tools.post_delayed(values, delay)
Waits for delay seconds after returning each item from values.

397 https://en.wikipedia.org/wiki/Hysteresis

152 Chapter 17. API - Device Source Tools

https://en.wikipedia.org/wiki/Hysteresis

Gpiozero Documentation, Release 1.4.0

gpiozero.tools.post_periodic_filtered(values, repeat_after, block)
After every repeat_after items, blocks the next block items from values. Note that unlike
pre_periodic_filtered() (page 153), repeat_after can’t be 0. For example, to block every tenth
item read from an ADC:

from gpiozero import MCP3008
from gpiozero.tools import post_periodic_filtered

adc = MCP3008(channel=0)

for value in post_periodic_filtered(adc.values, 9, 1):
print(value)

gpiozero.tools.pre_delayed(values, delay)
Waits for delay seconds before returning each item from values.

gpiozero.tools.pre_periodic_filtered(values, block, repeat_after)
Blocks the first block items from values, repeating the block after every repeat_after items, if repeat_after
is non-zero. For example, to discard the first 50 values read from an ADC:

from gpiozero import MCP3008
from gpiozero.tools import pre_periodic_filtered

adc = MCP3008(channel=0)

for value in pre_periodic_filtered(adc.values, 50, 0):
print(value)

Or to only display every even item read from an ADC:

from gpiozero import MCP3008
from gpiozero.tools import pre_periodic_filtered

adc = MCP3008(channel=0)

for value in pre_periodic_filtered(adc.values, 1, 1):
print(value)

gpiozero.tools.quantized(values, steps, input_min=0, input_max=1)
Returns values quantized to steps increments. All items in values are assumed to be between input_min and
input_max (which default to 0 and 1 respectively), and the output will be in the same range.

For example, to quantize values between 0 and 1 to 5 “steps” (0.0, 0.25, 0.5, 0.75, 1.0):

from gpiozero import PWMLED, MCP3008
from gpiozero.tools import quantized
from signal import pause

led = PWMLED(4)
pot = MCP3008(channel=0)
led.source = quantized(pot.values, 4)
pause()

gpiozero.tools.queued(values, qsize)
Queues up readings from values (the number of readings queued is determined by qsize) and begins yielding
values only when the queue is full. For example, to “cascade” values along a sequence of LEDs:

from gpiozero import LEDBoard, Button
from gpiozero.tools import queued
from signal import pause

leds = LEDBoard(5, 6, 13, 19, 26)
btn = Button(17)

17.1. Single source conversions 153

Gpiozero Documentation, Release 1.4.0

for i in range(4):
leds[i].source = queued(leds[i + 1].values, 5)
leds[i].source_delay = 0.01

leds[4].source = btn.values

pause()

gpiozero.tools.smoothed(values, qsize, average=<function mean>)
Queues up readings from values (the number of readings queued is determined by qsize) and begins yielding
the average of the last qsize values when the queue is full. The larger the qsize, the more the values are
smoothed. For example, to smooth the analog values read from an ADC:

from gpiozero import MCP3008
from gpiozero.tools import smoothed

adc = MCP3008(channel=0)

for value in smoothed(adc.values, 5):
print(value)

gpiozero.tools.scaled(values, output_min, output_max, input_min=0, input_max=1)
Returns values scaled from output_min to output_max, assuming that all items in values lie between in-
put_min and input_max (which default to 0 and 1 respectively). For example, to control the direction of a
motor (which is represented as a value between -1 and 1) using a potentiometer (which typically provides
values between 0 and 1):

from gpiozero import Motor, MCP3008
from gpiozero.tools import scaled
from signal import pause

motor = Motor(20, 21)
pot = MCP3008(channel=0)
motor.source = scaled(pot.values, -1, 1)
pause()

Warning: If values contains elements that lie outside input_min to input_max (inclusive) then the
function will not produce values that lie within output_min to output_max (inclusive).

Combining sources

gpiozero.tools.all_values(*values)
Returns the logical conjunction398 of all supplied values (the result is only True if and only if all input
values are simultaneously True). One or more values can be specified. For example, to light an LED only
when both buttons are pressed:

from gpiozero import LED, Button
from gpiozero.tools import all_values
from signal import pause

led = LED(4)
btn1 = Button(20)
btn2 = Button(21)
led.source = all_values(btn1.values, btn2.values)
pause()

398 https://en.wikipedia.org/wiki/Logical_conjunction

154 Chapter 17. API - Device Source Tools

https://en.wikipedia.org/wiki/Logical_conjunction

Gpiozero Documentation, Release 1.4.0

gpiozero.tools.any_values(*values)
Returns the logical disjunction399 of all supplied values (the result is True if any of the input values are
currently True). One or more values can be specified. For example, to light an LED when any button is
pressed:

from gpiozero import LED, Button
from gpiozero.tools import any_values
from signal import pause

led = LED(4)
btn1 = Button(20)
btn2 = Button(21)
led.source = any_values(btn1.values, btn2.values)
pause()

gpiozero.tools.averaged(*values)
Returns the mean of all supplied values. One or more values can be specified. For example, to light a
PWMLED as the average of several potentiometers connected to an MCP3008 ADC:

from gpiozero import MCP3008, PWMLED
from gpiozero.tools import averaged
from signal import pause

pot1 = MCP3008(channel=0)
pot2 = MCP3008(channel=1)
pot3 = MCP3008(channel=2)
led = PWMLED(4)

led.source = averaged(pot1.values, pot2.values, pot3.values)

pause()

gpiozero.tools.multiplied(*values)
Returns the product of all supplied values. One or more values can be specified. For example, to light a
PWMLED as the product (i.e. multiplication) of several potentiometers connected to an MCP3008 ADC:

from gpiozero import MCP3008, PWMLED
from gpiozero.tools import multiplied
from signal import pause

pot1 = MCP3008(channel=0)
pot2 = MCP3008(channel=1)
pot3 = MCP3008(channel=2)
led = PWMLED(4)

led.source = multiplied(pot1.values, pot2.values, pot3.values)

pause()

gpiozero.tools.summed(*values)
Returns the sum of all supplied values. One or more values can be specified. For example, to light a
PWMLED as the (scaled) sum of several potentiometers connected to an MCP3008 ADC:

from gpiozero import MCP3008, PWMLED
from gpiozero.tools import summed, scaled
from signal import pause

pot1 = MCP3008(channel=0)
pot2 = MCP3008(channel=1)

399 https://en.wikipedia.org/wiki/Logical_disjunction

17.2. Combining sources 155

https://en.wikipedia.org/wiki/Logical_disjunction

Gpiozero Documentation, Release 1.4.0

pot3 = MCP3008(channel=2)
led = PWMLED(4)

led.source = scaled(summed(pot1.values, pot2.values, pot3.values), 0, 1, 0, 3)

pause()

Artificial sources

gpiozero.tools.alternating_values(initial_value=False)
Provides an infinite source of values alternating between True and False, starting wth initial_value
(which defaults to False). For example, to produce a flashing LED:

from gpiozero import LED
from gpiozero.tools import alternating_values
from signal import pause

red = LED(2)

red.source_delay = 0.5
red.source = alternating_values()

pause()

gpiozero.tools.cos_values(period=360)
Provides an infinite source of values representing a cosine wave (from -1 to +1) which repeats every period
values. For example, to produce a “siren” effect with a couple of LEDs that repeats once a second:

from gpiozero import PWMLED
from gpiozero.tools import cos_values, scaled, inverted
from signal import pause

red = PWMLED(2)
blue = PWMLED(3)

red.source_delay = 0.01
blue.source_delay = red.source_delay
red.source = scaled(cos_values(100), 0, 1, -1, 1)
blue.source = inverted(red.values)

pause()

If you require a different range than -1 to +1, see scaled() (page 154).

gpiozero.tools.random_values()
Provides an infinite source of random values between 0 and 1. For example, to produce a “flickering candle”
effect with an LED:

from gpiozero import PWMLED
from gpiozero.tools import random_values
from signal import pause

led = PWMLED(4)

led.source = random_values()

pause()

If you require a wider range than 0 to 1, see scaled() (page 154).

156 Chapter 17. API - Device Source Tools

Gpiozero Documentation, Release 1.4.0

gpiozero.tools.sin_values(period=360)
Provides an infinite source of values representing a sine wave (from -1 to +1) which repeats every period
values. For example, to produce a “siren” effect with a couple of LEDs that repeats once a second:

from gpiozero import PWMLED
from gpiozero.tools import sin_values, scaled, inverted
from signal import pause

red = PWMLED(2)
blue = PWMLED(3)

red.source_delay = 0.01
blue.source_delay = red.source_delay
red.source = scaled(sin_values(100), 0, 1, -1, 1)
blue.source = inverted(red.values)

pause()

If you require a different range than -1 to +1, see scaled() (page 154).

17.3. Artificial sources 157

Gpiozero Documentation, Release 1.4.0

158 Chapter 17. API - Device Source Tools

CHAPTER 18

API - Pi Information

The GPIO Zero library also contains a database of information about the various revisions of the Raspberry Pi
computer. This is used internally to raise warnings when non-physical pins are used, or to raise exceptions when
pull-downs are requested on pins with physical pull-up resistors attached. The following functions and classes can
be used to query this database:

gpiozero.pi_info(revision=None)
Returns a PiBoardInfo (page 159) instance containing information about a revision of the Raspberry Pi.

Parameters revision (str400) – The revision of the Pi to return information about. If this
is omitted or None (the default), then the library will attempt to determine the model of Pi
it is running on and return information about that.

class gpiozero.PiBoardInfo
This class is a namedtuple()401 derivative used to represent information about a particular model of
Raspberry Pi. While it is a tuple, it is strongly recommended that you use the following named attributes
to access the data contained within. The object can be used in format strings with various custom format
specifications:

from gpiozero import *

print('{0}'.format(pi_info()))
print('{0:full}'.format(pi_info()))
print('{0:board}'.format(pi_info()))
print('{0:specs}'.format(pi_info()))
print('{0:headers}'.format(pi_info()))

‘color’ and ‘mono’ can be prefixed to format specifications to force the use of ANSI color codes402. If
neither is specified, ANSI codes will only be used if stdout is detected to be a tty:

print('{0:color board}'.format(pi_info())) # force use of ANSI codes
print('{0:mono board}'.format(pi_info())) # force plain ASCII

physical_pin(function)
Return the physical pin supporting the specified function. If no pins support the desired func-
tion, this function raises PinNoPins (page 179). If multiple pins support the desired function,

400 https://docs.python.org/3.5/library/stdtypes.html#str
401 https://docs.python.org/3.5/library/collections.html#collections.namedtuple
402 https://en.wikipedia.org/wiki/ANSI_escape_code

159

https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/collections.html#collections.namedtuple
https://en.wikipedia.org/wiki/ANSI_escape_code

Gpiozero Documentation, Release 1.4.0

PinMultiplePins (page 179) will be raised (use physical_pins() (page 160) if you expect
multiple pins in the result, such as for electrical ground).

Parameters function (str403) – The pin function you wish to search for. Usually this
is something like “GPIO9” for Broadcom GPIO pin 9.

physical_pins(function)
Return the physical pins supporting the specified function as tuples of (header, pin_number)
where header is a string specifying the header containing the pin_number. Note that the return value
is a set404 which is not indexable. Use physical_pin() (page 159) if you are expecting a single
return value.

Parameters function (str405) – The pin function you wish to search for. Usually this is
something like “GPIO9” for Broadcom GPIO pin 9, or “GND” for all the pins connecting
to electrical ground.

pprint(color=None)
Pretty-print a representation of the board along with header diagrams.

If color is None (the default), the diagram will include ANSI color codes if stdout is a color-capable
terminal. Otherwise color can be set to True or False to force color or monochrome output.

pulled_up(function)
Returns a bool indicating whether a physical pull-up is attached to the pin supporting the specified
function. Either PinNoPins (page 179) or PinMultiplePins (page 179) may be raised if the
function is not associated with a single pin.

Parameters function (str406) – The pin function you wish to determine pull-up for.
Usually this is something like “GPIO9” for Broadcom GPIO pin 9.

revision
A string indicating the revision of the Pi. This is unique to each revision and can be considered the
“key” from which all other attributes are derived. However, in itself the string is fairly meaningless.

model
A string containing the model of the Pi (for example, “B”, “B+”, “A+”, “2B”, “CM” (for the Compute
Module), or “Zero”).

pcb_revision
A string containing the PCB revision number which is silk-screened onto the Pi (on some models).

Note: This is primarily useful to distinguish between the model B revision 1.0 and 2.0 (not to be
confused with the model 2B) which had slightly different pinouts on their 26-pin GPIO headers.

released
A string containing an approximate release date for this revision of the Pi (formatted as yyyyQq, e.g.
2012Q1 means the first quarter of 2012).

soc
A string indicating the SoC (system on a chip407) that this revision of the Pi is based upon.

manufacturer
A string indicating the name of the manufacturer (usually “Sony” but a few others exist).

memory
An integer indicating the amount of memory (in Mb) connected to the SoC.

403 https://docs.python.org/3.5/library/stdtypes.html#str
404 https://docs.python.org/3.5/library/stdtypes.html#set
405 https://docs.python.org/3.5/library/stdtypes.html#str
406 https://docs.python.org/3.5/library/stdtypes.html#str
407 https://en.wikipedia.org/wiki/System_on_a_chip

160 Chapter 18. API - Pi Information

https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#set
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://en.wikipedia.org/wiki/System_on_a_chip

Gpiozero Documentation, Release 1.4.0

Note: This can differ substantially from the amount of RAM available to the operating system as
the GPU’s memory is shared with the CPU. When the camera module is activated, at least 128Mb of
RAM is typically reserved for the GPU.

storage
A string indicating the type of bootable storage used with this revision of Pi, e.g. “SD”, “MicroSD”,
or “eMMC” (for the Compute Module).

usb
An integer indicating how many USB ports are physically present on this revision of the Pi.

Note: This does not include the micro-USB port used to power the Pi.

ethernet
An integer indicating how many Ethernet ports are physically present on this revision of the Pi.

wifi
A bool indicating whether this revision of the Pi has wifi built-in.

bluetooth
A bool indicating whether this revision of the Pi has bluetooth built-in.

csi
An integer indicating the number of CSI (camera) ports available on this revision of the Pi.

dsi
An integer indicating the number of DSI (display) ports available on this revision of the Pi.

headers
A dictionary which maps header labels to HeaderInfo (page 161) tuples. For example, to obtain
information about header P1 you would query headers['P1']. To obtain information about pin
12 on header J8 you would query headers['J8'].pins[12].

A rendered version of this data can be obtained by using the PiBoardInfo (page 159) object in a
format string:

from gpiozero import *
print('{0:headers}'.format(pi_info()))

board
An ASCII art rendition of the board, primarily intended for console pretty-print usage. A more usefully
rendered version of this data can be obtained by using the PiBoardInfo (page 159) object in a
format string. For example:

from gpiozero import *
print('{0:board}'.format(pi_info()))

class gpiozero.HeaderInfo
This class is a namedtuple()408 derivative used to represent information about a pin header on a board.
The object can be used in a format string with various custom specifications:

from gpiozero import *

print('{0}'.format(pi_info().headers['J8']))
print('{0:full}'.format(pi_info().headers['J8']))
print('{0:col2}'.format(pi_info().headers['P1']))
print('{0:row1}'.format(pi_info().headers['P1']))

408 https://docs.python.org/3.5/library/collections.html#collections.namedtuple

161

https://docs.python.org/3.5/library/collections.html#collections.namedtuple

Gpiozero Documentation, Release 1.4.0

‘color’ and ‘mono’ can be prefixed to format specifications to force the use of ANSI color codes409. If
neither is specified, ANSI codes will only be used if stdout is detected to be a tty:

print('{0:color row2}'.format(pi_info().headers['J8'])) # force use of ANSI
→˓codes
print('{0:mono row2}'.format(pi_info().headers['P1'])) # force plain ASCII

The following attributes are defined:

pprint(color=None)
Pretty-print a diagram of the header pins.

If color is None (the default, the diagram will include ANSI color codes if stdout is a color-capable
terminal). Otherwise color can be set to True or False to force color or monochrome output.

name
The name of the header, typically as it appears silk-screened on the board (e.g. “P1” or “J8”).

rows
The number of rows on the header.

columns
The number of columns on the header.

pins
A dictionary mapping physical pin numbers to PinInfo (page 162) tuples.

class gpiozero.PinInfo
This class is a namedtuple()410 derivative used to represent information about a pin present on a GPIO
header. The following attributes are defined:

number
An integer containing the physical pin number on the header (starting from 1 in accordance with
convention).

function
A string describing the function of the pin. Some common examples include “GND” (for pins con-
necting to ground), “3V3” (for pins which output 3.3 volts), “GPIO9” (for GPIO9 in the Broadcom
numbering scheme), etc.

pull_up
A bool indicating whether the pin has a physical pull-up resistor permanently attached (this is usually
False but GPIO2 and GPIO3 are usually True). This is used internally by gpiozero to raise errors
when pull-down is requested on a pin with a physical pull-up resistor.

row
An integer indicating on which row the pin is physically located in the header (1-based)

col
An integer indicating in which column the pin is physically located in the header (1-based)

409 https://en.wikipedia.org/wiki/ANSI_escape_code
410 https://docs.python.org/3.5/library/collections.html#collections.namedtuple

162 Chapter 18. API - Pi Information

https://en.wikipedia.org/wiki/ANSI_escape_code
https://docs.python.org/3.5/library/collections.html#collections.namedtuple

CHAPTER 19

API - Pins

As of release 1.1, the GPIO Zero library can be roughly divided into two things: pins and the devices that are
connected to them. The majority of the documentation focuses on devices as pins are below the level that most
users are concerned with. However, some users may wish to take advantage of the capabilities of alternative GPIO
implementations or (in future) use GPIO extender chips. This is the purpose of the pins portion of the library.

When you construct a device, you pass in a pin specification. This is passed to a pin Factory (page 166)
which turns it into a Pin (page 167) implementation. The default factory can be queried (and changed) with
Device.pin_factory, i.e. the pin_factory attribute of the Device (page 147) class. However, all
classes accept a pin_factory keyword argument to their constructors permitting the factory to be overridden
on a per-device basis (the reason for allowing per-device factories is made apparent later in the Configuring Remote
GPIO (page 35) chapter).

This is illustrated in the following flow-chart:

LED(pin_spec, ...,
pin_factory=None)

pin_factory == None?

self.pin_factory = Device.pin_factory

yes

self.pin_factory = pin_factory

no

self.pin = self.pin_factory.pin(pin_spec)

163

Gpiozero Documentation, Release 1.4.0

The default factory is constructed when GPIO Zero is first imported; if no default factory can be constructed
(e.g. because no GPIO implementations are installed, or all of them fail to load for whatever reason), an
ImportError411 will be raised.

Changing the pin factory

The default pin factory can be replaced by specifying a value for the GPIOZERO_PIN_FACTORY environment
variable. For example:

$ GPIOZERO_PIN_FACTORY=native python
Python 3.4.2 (default, Oct 19 2014, 13:31:11)
[GCC 4.9.1] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import gpiozero
>>> gpiozero.Device.pin_factory
<gpiozero.pins.native.NativeFactory object at 0x762c26b0>

To set the GPIOZERO_PIN_FACTORY for the rest of your session you can export this value:

$ export GPIOZERO_PIN_FACTORY=native
$ python
Python 3.4.2 (default, Oct 19 2014, 13:31:11)
[GCC 4.9.1] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import gpiozero
>>> gpiozero.Device.pin_factory
<gpiozero.pins.native.NativeFactory object at 0x762c26b0>
>>> quit()
$ python
Python 3.4.2 (default, Oct 19 2014, 13:31:11)
[GCC 4.9.1] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import gpiozero
>>> gpiozero.Device.pin_factory
<gpiozero.pins.native.NativeFactory object at 0x76401330>

If you add the export command to your ~/.bashrc file, you’ll set the default pin factory for all future sessions
too.

The following values, and the corresponding Factory (page 166) and Pin (page 167) classes are listed in the
table below. Factories are listed in the order that they are tried by default.

Name Factory class Pin class
rpig-
pio

gpiozero.pins.rpigpio.
RPiGPIOFactory
(page 173)

gpiozero.pins.rpigpio.
RPiGPIOPin
(page 173)

rpio gpiozero.pins.rpio.RPIOFactory
(page 174)

gpiozero.pins.rpio.RPIOPin
(page 174)

pig-
pio

gpiozero.pins.pigpio.PiGPIOFactory
(page 174)

gpiozero.pins.pigpio.PiGPIOPin
(page 175)

na-
tive

gpiozero.pins.native.NativeFactory
(page 175)

gpiozero.pins.native.NativePin
(page 175)

If you need to change the default pin factory from within a script, either set Device.pin_factory to the new
factory instance to use:

from gpiozero.pins.native import NativeFactory
from gpiozero import Device, LED

411 https://docs.python.org/3.5/library/exceptions.html#ImportError

164 Chapter 19. API - Pins

https://docs.python.org/3.5/library/exceptions.html#ImportError

Gpiozero Documentation, Release 1.4.0

Device.pin_factory = NativeFactory()

These will now implicitly use NativePin instead of
RPiGPIOPin
led1 = LED(16)
led2 = LED(17)

Or use the pin_factory keyword parameter mentioned above:

from gpiozero.pins.native import NativeFactory
from gpiozero import LED

my_factory = NativeFactory()

This will use NativePin instead of RPiGPIOPin for led1
but led2 will continue to use RPiGPIOPin
led1 = LED(16, pin_factory=my_factory)
led2 = LED(17)

Certain factories may take default information from additional sources. For example, to default to creating pins
with gpiozero.pins.pigpio.PiGPIOPin (page 175) on a remote pi called remote-pi you can set the
PIGPIO_ADDR environment variable when running your script:

$ GPIOZERO_PIN_FACTORY=pigpio PIGPIO_ADDR=remote-pi python3 my_script.py

Like the GPIOZERO_PIN_FACTORY value, these can be exported from your ~/.bashrc script too.

Warning: The astute and mischievous reader may note that it is possible to mix factories, e.g. using
RPiGPIOFactory for one pin, and NativeFactory for another. This is unsupported, and if it results
in your script crashing, your components failing, or your Raspberry Pi turning into an actual raspberry pie,
you have only yourself to blame.

Sensible uses of multiple pin factories are given in Configuring Remote GPIO (page 35).

Mock pins

There’s also a gpiozero.pins.mock.MockFactory (page 175) which generates entirely fake pins. This
was originally intended for GPIO Zero developers who wish to write tests for devices without having to have the
physical device wired in to their Pi. However, they have also proven relatively useful in developing GPIO Zero
scripts without having a Pi to hand. This pin factory will never be loaded by default; it must be explicitly specified.
For example:

from gpiozero.pins.mock import MockFactory
from gpiozero import Device, Button, LED
from time import sleep

Set the default pin factory to a mock factory
Device.pin_factory = MockFactory()

Construct a couple of devices attached to mock pins 16 and 17, and link the
devices
led = LED(17)
btn = Button(16)
led.source = btn.values

Here the button isn't "pushed" so the LED's value should be False
print(led.value)

19.2. Mock pins 165

Gpiozero Documentation, Release 1.4.0

Get a reference to mock pin 16 (used by the button)
btn_pin = Device.pin_factory.pin(16)

Drive the pin low (this is what would happen eletrically when the button is
pushed)
btn_pin.drive_low()
sleep(0.1) # give source some time to re-read the button state
print(led.value)

btn_pin.drive_high()
sleep(0.1)
print(led.value)

Several sub-classes of mock pins exist for emulating various other things (pins that do/don’t support PWM, pins
that are connected together, pins that drive high after a delay, etc). Interested users are invited to read the GPIO
Zero test suite for further examples of usage.

Base classes

class gpiozero.Factory
Generates pins and SPI interfaces for devices. This is an abstract base class for pin factories. Descendents
may override the following methods, if applicable:

•close() (page 166)

•reserve_pins() (page 166)

•release_pins() (page 166)

•release_all() (page 166)

•pin() (page 166)

•spi() (page 166)

•_get_pi_info()

close()
Closes the pin factory. This is expected to clean up all resources manipulated by the factory. It it
typically called at script termination.

pin(spec)
Creates an instance of a Pin (page 167) descendent representing the specified pin.

Warning: Descendents must ensure that pin instances representing the same hardware are identi-
cal; i.e. two separate invocations of pin() (page 166) for the same pin specification must return
the same object.

release_all(reserver)
Releases all pin reservations taken out by reserver. See release_pins() (page 166) for further
information).

release_pins(reserver, *pins)
Releases the reservation of reserver against pins. This is typically called during Device.close()
(page 147) to clean up reservations taken during construction. Releasing a reservation that is not
currently held will be silently ignored (to permit clean-up after failed / partial construction).

reserve_pins(requester, *pins)
Called to indicate that the device reserves the right to use the specified pins. This should be done
during device construction. If pins are reserved, you must ensure that the reservation is released by
eventually called release_pins() (page 166).

166 Chapter 19. API - Pins

Gpiozero Documentation, Release 1.4.0

spi(**spi_args)
Returns an instance of an SPI (page 169) interface, for the specified SPI port and device, or for the
specified pins (clock_pin, mosi_pin, miso_pin, and select_pin). Only one of the schemes can be used;
attempting to mix port and device with pin numbers will raise SPIBadArgs (page 178).

pi_info
Returns a PiBoardInfo (page 159) instance representing the Pi that instances generated by this
factory will be attached to.

If the pins represented by this class are not directly attached to a Pi (e.g. the pin is attached to a board
attached to the Pi, or the pins are not on a Pi at all), this may return None.

class gpiozero.Pin
Abstract base class representing a pin attached to some form of controller, be it GPIO, SPI, ADC, etc.

Descendents should override property getters and setters to accurately represent the capabilities of pins.
Descendents must override the following methods:

•_get_function()

•_set_function()

•_get_state()

Descendents may additionally override the following methods, if applicable:

•close() (page 167)

•output_with_state() (page 167)

•input_with_pull() (page 167)

•_set_state()

•_get_frequency()

•_set_frequency()

•_get_pull()

•_set_pull()

•_get_bounce()

•_set_bounce()

•_get_edges()

•_set_edges()

•_get_when_changed()

•_set_when_changed()

close()
Cleans up the resources allocated to the pin. After this method is called, this Pin (page 167) instance
may no longer be used to query or control the pin’s state.

input_with_pull(pull)
Sets the pin’s function to “input” and specifies an initial pull-up for the pin. By default this is equivalent
to performing:

pin.function = 'input'
pin.pull = pull

However, descendents may override this order to provide the smallest possible delay between config-
uring the pin for input and pulling the pin up/down (which can be important for avoiding “blips” in
some configurations).

19.3. Base classes 167

Gpiozero Documentation, Release 1.4.0

output_with_state(state)
Sets the pin’s function to “output” and specifies an initial state for the pin. By default this is equivalent
to performing:

pin.function = 'output'
pin.state = state

However, descendents may override this in order to provide the smallest possible delay between con-
figuring the pin for output and specifying an initial value (which can be important for avoiding “blips”
in active-low configurations).

bounce
The amount of bounce detection (elimination) currently in use by edge detection, measured in seconds.
If bounce detection is not currently in use, this is None.

For example, if edges (page 168) is currently “rising”, bounce (page 168) is currently 5/1000 (5ms),
then the waveform below will only fire when_changed (page 169) on two occasions despite there
being three rising edges:

TIME 0...1...2...3...4...5...6...7...8...9...10..11..12 ms

bounce elimination |===================| |==============

HIGH - - - - > ,--. ,--------------. ,--.
| | | | | |
| | | | | |

LOW ----------------' `-' `-' `-----------
: :
: :

when_changed when_changed
fires fires

If the pin does not support edge detection, attempts to set this property will raise
PinEdgeDetectUnsupported (page 179). If the pin supports edge detection, the class must
implement bounce detection, even if only in software.

edges
The edge that will trigger execution of the function or bound method assigned to when_changed
(page 169). This can be one of the strings “both” (the default), “rising”, “falling”, or “none”:

HIGH - - - - > ,--------------.
| |
| |

LOW --------------------' `--------------
: :
: :

Fires when_changed "both" "both"
when edges is ... "rising" "falling"

If the pin does not support edge detection, attempts to set this property will raise
PinEdgeDetectUnsupported (page 179).

frequency
The frequency (in Hz) for the pin’s PWM implementation, or None if PWM is not currently in use.
This value always defaults to None and may be changed with certain pin types to activate or deactivate
PWM.

If the pin does not support PWM, PinPWMUnsupported (page 179) will be raised when attempting
to set this to a value other than None.

function
The function of the pin. This property is a string indicating the current function or purpose of the pin.
Typically this is the string “input” or “output”. However, in some circumstances it can be other strings
indicating non-GPIO related functionality.

168 Chapter 19. API - Pins

Gpiozero Documentation, Release 1.4.0

With certain pin types (e.g. GPIO pins), this attribute can be changed to configure the function of a
pin. If an invalid function is specified, for this attribute, PinInvalidFunction (page 179) will be
raised.

pull
The pull-up state of the pin represented as a string. This is typically one of the strings “up”, “down”,
or “floating” but additional values may be supported by the underlying hardware.

If the pin does not support changing pull-up state (for example because of a fixed pull-up resistor),
attempts to set this property will raise PinFixedPull (page 179). If the specified value is not
supported by the underlying hardware, PinInvalidPull (page 179) is raised.

state
The state of the pin. This is 0 for low, and 1 for high. As a low level view of the pin, no swapping is
performed in the case of pull ups (see pull (page 169) for more information):

HIGH - - - - > ,----------------------
|
|

LOW ----------------'

Descendents which implement analog, or analog-like capabilities can return values between 0 and 1.
For example, pins implementing PWM (where frequency (page 168) is not None) return a value
between 0.0 and 1.0 representing the current PWM duty cycle.

If a pin is currently configured for input, and an attempt is made to set this attribute, PinSetInput
(page 179) will be raised. If an invalid value is specified for this attribute, PinInvalidState
(page 179) will be raised.

when_changed
A function or bound method to be called when the pin’s state changes (more specifically when the
edge specified by edges (page 168) is detected on the pin). The function or bound method must take
no parameters.

If the pin does not support edge detection, attempts to set this property will raise
PinEdgeDetectUnsupported (page 179).

class gpiozero.SPI
Abstract interface for Serial Peripheral Interface412 (SPI) implementations. Descendents must override the
following methods:

•transfer() (page 170)

•_get_clock_mode()

Descendents may override the following methods, if applicable:

•read() (page 169)

•write() (page 170)

•_set_clock_mode()

•_get_lsb_first()

•_set_lsb_first()

•_get_select_high()

•_set_select_high()

•_get_bits_per_word()

•_set_bits_per_word()
412 https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

19.3. Base classes 169

https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

Gpiozero Documentation, Release 1.4.0

read(n)
Read n words of data from the SPI interface, returning them as a sequence of unsigned ints, each no
larger than the configured bits_per_word (page 170) of the interface.

This method is typically used with read-only devices that feature half-duplex communication. See
transfer() (page 170) for full duplex communication.

transfer(data)
Write data to the SPI interface. data must be a sequence of unsigned integer words each of which
will fit within the configured bits_per_word (page 170) of the interface. The method returns the
sequence of words read from the interface while writing occurred (full duplex communication).

The length of the sequence returned dictates the number of words of data written to the inter-
face. Each word in the returned sequence will be an unsigned integer no larger than the configured
bits_per_word (page 170) of the interface.

write(data)
Write data to the SPI interface. data must be a sequence of unsigned integer words each of which
will fit within the configured bits_per_word (page 170) of the interface. The method returns the
number of words written to the interface (which may be less than or equal to the length of data).

This method is typically used with write-only devices that feature half-duplex communication. See
transfer() (page 170) for full duplex communication.

bits_per_word
Controls the number of bits that make up a word, and thus where the word boundaries appear in the
data stream, and the maximum value of a word. Defaults to 8 meaning that words are effectively bytes.

Several implementations do not support non-byte-sized words.

clock_mode
Presents a value representing the clock_polarity (page 171) and clock_phase (page 170)
attributes combined according to the following table:

mode polarity (CPOL) phase (CPHA)
0 False False
1 False True
2 True False
3 True True

Adjusting this value adjusts both the clock_polarity (page 171) and clock_phase (page 170)
attributes simultaneously.

clock_phase
The phase of the SPI clock pin. If this is False (the default), data will be read from the MISO
pin when the clock pin activates. Setting this to True will cause data to be read from the MISO
pin when the clock pin deactivates. On many data sheets this is documented as the CPHA value.
Whether the clock edge is rising or falling when the clock is considered activated is controlled by the
clock_polarity (page 171) attribute (corresponding to CPOL).

The following diagram indicates when data is read when clock_polarity (page 171) is False,
and clock_phase (page 170) is False (the default), equivalent to CPHA 0:

,---. ,---. ,---. ,---. ,---. ,---. ,---.
CLK | | | | | | | | | | | | | |

| | | | | | | | | | | | | |
----' `---' `---' `---' `---' `---' `---' `-------

: : : : : : :
MISO---. ,---. ,---. ,---. ,---. ,---. ,---.
/ \ / \ / \ / \ / \ / \ / \

-{ Bit X Bit X Bit X Bit X Bit X Bit X Bit }------
\ / \ / \ / \ / \ / \ / \ /
`---' `---' `---' `---' `---' `---' `---'

170 Chapter 19. API - Pins

Gpiozero Documentation, Release 1.4.0

The following diagram indicates when data is read when clock_polarity (page 171) is False,
but clock_phase (page 170) is True, equivalent to CPHA 1:

,---. ,---. ,---. ,---. ,---. ,---. ,---.
CLK | | | | | | | | | | | | | |

| | | | | | | | | | | | | |
----' `---' `---' `---' `---' `---' `---' `-------

: : : : : : :
MISO ,---. ,---. ,---. ,---. ,---. ,---. ,---.

/ \ / \ / \ / \ / \ / \ / \
-----{ Bit X Bit X Bit X Bit X Bit X Bit X Bit }--

\ / \ / \ / \ / \ / \ / \ /
`---' `---' `---' `---' `---' `---' `---'

clock_polarity
The polarity of the SPI clock pin. If this is False (the default), the clock pin will idle low, and pulse
high. Setting this to True will cause the clock pin to idle high, and pulse low. On many data sheets
this is documented as the CPOL value.

The following diagram illustrates the waveform when clock_polarity (page 171) is False (the
default), equivalent to CPOL 0:

on on on on on on on
,---. ,---. ,---. ,---. ,---. ,---. ,---.

CLK | | | | | | | | | | | | | |
| | | | | | | | | | | | | |

------' `---' `---' `---' `---' `---' `---' `------
idle off off off off off off idle

The following diagram illustrates the waveform when clock_polarity (page 171) is True,
equivalent to CPOL 1:

idle off off off off off off idle
------. ,---. ,---. ,---. ,---. ,---. ,---. ,------

| | | | | | | | | | | | | |
CLK | | | | | | | | | | | | | |

`---' `---' `---' `---' `---' `---' `---'
on on on on on on on

lsb_first
Controls whether words are read and written LSB in (Least Significant Bit first) order. The default is
False indicating that words are read and written in MSB (Most Significant Bit first) order. Effec-
tively, this controls the Bit endianness413 of the connection.

The following diagram shows the a word containing the number 5 (binary 0101) transmitted on
MISO with bits_per_word (page 170) set to 4, and clock_mode (page 170) set to 0, when
lsb_first (page 171) is False (the default):

,---. ,---. ,---. ,---.
CLK | | | | | | | |

| | | | | | | |
----' `---' `---' `---' `-----

: ,-------. : ,-------.
MISO: | : | : | : |

: | : | : | : |
----------' : `-------' : `----

: : : :
MSB LSB

And now with lsb_first (page 171) set to True (and all other parameters the same):

413 https://en.wikipedia.org/wiki/Endianness#Bit_endianness

19.3. Base classes 171

https://en.wikipedia.org/wiki/Endianness#Bit_endianness

Gpiozero Documentation, Release 1.4.0

,---. ,---. ,---. ,---.
CLK | | | | | | | |

| | | | | | | |
----' `---' `---' `---' `-----
,-------. : ,-------. :

MISO: | : | : | :
| : | : | : | :

--' : `-------' : `-----------
: : : :

LSB MSB

select_high
If False (the default), the chip select line is considered active when it is pulled low. When set to
True, the chip select line is considered active when it is driven high.

The following diagram shows the waveform of the chip select line, and the clock when
clock_polarity (page 171) is False, and select_high (page 172) is False (the default):

---. ,------
__ | |
CS | chip is selected, and will react to clock | idle

`---'

,---. ,---. ,---. ,---. ,---. ,---. ,---.
CLK | | | | | | | | | | | | | |

| | | | | | | | | | | | | |
----' `---' `---' `---' `---' `---' `---' `-------

And when select_high (page 172) is True:

,---.
CS | chip is selected, and will react to clock | idle

| |
---' `------

,---. ,---. ,---. ,---. ,---. ,---. ,---.
CLK | | | | | | | | | | | | | |

| | | | | | | | | | | | | |
----' `---' `---' `---' `---' `---' `---' `-------

class gpiozero.pins.pi.PiFactory
Abstract base class representing hardware attached to a Raspberry Pi. This forms the base of
LocalPiFactory (page 173).

spi(**spi_args)
Returns an SPI interface, for the specified SPI port and device, or for the specified pins (clock_pin,
mosi_pin, miso_pin, and select_pin). Only one of the schemes can be used; attempting to mix port
and device with pin numbers will raise SPIBadArgs.

If the pins specified match the hardware SPI pins (clock on GPIO11, MOSI on GPIO10, MISO
on GPIO9, and chip select on GPIO8 or GPIO7), and the spidev module can be imported, a
SPIHardwareInterface instance will be returned. Otherwise, a SPISoftwareInterface
will be returned which will use simple bit-banging to communicate.

Both interfaces have the same API, support clock polarity and phase attributes, and can handle half
and full duplex communications, but the hardware interface is significantly faster (though for many
things this doesn’t matter).

class gpiozero.pins.pi.PiPin(factory, number)
Abstract base class representing a multi-function GPIO pin attached to a Raspberry Pi. This overrides
several methods in the abstract base Pin (page 167). Descendents must override the following methods:

•_get_function()

172 Chapter 19. API - Pins

Gpiozero Documentation, Release 1.4.0

•_set_function()

•_get_state()

•_call_when_changed()

•_enable_event_detect()

•_disable_event_detect()

Descendents may additionally override the following methods, if applicable:

•close()

•output_with_state()

•input_with_pull()

•_set_state()

•_get_frequency()

•_set_frequency()

•_get_pull()

•_set_pull()

•_get_bounce()

•_set_bounce()

•_get_edges()

•_set_edges()

class gpiozero.pins.local.LocalPiFactory
Abstract base class representing pins attached locally to a Pi. This forms the base class for local-only pin
interfaces (RPiGPIOPin (page 173), RPIOPin (page 174), and NativePin (page 175)).

class gpiozero.pins.local.LocalPiPin(factory, number)
Abstract base class representing a multi-function GPIO pin attached to the local Raspberry Pi.

RPi.GPIO

class gpiozero.pins.rpigpio.RPiGPIOFactory
Uses the RPi.GPIO414 library to interface to the Pi’s GPIO pins. This is the default pin implementation if
the RPi.GPIO library is installed. Supports all features including PWM (via software).

Because this is the default pin implementation you can use it simply by specifying an integer number for
the pin in most operations, e.g.:

from gpiozero import LED

led = LED(12)

However, you can also construct RPi.GPIO pins manually if you wish:

from gpiozero.pins.rpigpio import RPiGPIOFactory
from gpiozero import LED

factory = RPiGPIOFactory()
led = LED(12, pin_factory=factory)

414 https://pypi.python.org/pypi/RPi.GPIO

19.4. RPi.GPIO 173

https://pypi.python.org/pypi/RPi.GPIO

Gpiozero Documentation, Release 1.4.0

class gpiozero.pins.rpigpio.RPiGPIOPin(factory, number)
Pin implementation for the RPi.GPIO415 library. See RPiGPIOFactory (page 173) for more information.

RPIO

class gpiozero.pins.rpio.RPIOFactory
Uses the RPIO416 library to interface to the Pi’s GPIO pins. This is the default pin implementation if the
RPi.GPIO library is not installed, but RPIO is. Supports all features including PWM (hardware via DMA).

Note: Please note that at the time of writing, RPIO is only compatible with Pi 1’s; the Raspberry Pi 2
Model B is not supported. Also note that root access is required so scripts must typically be run with sudo.

You can construct RPIO pins manually like so:

from gpiozero.pins.rpio import RPIOFactory
from gpiozero import LED

factory = RPIOFactory()
led = LED(12, pin_factory=factory)

class gpiozero.pins.rpio.RPIOPin(factory, number)
Pin implementation for the RPIO417 library. See RPIOFactory (page 174) for more information.

PiGPIO

class gpiozero.pins.pigpio.PiGPIOFactory(host=’localhost’, port=8888)
Uses the pigpio418 library to interface to the Pi’s GPIO pins. The pigpio library relies on a daemon
(pigpiod) to be running as root to provide access to the GPIO pins, and communicates with this dae-
mon over a network socket.

While this does mean only the daemon itself should control the pins, the architecture does have several
advantages:

•Pins can be remote controlled from another machine (the other machine doesn’t even have to be a
Raspberry Pi; it simply needs the pigpio419 client library installed on it)

•The daemon supports hardware PWM via the DMA controller

•Your script itself doesn’t require root privileges; it just needs to be able to communicate with the
daemon

You can construct pigpio pins manually like so:

from gpiozero.pins.pigpio import PiGPIOFactory
from gpiozero import LED

factory = PiGPIOFactory()
led = LED(12, pin_factory=factory)

This is particularly useful for controlling pins on a remote machine. To accomplish this simply specify the
host (and optionally port) when constructing the pin:

415 https://pypi.python.org/pypi/RPi.GPIO
416 https://pythonhosted.org/RPIO/
417 https://pythonhosted.org/RPIO/
418 http://abyz.co.uk/rpi/pigpio/
419 http://abyz.co.uk/rpi/pigpio/

174 Chapter 19. API - Pins

https://pypi.python.org/pypi/RPi.GPIO
https://pythonhosted.org/RPIO/
https://pythonhosted.org/RPIO/
http://abyz.co.uk/rpi/pigpio/
http://abyz.co.uk/rpi/pigpio/

Gpiozero Documentation, Release 1.4.0

from gpiozero.pins.pigpio import PiGPIOFactory
from gpiozero import LED

factory = PiGPIOFactory(host='192.168.0.2')
led = LED(12, pin_factory=factory)

Note: In some circumstances, especially when playing with PWM, it does appear to be possible to get the
daemon into “unusual” states. We would be most interested to hear any bug reports relating to this (it may
be a bug in our pin implementation). A workaround for now is simply to restart the pigpiod daemon.

class gpiozero.pins.pigpio.PiGPIOPin(factory, number)
Pin implementation for the pigpio420 library. See PiGPIOFactory (page 174) for more information.

Native

class gpiozero.pins.native.NativeFactory
Uses a built-in pure Python implementation to interface to the Pi’s GPIO pins. This is the default pin
implementation if no third-party libraries are discovered.

Warning: This implementation does not currently support PWM. Attempting to use any class which re-
quests PWM will raise an exception. This implementation is also experimental; we make no guarantees
it will not eat your Pi for breakfast!

You can construct native pin instances manually like so:

from gpiozero.pins.native import NativeFactory
from gpiozero import LED

factory = NativeFactory()
led = LED(12, pin_factory=factory)

class gpiozero.pins.native.NativePin(factory, number)
Native pin implementation. See NativeFactory (page 175) for more information.

Mock

class gpiozero.pins.mock.MockFactory(revision=’a02082’, pin_class=<class ‘gpi-
ozero.pins.mock.MockPin’>)

Factory for generating mock pins. The revision parameter specifies what revision of Pi the mock factory
pretends to be (this affects the result of the pi_info attribute as well as where pull-ups are assumed to be).
The pin_class attribute specifies which mock pin class will be generated by the pin() (page 175) method
by default. This can be changed after construction by modifying the pin_class attribute.

pin(spec, pin_class=None, **kwargs)
The pin method for MockFactory (page 175) additionally takes a pin_class attribute which can be
used to override the class’ pin_class attribute. Any additional keyword arguments will be passed
along to the pin constructor (useful with things like MockConnectedPin (page 176) which expect
to be constructed with another pin).

reset()
Clears the pins and reservations sets. This is primarily useful in test suites to ensure the pin factory is
back in a “clean” state before the next set of tests are run.

420 http://abyz.co.uk/rpi/pigpio/

19.7. Native 175

http://abyz.co.uk/rpi/pigpio/

Gpiozero Documentation, Release 1.4.0

class gpiozero.pins.mock.MockPin(factory, number)
A mock pin used primarily for testing. This class does not support PWM.

class gpiozero.pins.mock.MockPWMPin(factory, number)
This derivative of MockPin (page 175) adds PWM support.

class gpiozero.pins.mock.MockConnectedPin(factory, number, input_pin=None)
This derivative of MockPin (page 175) emulates a pin connected to another mock pin. This is used in the
“real pins” portion of the test suite to check that one pin can influence another.

class gpiozero.pins.mock.MockChargingPin(factory, number, charge_time=0.01)
This derivative of MockPin (page 175) emulates a pin which, when set to input, waits a predetermined
length of time and then drives itself high (as if attached to, e.g. a typical circuit using an LDR and a
capacitor to time the charging rate).

class gpiozero.pins.mock.MockTriggerPin(factory, number, echo_pin=None,
echo_time=0.04)

This derivative of MockPin (page 175) is intended to be used with another MockPin (page 175) to emulate
a distance sensor. Set echo_pin to the corresponding pin instance. When this pin is driven high it will trigger
the echo pin to drive high for the echo time.

176 Chapter 19. API - Pins

CHAPTER 20

API - Exceptions

The following exceptions are defined by GPIO Zero. Please note that multiple inheritance is heavily used in the
exception hierarchy to make testing for exceptions easier. For example, to capture any exception generated by
GPIO Zero’s code:

from gpiozero import *

led = PWMLED(17)
try:

led.value = 2
except GPIOZeroError:

print('A GPIO Zero error occurred')

Since all GPIO Zero’s exceptions descend from GPIOZeroError (page 177), this will work. How-
ever, certain specific errors have multiple parents. For example, in the case that an out of range value is
passed to OutputDevice.value (page 95) you would expect a ValueError421 to be raised. In fact,
a OutputDeviceBadValue (page 178) error will be raised. However, note that this descends from both
GPIOZeroError (page 177) (indirectly) and from ValueError422 so you can still do:

from gpiozero import *

led = PWMLED(17)
try:

led.value = 2
except ValueError:

print('Bad value specified')

Errors

exception gpiozero.GPIOZeroError
Base class for all exceptions in GPIO Zero

exception gpiozero.DeviceClosed
Error raised when an operation is attempted on a closed device

421 https://docs.python.org/3.5/library/exceptions.html#ValueError
422 https://docs.python.org/3.5/library/exceptions.html#ValueError

177

https://docs.python.org/3.5/library/exceptions.html#ValueError
https://docs.python.org/3.5/library/exceptions.html#ValueError

Gpiozero Documentation, Release 1.4.0

exception gpiozero.BadEventHandler
Error raised when an event handler with an incompatible prototype is specified

exception gpiozero.BadQueueLen
Error raised when non-positive queue length is specified

exception gpiozero.BadWaitTime
Error raised when an invalid wait time is specified

exception gpiozero.CompositeDeviceError
Base class for errors specific to the CompositeDevice hierarchy

exception gpiozero.CompositeDeviceBadName
Error raised when a composite device is constructed with a reserved name

exception gpiozero.EnergenieSocketMissing
Error raised when socket number is not specified

exception gpiozero.EnergenieBadSocket
Error raised when an invalid socket number is passed to Energenie (page 130)

exception gpiozero.SPIError
Base class for errors related to the SPI implementation

exception gpiozero.SPIBadArgs
Error raised when invalid arguments are given while constructing SPIDevice (page 103)

exception gpiozero.SPIBadChannel
Error raised when an invalid channel is given to an AnalogInputDevice (page 102)

exception gpiozero.SPIFixedClockMode
Error raised when the SPI clock mode cannot be changed

exception gpiozero.SPIInvalidClockMode
Error raised when an invalid clock mode is given to an SPI implementation

exception gpiozero.SPIFixedBitOrder
Error raised when the SPI bit-endianness cannot be changed

exception gpiozero.SPIFixedSelect
Error raised when the SPI select polarity cannot be changed

exception gpiozero.SPIFixedWordSize
Error raised when the number of bits per word cannot be changed

exception gpiozero.SPIInvalidWordSize
Error raised when an invalid (out of range) number of bits per word is specified

exception gpiozero.GPIODeviceError
Base class for errors specific to the GPIODevice hierarchy

exception gpiozero.GPIODeviceClosed
Deprecated descendent of DeviceClosed (page 177)

exception gpiozero.GPIOPinInUse
Error raised when attempting to use a pin already in use by another device

exception gpiozero.GPIOPinMissing
Error raised when a pin specification is not given

exception gpiozero.InputDeviceError
Base class for errors specific to the InputDevice hierarchy

exception gpiozero.OutputDeviceError
Base class for errors specified to the OutputDevice hierarchy

exception gpiozero.OutputDeviceBadValue
Error raised when value is set to an invalid value

178 Chapter 20. API - Exceptions

Gpiozero Documentation, Release 1.4.0

exception gpiozero.PinError
Base class for errors related to pin implementations

exception gpiozero.PinInvalidFunction
Error raised when attempting to change the function of a pin to an invalid value

exception gpiozero.PinInvalidState
Error raised when attempting to assign an invalid state to a pin

exception gpiozero.PinInvalidPull
Error raised when attempting to assign an invalid pull-up to a pin

exception gpiozero.PinInvalidEdges
Error raised when attempting to assign an invalid edge detection to a pin

exception gpiozero.PinInvalidBounce
Error raised when attempting to assign an invalid bounce time to a pin

exception gpiozero.PinSetInput
Error raised when attempting to set a read-only pin

exception gpiozero.PinFixedPull
Error raised when attempting to set the pull of a pin with fixed pull-up

exception gpiozero.PinEdgeDetectUnsupported
Error raised when attempting to use edge detection on unsupported pins

exception gpiozero.PinUnsupported
Error raised when attempting to obtain a pin interface on unsupported pins

exception gpiozero.PinSPIUnsupported
Error raised when attempting to obtain an SPI interface on unsupported pins

exception gpiozero.PinPWMError
Base class for errors related to PWM implementations

exception gpiozero.PinPWMUnsupported
Error raised when attempting to activate PWM on unsupported pins

exception gpiozero.PinPWMFixedValue
Error raised when attempting to initialize PWM on an input pin

exception gpiozero.PinUnknownPi
Error raised when gpiozero doesn’t recognize a revision of the Pi

exception gpiozero.PinMultiplePins
Error raised when multiple pins support the requested function

exception gpiozero.PinNoPins
Error raised when no pins support the requested function

exception gpiozero.PinInvalidPin
Error raised when an invalid pin specification is provided

Warnings

exception gpiozero.GPIOZeroWarning
Base class for all warnings in GPIO Zero

exception gpiozero.SPIWarning
Base class for warnings related to the SPI implementation

exception gpiozero.SPISoftwareFallback
Warning raised when falling back to the software implementation

20.2. Warnings 179

Gpiozero Documentation, Release 1.4.0

exception gpiozero.PinFactoryFallback
Warning raised when a default pin factory fails to load and a fallback is tried

exception gpiozero.PinNonPhysical
Warning raised when a non-physical pin is specified in a constructor

180 Chapter 20. API - Exceptions

CHAPTER 21

Changelog

Release 1.4.0 (2017-07-26)

• Pin factory is now configurable from device constructors (page 164) as well as command line. NOTE:
this is a backwards incompatible change for manual pin construction but it’s hoped this is (currently) a
sufficiently rare use case that this won’t affect too many people and the benefits of the new system warrant
such a change, i.e. the ability to use remote pin factories with HAT classes that don’t accept pin assignations
(#279423)

• Major work on SPI, primarily to support remote hardware SPI (#421424, #459425, #465426, #468427, #575428)

• Pin reservation now works properly between GPIO and SPI devices (#459429, #468430)

• Lots of work on the documentation: source/values chapter (page 47), better charts, more recipes, remote
GPIO configuration (page 35), mock pins, better PDF output (#484431, #469432, #523433, #520434, #434435,
#565436, #576437)

• Support for StatusZero (page 131) and StatusBoard (page 133) HATs (#558438)

• Added pinout command line tool to provide a simple reference to the GPIO layout and information about
the associated Pi (#497439, #504440) thanks to Stewart Adcock for the initial work

• pi_info() (page 159) made more lenient for new (unknown) Pi models (#529441)

423 https://github.com/RPi-Distro/python-gpiozero/issues/279
424 https://github.com/RPi-Distro/python-gpiozero/issues/421
425 https://github.com/RPi-Distro/python-gpiozero/issues/459
426 https://github.com/RPi-Distro/python-gpiozero/issues/465
427 https://github.com/RPi-Distro/python-gpiozero/issues/468
428 https://github.com/RPi-Distro/python-gpiozero/issues/575
429 https://github.com/RPi-Distro/python-gpiozero/issues/459
430 https://github.com/RPi-Distro/python-gpiozero/issues/468
431 https://github.com/RPi-Distro/python-gpiozero/issues/484
432 https://github.com/RPi-Distro/python-gpiozero/issues/469
433 https://github.com/RPi-Distro/python-gpiozero/issues/523
434 https://github.com/RPi-Distro/python-gpiozero/issues/520
435 https://github.com/RPi-Distro/python-gpiozero/issues/434
436 https://github.com/RPi-Distro/python-gpiozero/issues/565
437 https://github.com/RPi-Distro/python-gpiozero/issues/576
438 https://github.com/RPi-Distro/python-gpiozero/issues/558
439 https://github.com/RPi-Distro/python-gpiozero/issues/497
440 https://github.com/RPi-Distro/python-gpiozero/issues/504
441 https://github.com/RPi-Distro/python-gpiozero/issues/529

181

https://github.com/RPi-Distro/python-gpiozero/issues/279
https://github.com/RPi-Distro/python-gpiozero/issues/421
https://github.com/RPi-Distro/python-gpiozero/issues/459
https://github.com/RPi-Distro/python-gpiozero/issues/465
https://github.com/RPi-Distro/python-gpiozero/issues/468
https://github.com/RPi-Distro/python-gpiozero/issues/575
https://github.com/RPi-Distro/python-gpiozero/issues/459
https://github.com/RPi-Distro/python-gpiozero/issues/468
https://github.com/RPi-Distro/python-gpiozero/issues/484
https://github.com/RPi-Distro/python-gpiozero/issues/469
https://github.com/RPi-Distro/python-gpiozero/issues/523
https://github.com/RPi-Distro/python-gpiozero/issues/520
https://github.com/RPi-Distro/python-gpiozero/issues/434
https://github.com/RPi-Distro/python-gpiozero/issues/565
https://github.com/RPi-Distro/python-gpiozero/issues/576
https://github.com/RPi-Distro/python-gpiozero/issues/558
https://github.com/RPi-Distro/python-gpiozero/issues/497
https://github.com/RPi-Distro/python-gpiozero/issues/504
https://github.com/RPi-Distro/python-gpiozero/issues/529

Gpiozero Documentation, Release 1.4.0

• Fixed a variety of packaging issues (#535442, #518443, #519444)

• Improved text in factory fallback warnings (#572445)

Release 1.3.2 (2017-03-03)

• Added new Pi models to stop pi_info() (page 159) breaking

• Fix issue with pi_info() (page 159) breaking on unknown Pi models

Release 1.3.1 (2016-08-31 ... later)

• Fixed hardware SPI support which Dave broke in 1.3.0. Sorry!

• Some minor docs changes

Release 1.3.0 (2016-08-31)

• Added ButtonBoard (page 109) for reading multiple buttons in a single class (#340446)

• Added Servo (page 88) and AngularServo (page 89) classes for controlling simple servo motors
(#248447)

• Lots of work on supporting easier use of internal and third-party pin implementations (#359448)

• Robot (page 126) now has a proper value (page 127) attribute (#305449)

• Added CPUTemperature (page 142) as another demo of “internal” devices (#294450)

• A temporary work-around for an issue with DistanceSensor (page 75) was included but a full fix is in
the works (#385451)

• More work on the documentation (#320452, #295453, #289454, etc.)

Not quite as much as we’d hoped to get done this time, but we’re rushing to make a Raspbian freeze. As always,
thanks to the community - your suggestions and PRs have been brilliant and even if we don’t take stuff exactly as
is, it’s always great to see your ideas. Onto 1.4!

Release 1.2.0 (2016-04-10)

• Added Energenie (page 130) class for controlling Energenie plugs (#69455)

• Added LineSensor (page 71) class for single line-sensors (#109456)

442 https://github.com/RPi-Distro/python-gpiozero/issues/535
443 https://github.com/RPi-Distro/python-gpiozero/issues/518
444 https://github.com/RPi-Distro/python-gpiozero/issues/519
445 https://github.com/RPi-Distro/python-gpiozero/issues/572
446 https://github.com/RPi-Distro/python-gpiozero/issues/340
447 https://github.com/RPi-Distro/python-gpiozero/issues/248
448 https://github.com/RPi-Distro/python-gpiozero/issues/359
449 https://github.com/RPi-Distro/python-gpiozero/issues/305
450 https://github.com/RPi-Distro/python-gpiozero/issues/294
451 https://github.com/RPi-Distro/python-gpiozero/issues/385
452 https://github.com/RPi-Distro/python-gpiozero/issues/320
453 https://github.com/RPi-Distro/python-gpiozero/issues/295
454 https://github.com/RPi-Distro/python-gpiozero/issues/289
455 https://github.com/RPi-Distro/python-gpiozero/issues/69
456 https://github.com/RPi-Distro/python-gpiozero/issues/109

182 Chapter 21. Changelog

https://github.com/RPi-Distro/python-gpiozero/issues/535
https://github.com/RPi-Distro/python-gpiozero/issues/518
https://github.com/RPi-Distro/python-gpiozero/issues/519
https://github.com/RPi-Distro/python-gpiozero/issues/572
https://github.com/RPi-Distro/python-gpiozero/issues/340
https://github.com/RPi-Distro/python-gpiozero/issues/248
https://github.com/RPi-Distro/python-gpiozero/issues/359
https://github.com/RPi-Distro/python-gpiozero/issues/305
https://github.com/RPi-Distro/python-gpiozero/issues/294
https://github.com/RPi-Distro/python-gpiozero/issues/385
https://github.com/RPi-Distro/python-gpiozero/issues/320
https://github.com/RPi-Distro/python-gpiozero/issues/295
https://github.com/RPi-Distro/python-gpiozero/issues/289
https://github.com/RPi-Distro/python-gpiozero/issues/69
https://github.com/RPi-Distro/python-gpiozero/issues/109

Gpiozero Documentation, Release 1.4.0

• Added DistanceSensor (page 75) class for HC-SR04 ultra-sonic sensors (#114457)

• Added SnowPi (page 134) class for the Ryanteck Snow-pi board (#130458)

• Added when_held (page 70) (and related properties) to Button (page 69) (#115459)

• Fixed issues with installing GPIO Zero for python 3 on Raspbian Wheezy releases (#140460)

• Added support for lots of ADC chips (MCP3xxx family) (#162461) - many thanks to pcopa and lurch!

• Added support for pigpiod as a pin implementation with PiGPIOPin (page 175) (#180462)

• Many refinements to the base classes mean more consistency in composite devices and several bugs
squashed (#164463, #175464, #182465, #189466, #193467, #229468)

• GPIO Zero is now aware of what sort of Pi it’s running on via pi_info() (page 159) and has a fairly
extensive database of Pi information which it uses to determine when users request impossible things (like
pull-down on a pin with a physical pull-up resistor) (#222469)

• The source/values system was enhanced to ensure normal usage doesn’t stress the CPU and lots of utilities
were added (#181470, #251471)

And I’ll just add a note of thanks to the many people in the community who contributed to this release: we’ve had
some great PRs, suggestions, and bug reports in this version. Of particular note:

• Schelto van Doorn was instrumental in adding support for numerous ADC chips

• Alex Eames generously donated a RasPiO Analog board which was extremely useful in developing the
software SPI interface (and testing the ADC support)

• Andrew Scheller squashed several dozen bugs (usually a day or so after Dave had introduced them ;)

As always, many thanks to the whole community - we look forward to hearing from you more in 1.3!

Release 1.1.0 (2016-02-08)

• Documentation converted to reST and expanded to include generic classes and several more recipes (#80472,
#82473, #101474, #119475, #135476, #168477)

• New CamJamKitRobot (page 129) class with the pre-defined motor pins for the new CamJam EduKit

• New LEDBarGraph (page 108) class (many thanks to Martin O’Hanlon!) (#126478, #176479)

457 https://github.com/RPi-Distro/python-gpiozero/issues/114
458 https://github.com/RPi-Distro/python-gpiozero/issues/130
459 https://github.com/RPi-Distro/python-gpiozero/issues/115
460 https://github.com/RPi-Distro/python-gpiozero/issues/140
461 https://github.com/RPi-Distro/python-gpiozero/issues/162
462 https://github.com/RPi-Distro/python-gpiozero/issues/180
463 https://github.com/RPi-Distro/python-gpiozero/issues/164
464 https://github.com/RPi-Distro/python-gpiozero/issues/175
465 https://github.com/RPi-Distro/python-gpiozero/issues/182
466 https://github.com/RPi-Distro/python-gpiozero/issues/189
467 https://github.com/RPi-Distro/python-gpiozero/issues/193
468 https://github.com/RPi-Distro/python-gpiozero/issues/229
469 https://github.com/RPi-Distro/python-gpiozero/issues/222
470 https://github.com/RPi-Distro/python-gpiozero/issues/181
471 https://github.com/RPi-Distro/python-gpiozero/issues/251
472 https://github.com/RPi-Distro/python-gpiozero/issues/80
473 https://github.com/RPi-Distro/python-gpiozero/issues/82
474 https://github.com/RPi-Distro/python-gpiozero/issues/101
475 https://github.com/RPi-Distro/python-gpiozero/issues/119
476 https://github.com/RPi-Distro/python-gpiozero/issues/135
477 https://github.com/RPi-Distro/python-gpiozero/issues/168
478 https://github.com/RPi-Distro/python-gpiozero/issues/126
479 https://github.com/RPi-Distro/python-gpiozero/issues/176

21.6. Release 1.1.0 (2016-02-08) 183

https://github.com/RPi-Distro/python-gpiozero/issues/114
https://github.com/RPi-Distro/python-gpiozero/issues/130
https://github.com/RPi-Distro/python-gpiozero/issues/115
https://github.com/RPi-Distro/python-gpiozero/issues/140
https://github.com/RPi-Distro/python-gpiozero/issues/162
https://github.com/RPi-Distro/python-gpiozero/issues/180
https://github.com/RPi-Distro/python-gpiozero/issues/164
https://github.com/RPi-Distro/python-gpiozero/issues/175
https://github.com/RPi-Distro/python-gpiozero/issues/182
https://github.com/RPi-Distro/python-gpiozero/issues/189
https://github.com/RPi-Distro/python-gpiozero/issues/193
https://github.com/RPi-Distro/python-gpiozero/issues/229
https://github.com/RPi-Distro/python-gpiozero/issues/222
https://github.com/RPi-Distro/python-gpiozero/issues/181
https://github.com/RPi-Distro/python-gpiozero/issues/251
https://github.com/RPi-Distro/python-gpiozero/issues/80
https://github.com/RPi-Distro/python-gpiozero/issues/82
https://github.com/RPi-Distro/python-gpiozero/issues/101
https://github.com/RPi-Distro/python-gpiozero/issues/119
https://github.com/RPi-Distro/python-gpiozero/issues/135
https://github.com/RPi-Distro/python-gpiozero/issues/168
https://github.com/RPi-Distro/python-gpiozero/issues/126
https://github.com/RPi-Distro/python-gpiozero/issues/176

Gpiozero Documentation, Release 1.4.0

• New Pin (page 167) implementation abstracts out the concept of a GPIO pin paving the way for alternate
library support and IO extenders in future (#141480)

• New LEDBoard.blink() (page 106) method which works properly even when background is set to
False (#94481, #161482)

• New RGBLED.blink() (page 84) method which implements (rudimentary) color fading too! (#135483,
#174484)

• New initial_value attribute on OutputDevice (page 95) ensures consistent behaviour on construc-
tion (#118485)

• New active_high attribute on PWMOutputDevice (page 93) and RGBLED (page 84) allows use of
common anode devices (#143486, #154487)

• Loads of new ADC chips supported (many thanks to GitHub user pcopa!) (#150488)

Release 1.0.0 (2015-11-16)

• Debian packaging added (#44489)

• PWMLED (page 82) class added (#58490)

• TemperatureSensor removed pending further work (#93491)

• Buzzer.beep() (page 86) alias method added (#75492)

• Motor (page 87) PWM devices exposed, and Robot (page 126) motor devices exposed (#107493)

Release 0.9.0 (2015-10-25)

Fourth public beta

• Added source and values properties to all relevant classes (#76494)

• Fix names of parameters in Motor (page 87) constructor (#79495)

• Added wrappers for LED groups on add-on boards (#81496)

Release 0.8.0 (2015-10-16)

Third public beta

480 https://github.com/RPi-Distro/python-gpiozero/issues/141
481 https://github.com/RPi-Distro/python-gpiozero/issues/94
482 https://github.com/RPi-Distro/python-gpiozero/issues/161
483 https://github.com/RPi-Distro/python-gpiozero/issues/135
484 https://github.com/RPi-Distro/python-gpiozero/issues/174
485 https://github.com/RPi-Distro/python-gpiozero/issues/118
486 https://github.com/RPi-Distro/python-gpiozero/issues/143
487 https://github.com/RPi-Distro/python-gpiozero/issues/154
488 https://github.com/RPi-Distro/python-gpiozero/issues/150
489 https://github.com/RPi-Distro/python-gpiozero/issues/44
490 https://github.com/RPi-Distro/python-gpiozero/issues/58
491 https://github.com/RPi-Distro/python-gpiozero/issues/93
492 https://github.com/RPi-Distro/python-gpiozero/issues/75
493 https://github.com/RPi-Distro/python-gpiozero/issues/107
494 https://github.com/RPi-Distro/python-gpiozero/issues/76
495 https://github.com/RPi-Distro/python-gpiozero/issues/79
496 https://github.com/RPi-Distro/python-gpiozero/issues/81

184 Chapter 21. Changelog

https://github.com/RPi-Distro/python-gpiozero/issues/141
https://github.com/RPi-Distro/python-gpiozero/issues/94
https://github.com/RPi-Distro/python-gpiozero/issues/161
https://github.com/RPi-Distro/python-gpiozero/issues/135
https://github.com/RPi-Distro/python-gpiozero/issues/174
https://github.com/RPi-Distro/python-gpiozero/issues/118
https://github.com/RPi-Distro/python-gpiozero/issues/143
https://github.com/RPi-Distro/python-gpiozero/issues/154
https://github.com/RPi-Distro/python-gpiozero/issues/150
https://github.com/RPi-Distro/python-gpiozero/issues/44
https://github.com/RPi-Distro/python-gpiozero/issues/58
https://github.com/RPi-Distro/python-gpiozero/issues/93
https://github.com/RPi-Distro/python-gpiozero/issues/75
https://github.com/RPi-Distro/python-gpiozero/issues/107
https://github.com/RPi-Distro/python-gpiozero/issues/76
https://github.com/RPi-Distro/python-gpiozero/issues/79
https://github.com/RPi-Distro/python-gpiozero/issues/81

Gpiozero Documentation, Release 1.4.0

• Added generic AnalogInputDevice (page 102) class along with specific classes for the MCP3008
(page 99) and MCP3004 (page 98) (#41497)

• Fixed DigitalOutputDevice.blink() (page 92) (#57498)

Release 0.7.0 (2015-10-09)

Second public beta

Release 0.6.0 (2015-09-28)

First public beta

Release 0.5.0 (2015-09-24)

Release 0.4.0 (2015-09-23)

Release 0.3.0 (2015-09-22)

Release 0.2.0 (2015-09-21)

Initial release

497 https://github.com/RPi-Distro/python-gpiozero/issues/41
498 https://github.com/RPi-Distro/python-gpiozero/issues/57

21.10. Release 0.7.0 (2015-10-09) 185

https://github.com/RPi-Distro/python-gpiozero/issues/41
https://github.com/RPi-Distro/python-gpiozero/issues/57

Gpiozero Documentation, Release 1.4.0

186 Chapter 21. Changelog

CHAPTER 22

License

Copyright 2015-2017 Raspberry Pi Foundation499.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the follow-
ing disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DI-
RECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

499 https://www.raspberrypi.org/

187

https://www.raspberrypi.org/

Gpiozero Documentation, Release 1.4.0

188 Chapter 22. License

Python Module Index

g
gpiozero, 3
gpiozero.boards, 105
gpiozero.devices, 145
gpiozero.input_devices, 69
gpiozero.other_devices, 141
gpiozero.output_devices, 81
gpiozero.pins, 163
gpiozero.pins.local, 173
gpiozero.pins.mock, 175
gpiozero.pins.native, 175
gpiozero.pins.pi, 172
gpiozero.pins.pigpio, 174
gpiozero.pins.rpigpio, 173
gpiozero.pins.rpio, 174
gpiozero.spi_devices, 97
gpiozero.tools, 151

189

Gpiozero Documentation, Release 1.4.0

190 Python Module Index

Index

Symbols
-c, –color

pinout command line option, 56
-h, –help

pinout command line option, 56
-m, –monochrome

pinout command line option, 56
-r REVISION, –revision REVISION

pinout command line option, 56
_shared_key() (gpiozero.SharedMixin class method),

148

A
absoluted() (in module gpiozero.tools), 151
active_high (gpiozero.OutputDevice attribute), 95
active_time (gpiozero.ButtonBoard attribute), 110
active_time (gpiozero.EventsMixin attribute), 149
all_values() (in module gpiozero.tools), 154
alternating_values() (in module gpiozero.tools), 156
AnalogInputDevice (class in gpiozero), 102
angle (gpiozero.AngularServo attribute), 90
AngularServo (class in gpiozero), 89
any_values() (in module gpiozero.tools), 155
averaged() (in module gpiozero.tools), 155

B
backward() (gpiozero.CamJamKitRobot method), 129
backward() (gpiozero.Motor method), 87
backward() (gpiozero.Robot method), 127
backward() (gpiozero.RyanteckRobot method), 128
BadEventHandler, 177
BadQueueLen, 178
BadWaitTime, 178
beep() (gpiozero.Buzzer method), 86
bits (gpiozero.AnalogInputDevice attribute), 103
bits_per_word (gpiozero.SPI attribute), 170
blink() (gpiozero.DigitalOutputDevice method), 92
blink() (gpiozero.LED method), 82
blink() (gpiozero.LEDBoard method), 106
blink() (gpiozero.LedBorg method), 114
blink() (gpiozero.PiLiter method), 117
blink() (gpiozero.PiStop method), 122
blink() (gpiozero.PiTraffic method), 120

blink() (gpiozero.PWMLED method), 83
blink() (gpiozero.PWMOutputDevice method), 93
blink() (gpiozero.RGBLED method), 84
blink() (gpiozero.SnowPi method), 135
blink() (gpiozero.StatusZero method), 132
blink() (gpiozero.TrafficLights method), 112
bluetooth (gpiozero.PiBoardInfo attribute), 161
board (gpiozero.PiBoardInfo attribute), 161
booleanized() (in module gpiozero.tools), 151
bounce (gpiozero.Pin attribute), 168
Button (class in gpiozero), 69
ButtonBoard (class in gpiozero), 109
Buzzer (class in gpiozero), 86

C
CamJamKitRobot (class in gpiozero), 129
channel (gpiozero.MCP3002 attribute), 98
channel (gpiozero.MCP3004 attribute), 98
channel (gpiozero.MCP3008 attribute), 99
channel (gpiozero.MCP3202 attribute), 99
channel (gpiozero.MCP3204 attribute), 99
channel (gpiozero.MCP3208 attribute), 100
channel (gpiozero.MCP3302 attribute), 100
channel (gpiozero.MCP3304 attribute), 101
clamped() (in module gpiozero.tools), 152
clock_mode (gpiozero.SPI attribute), 170
clock_phase (gpiozero.SPI attribute), 170
clock_polarity (gpiozero.SPI attribute), 171
close() (gpiozero.CompositeDevice method), 138
close() (gpiozero.Device method), 147
close() (gpiozero.DigitalOutputDevice method), 92
close() (gpiozero.Energenie method), 130
close() (gpiozero.Factory method), 166
close() (gpiozero.GPIODevice method), 80
close() (gpiozero.LEDBoard method), 106
close() (gpiozero.LedBorg method), 115
close() (gpiozero.PiLiter method), 117
close() (gpiozero.Pin method), 167
close() (gpiozero.PiStop method), 123
close() (gpiozero.PiTraffic method), 121
close() (gpiozero.PWMOutputDevice method), 93
close() (gpiozero.SmoothedInputDevice method), 78
close() (gpiozero.SnowPi method), 135
close() (gpiozero.SPIDevice method), 103

191

Gpiozero Documentation, Release 1.4.0

close() (gpiozero.StatusZero method), 132
close() (gpiozero.TrafficLights method), 112
closed (gpiozero.Device attribute), 147
col (gpiozero.PinInfo attribute), 162
color (gpiozero.LedBorg attribute), 116
color (gpiozero.RGBLED attribute), 85
columns (gpiozero.HeaderInfo attribute), 162
CompositeDevice (class in gpiozero), 138
CompositeDeviceBadName, 178
CompositeDeviceError, 178
CompositeOutputDevice (class in gpiozero), 137
cos_values() (in module gpiozero.tools), 156
CPUTemperature (class in gpiozero), 142
csi (gpiozero.PiBoardInfo attribute), 161

D
detach() (gpiozero.AngularServo method), 90
detach() (gpiozero.Servo method), 89
Device (class in gpiozero), 147
DeviceClosed, 177
differential (gpiozero.MCP3002 attribute), 98
differential (gpiozero.MCP3004 attribute), 98
differential (gpiozero.MCP3008 attribute), 99
differential (gpiozero.MCP3202 attribute), 99
differential (gpiozero.MCP3204 attribute), 100
differential (gpiozero.MCP3208 attribute), 100
differential (gpiozero.MCP3302 attribute), 100
differential (gpiozero.MCP3304 attribute), 101
DigitalInputDevice (class in gpiozero), 77
DigitalOutputDevice (class in gpiozero), 92
distance (gpiozero.DistanceSensor attribute), 76
DistanceSensor (class in gpiozero), 75
dsi (gpiozero.PiBoardInfo attribute), 161

E
echo (gpiozero.DistanceSensor attribute), 76
edges (gpiozero.Pin attribute), 168
Energenie (class in gpiozero), 130
EnergenieBadSocket, 178
EnergenieSocketMissing, 178
environment variable

PIGPIO_ADDR, 165
ethernet (gpiozero.PiBoardInfo attribute), 161
EventsMixin (class in gpiozero), 148

F
Factory (class in gpiozero), 166
FishDish (class in gpiozero), 125
forward() (gpiozero.CamJamKitRobot method), 129
forward() (gpiozero.Motor method), 88
forward() (gpiozero.Robot method), 127
forward() (gpiozero.RyanteckRobot method), 128
frame_width (gpiozero.AngularServo attribute), 91
frame_width (gpiozero.Servo attribute), 89
frequency (gpiozero.Pin attribute), 168
frequency (gpiozero.PWMOutputDevice attribute), 94
function (gpiozero.Pin attribute), 168
function (gpiozero.PinInfo attribute), 162

G
GPIODevice (class in gpiozero), 80
GPIODeviceClosed, 178
GPIODeviceError, 178
GPIOPinInUse, 178
GPIOPinMissing, 178
gpiozero (module), 3
gpiozero.boards (module), 105
gpiozero.devices (module), 145
gpiozero.input_devices (module), 69
gpiozero.other_devices (module), 141
gpiozero.output_devices (module), 81
gpiozero.pins (module), 163
gpiozero.pins.local (module), 173
gpiozero.pins.mock (module), 175
gpiozero.pins.native (module), 175
gpiozero.pins.pi (module), 172
gpiozero.pins.pigpio (module), 174
gpiozero.pins.rpigpio (module), 173
gpiozero.pins.rpio (module), 174
gpiozero.spi_devices (module), 97
gpiozero.tools (module), 151
GPIOZeroError, 177
GPIOZeroWarning, 179

H
HeaderInfo (class in gpiozero), 161
headers (gpiozero.PiBoardInfo attribute), 161
held_time (gpiozero.Button attribute), 70
held_time (gpiozero.ButtonBoard attribute), 110
held_time (gpiozero.HoldMixin attribute), 149
hold_repeat (gpiozero.Button attribute), 70
hold_repeat (gpiozero.ButtonBoard attribute), 110
hold_repeat (gpiozero.HoldMixin attribute), 149
hold_time (gpiozero.Button attribute), 70
hold_time (gpiozero.ButtonBoard attribute), 110
hold_time (gpiozero.HoldMixin attribute), 149
HoldMixin (class in gpiozero), 149

I
inactive_time (gpiozero.ButtonBoard attribute), 110
inactive_time (gpiozero.EventsMixin attribute), 149
input_with_pull() (gpiozero.Pin method), 167
InputDevice (class in gpiozero), 79
InputDeviceError, 178
InternalDevice (class in gpiozero), 143
inverted() (in module gpiozero.tools), 152
is_active (gpiozero.Buzzer attribute), 87
is_active (gpiozero.CPUTemperature attribute), 143
is_active (gpiozero.Device attribute), 147
is_active (gpiozero.Energenie attribute), 131
is_active (gpiozero.LedBorg attribute), 116
is_active (gpiozero.PWMOutputDevice attribute), 95
is_active (gpiozero.SmoothedInputDevice attribute), 79
is_held (gpiozero.Button attribute), 70
is_held (gpiozero.ButtonBoard attribute), 110
is_held (gpiozero.HoldMixin attribute), 149
is_lit (gpiozero.LED attribute), 82

192 Index

Gpiozero Documentation, Release 1.4.0

is_lit (gpiozero.LedBorg attribute), 116
is_lit (gpiozero.PWMLED attribute), 83
is_lit (gpiozero.RGBLED attribute), 86
is_pressed (gpiozero.Button attribute), 70

L
LED (class in gpiozero), 81
LEDBarGraph (class in gpiozero), 108
LEDBoard (class in gpiozero), 105
LedBorg (class in gpiozero), 114
LEDCollection (class in gpiozero), 137
leds (gpiozero.LEDBarGraph attribute), 108
leds (gpiozero.LEDBoard attribute), 107
leds (gpiozero.LEDCollection attribute), 137
leds (gpiozero.PiLiter attribute), 118
leds (gpiozero.PiLiterBarGraph attribute), 119
leds (gpiozero.PiStop attribute), 124
leds (gpiozero.PiTraffic attribute), 121
leds (gpiozero.SnowPi attribute), 136
leds (gpiozero.StatusZero attribute), 133
leds (gpiozero.TrafficLights attribute), 113
left() (gpiozero.CamJamKitRobot method), 129
left() (gpiozero.Robot method), 127
left() (gpiozero.RyanteckRobot method), 128
light_detected (gpiozero.LightSensor attribute), 75
LightSensor (class in gpiozero), 74
LineSensor (class in gpiozero), 71
LocalPiFactory (class in gpiozero.pins.local), 173
LocalPiPin (class in gpiozero.pins.local), 173
lsb_first (gpiozero.SPI attribute), 171

M
manufacturer (gpiozero.PiBoardInfo attribute), 160
max() (gpiozero.AngularServo method), 90
max() (gpiozero.Servo method), 89
max_angle (gpiozero.AngularServo attribute), 91
max_distance (gpiozero.DistanceSensor attribute), 76
max_pulse_width (gpiozero.AngularServo attribute),

91
max_pulse_width (gpiozero.Servo attribute), 89
MCP3001 (class in gpiozero), 98
MCP3002 (class in gpiozero), 98
MCP3004 (class in gpiozero), 98
MCP3008 (class in gpiozero), 99
MCP3201 (class in gpiozero), 99
MCP3202 (class in gpiozero), 99
MCP3204 (class in gpiozero), 99
MCP3208 (class in gpiozero), 100
MCP3301 (class in gpiozero), 100
MCP3302 (class in gpiozero), 100
MCP3304 (class in gpiozero), 101
memory (gpiozero.PiBoardInfo attribute), 160
mid() (gpiozero.AngularServo method), 90
mid() (gpiozero.Servo method), 89
min() (gpiozero.AngularServo method), 90
min() (gpiozero.Servo method), 89
min_angle (gpiozero.AngularServo attribute), 91
min_pulse_width (gpiozero.AngularServo attribute), 91

min_pulse_width (gpiozero.Servo attribute), 89
MockChargingPin (class in gpiozero.pins.mock), 176
MockConnectedPin (class in gpiozero.pins.mock), 176
MockFactory (class in gpiozero.pins.mock), 175
MockPin (class in gpiozero.pins.mock), 175
MockPWMPin (class in gpiozero.pins.mock), 176
MockTriggerPin (class in gpiozero.pins.mock), 176
model (gpiozero.PiBoardInfo attribute), 160
motion_detected (gpiozero.MotionSensor attribute), 73
MotionSensor (class in gpiozero), 72
Motor (class in gpiozero), 87
multiplied() (in module gpiozero.tools), 155

N
name (gpiozero.HeaderInfo attribute), 162
NativeFactory (class in gpiozero.pins.native), 175
NativePin (class in gpiozero.pins.native), 175
negated() (in module gpiozero.tools), 152
number (gpiozero.PinInfo attribute), 162

O
off() (gpiozero.Buzzer method), 86
off() (gpiozero.CompositeOutputDevice method), 138
off() (gpiozero.DigitalOutputDevice method), 93
off() (gpiozero.FishDish method), 125
off() (gpiozero.LED method), 82
off() (gpiozero.LEDBarGraph method), 108
off() (gpiozero.LEDBoard method), 107
off() (gpiozero.LedBorg method), 115
off() (gpiozero.OutputDevice method), 95
off() (gpiozero.PiLiter method), 118
off() (gpiozero.PiLiterBarGraph method), 119
off() (gpiozero.PiStop method), 123
off() (gpiozero.PiTraffic method), 121
off() (gpiozero.PWMLED method), 83
off() (gpiozero.PWMOutputDevice method), 94
off() (gpiozero.RGBLED method), 85
off() (gpiozero.SnowPi method), 136
off() (gpiozero.StatusBoard method), 134
off() (gpiozero.StatusZero method), 133
off() (gpiozero.TrafficHat method), 126
off() (gpiozero.TrafficLights method), 113
off() (gpiozero.TrafficLightsBuzzer method), 124
on() (gpiozero.Buzzer method), 87
on() (gpiozero.CompositeOutputDevice method), 138
on() (gpiozero.DigitalOutputDevice method), 93
on() (gpiozero.FishDish method), 125
on() (gpiozero.LED method), 82
on() (gpiozero.LEDBarGraph method), 108
on() (gpiozero.LEDBoard method), 107
on() (gpiozero.LedBorg method), 115
on() (gpiozero.OutputDevice method), 95
on() (gpiozero.PiLiter method), 118
on() (gpiozero.PiLiterBarGraph method), 119
on() (gpiozero.PiStop method), 123
on() (gpiozero.PiTraffic method), 121
on() (gpiozero.PWMLED method), 83
on() (gpiozero.PWMOutputDevice method), 94

Index 193

Gpiozero Documentation, Release 1.4.0

on() (gpiozero.RGBLED method), 85
on() (gpiozero.SnowPi method), 136
on() (gpiozero.StatusBoard method), 134
on() (gpiozero.StatusZero method), 133
on() (gpiozero.TrafficHat method), 126
on() (gpiozero.TrafficLights method), 113
on() (gpiozero.TrafficLightsBuzzer method), 124
output_with_state() (gpiozero.Pin method), 167
OutputDevice (class in gpiozero), 95
OutputDeviceBadValue, 178
OutputDeviceError, 178

P
partial (gpiozero.SmoothedInputDevice attribute), 79
pcb_revision (gpiozero.PiBoardInfo attribute), 160
physical_pin() (gpiozero.PiBoardInfo method), 159
physical_pins() (gpiozero.PiBoardInfo method), 160
pi_info (gpiozero.Factory attribute), 167
pi_info() (in module gpiozero), 159
PiBoardInfo (class in gpiozero), 159
PiFactory (class in gpiozero.pins.pi), 172
PIGPIO_ADDR, 165
PiGPIOFactory (class in gpiozero.pins.pigpio), 174
PiGPIOPin (class in gpiozero.pins.pigpio), 175
PiLiter (class in gpiozero), 116
PiLiterBarGraph (class in gpiozero), 119
Pin (class in gpiozero), 167
pin (gpiozero.Button attribute), 70
pin (gpiozero.Buzzer attribute), 87
pin (gpiozero.GPIODevice attribute), 80
pin (gpiozero.LED attribute), 82
pin (gpiozero.LightSensor attribute), 75
pin (gpiozero.LineSensor attribute), 72
pin (gpiozero.MotionSensor attribute), 73
pin (gpiozero.PWMLED attribute), 84
pin() (gpiozero.Factory method), 166
pin() (gpiozero.pins.mock.MockFactory method), 175
PinEdgeDetectUnsupported, 179
PinError, 178
PinFactoryFallback, 179
PinFixedPull, 179
PingServer (class in gpiozero), 142
PinInfo (class in gpiozero), 162
PinInvalidBounce, 179
PinInvalidEdges, 179
PinInvalidFunction, 179
PinInvalidPin, 179
PinInvalidPull, 179
PinInvalidState, 179
PinMultiplePins, 179
PinNonPhysical, 180
PinNoPins, 179
pinout command line option

-c, –color, 56
-h, –help, 56
-m, –monochrome, 56
-r REVISION, –revision REVISION, 56

PinPWMError, 179

PinPWMFixedValue, 179
PinPWMUnsupported, 179
pins (gpiozero.HeaderInfo attribute), 162
PinSetInput, 179
PinSPIUnsupported, 179
PinUnknownPi, 179
PinUnsupported, 179
PiPin (class in gpiozero.pins.pi), 172
PiStop (class in gpiozero), 122
PiTraffic (class in gpiozero), 120
post_delayed() (in module gpiozero.tools), 152
post_periodic_filtered() (in module gpiozero.tools), 152
pprint() (gpiozero.HeaderInfo method), 162
pprint() (gpiozero.PiBoardInfo method), 160
pre_delayed() (in module gpiozero.tools), 153
pre_periodic_filtered() (in module gpiozero.tools), 153
pressed_time (gpiozero.ButtonBoard attribute), 110
pull (gpiozero.Pin attribute), 169
pull_up (gpiozero.Button attribute), 70
pull_up (gpiozero.ButtonBoard attribute), 111
pull_up (gpiozero.InputDevice attribute), 80
pull_up (gpiozero.PinInfo attribute), 162
pulled_up() (gpiozero.PiBoardInfo method), 160
pulse() (gpiozero.LEDBoard method), 107
pulse() (gpiozero.LedBorg method), 115
pulse() (gpiozero.PiLiter method), 118
pulse() (gpiozero.PiStop method), 123
pulse() (gpiozero.PiTraffic method), 121
pulse() (gpiozero.PWMLED method), 83
pulse() (gpiozero.PWMOutputDevice method), 94
pulse() (gpiozero.RGBLED method), 85
pulse() (gpiozero.SnowPi method), 136
pulse() (gpiozero.StatusZero method), 133
pulse() (gpiozero.TrafficLights method), 113
pulse_width (gpiozero.AngularServo attribute), 91
pulse_width (gpiozero.Servo attribute), 89
PWMLED (class in gpiozero), 82
PWMOutputDevice (class in gpiozero), 93

Q
quantized() (in module gpiozero.tools), 153
queue_len (gpiozero.SmoothedInputDevice attribute),

79
queued() (in module gpiozero.tools), 153

R
random_values() (in module gpiozero.tools), 156
raw_value (gpiozero.AnalogInputDevice attribute), 103
read() (gpiozero.SPI method), 169
release_all() (gpiozero.Factory method), 166
release_pins() (gpiozero.Factory method), 166
released (gpiozero.PiBoardInfo attribute), 160
reserve_pins() (gpiozero.Factory method), 166
reset() (gpiozero.pins.mock.MockFactory method), 175
reverse() (gpiozero.CamJamKitRobot method), 129
reverse() (gpiozero.Robot method), 127
reverse() (gpiozero.RyanteckRobot method), 128
revision (gpiozero.PiBoardInfo attribute), 160

194 Index

Gpiozero Documentation, Release 1.4.0

RGBLED (class in gpiozero), 84
right() (gpiozero.CamJamKitRobot method), 129
right() (gpiozero.Robot method), 127
right() (gpiozero.RyanteckRobot method), 128
Robot (class in gpiozero), 126
row (gpiozero.PinInfo attribute), 162
rows (gpiozero.HeaderInfo attribute), 162
RPiGPIOFactory (class in gpiozero.pins.rpigpio), 173
RPiGPIOPin (class in gpiozero.pins.rpigpio), 173
RPIOFactory (class in gpiozero.pins.rpio), 174
RPIOPin (class in gpiozero.pins.rpio), 174
RyanteckRobot (class in gpiozero), 128

S
scaled() (in module gpiozero.tools), 154
select_high (gpiozero.SPI attribute), 172
Servo (class in gpiozero), 88
SharedMixin (class in gpiozero), 148
sin_values() (in module gpiozero.tools), 156
smoothed() (in module gpiozero.tools), 154
SmoothedInputDevice (class in gpiozero), 78
SnowPi (class in gpiozero), 134
soc (gpiozero.PiBoardInfo attribute), 160
source (gpiozero.AngularServo attribute), 91
source (gpiozero.CamJamKitRobot attribute), 130
source (gpiozero.Energenie attribute), 131
source (gpiozero.FishDish attribute), 125
source (gpiozero.LEDBarGraph attribute), 109
source (gpiozero.LEDBoard attribute), 107
source (gpiozero.LedBorg attribute), 116
source (gpiozero.PiLiter attribute), 118
source (gpiozero.PiLiterBarGraph attribute), 119
source (gpiozero.PiStop attribute), 124
source (gpiozero.PiTraffic attribute), 122
source (gpiozero.Robot attribute), 127
source (gpiozero.RyanteckRobot attribute), 128
source (gpiozero.Servo attribute), 89
source (gpiozero.SnowPi attribute), 136
source (gpiozero.SourceMixin attribute), 148
source (gpiozero.StatusBoard attribute), 134
source (gpiozero.StatusZero attribute), 133
source (gpiozero.TrafficHat attribute), 126
source (gpiozero.TrafficLights attribute), 113
source (gpiozero.TrafficLightsBuzzer attribute), 124
source_delay (gpiozero.AngularServo attribute), 91
source_delay (gpiozero.CamJamKitRobot attribute),

130
source_delay (gpiozero.Energenie attribute), 131
source_delay (gpiozero.FishDish attribute), 125
source_delay (gpiozero.LEDBarGraph attribute), 109
source_delay (gpiozero.LEDBoard attribute), 107
source_delay (gpiozero.LedBorg attribute), 116
source_delay (gpiozero.PiLiter attribute), 118
source_delay (gpiozero.PiLiterBarGraph attribute), 119
source_delay (gpiozero.PiStop attribute), 124
source_delay (gpiozero.PiTraffic attribute), 122
source_delay (gpiozero.Robot attribute), 127
source_delay (gpiozero.RyanteckRobot attribute), 129

source_delay (gpiozero.Servo attribute), 89
source_delay (gpiozero.SnowPi attribute), 136
source_delay (gpiozero.SourceMixin attribute), 148
source_delay (gpiozero.StatusBoard attribute), 134
source_delay (gpiozero.StatusZero attribute), 133
source_delay (gpiozero.TrafficHat attribute), 126
source_delay (gpiozero.TrafficLights attribute), 113
source_delay (gpiozero.TrafficLightsBuzzer attribute),

125
SourceMixin (class in gpiozero), 148
SPI (class in gpiozero), 169
spi() (gpiozero.Factory method), 166
spi() (gpiozero.pins.pi.PiFactory method), 172
SPIBadArgs, 178
SPIBadChannel, 178
SPIDevice (class in gpiozero), 103
SPIError, 178
SPIFixedBitOrder, 178
SPIFixedClockMode, 178
SPIFixedSelect, 178
SPIFixedWordSize, 178
SPIInvalidClockMode, 178
SPIInvalidWordSize, 178
SPISoftwareFallback, 179
SPIWarning, 179
state (gpiozero.Pin attribute), 169
StatusBoard (class in gpiozero), 133
StatusZero (class in gpiozero), 131
stop() (gpiozero.CamJamKitRobot method), 129
stop() (gpiozero.Motor method), 88
stop() (gpiozero.Robot method), 127
stop() (gpiozero.RyanteckRobot method), 128
storage (gpiozero.PiBoardInfo attribute), 161
summed() (in module gpiozero.tools), 155

T
temperature (gpiozero.CPUTemperature attribute), 143
threshold (gpiozero.SmoothedInputDevice attribute),

79
threshold_distance (gpiozero.DistanceSensor attribute),

76
TimeOfDay (class in gpiozero), 141
toggle() (gpiozero.Buzzer method), 87
toggle() (gpiozero.CompositeOutputDevice method),

138
toggle() (gpiozero.FishDish method), 125
toggle() (gpiozero.LED method), 82
toggle() (gpiozero.LEDBarGraph method), 108
toggle() (gpiozero.LEDBoard method), 107
toggle() (gpiozero.LedBorg method), 116
toggle() (gpiozero.OutputDevice method), 95
toggle() (gpiozero.PiLiter method), 118
toggle() (gpiozero.PiLiterBarGraph method), 119
toggle() (gpiozero.PiStop method), 124
toggle() (gpiozero.PiTraffic method), 121
toggle() (gpiozero.PWMLED method), 83
toggle() (gpiozero.PWMOutputDevice method), 94
toggle() (gpiozero.RGBLED method), 85

Index 195

Gpiozero Documentation, Release 1.4.0

toggle() (gpiozero.SnowPi method), 136
toggle() (gpiozero.StatusBoard method), 134
toggle() (gpiozero.StatusZero method), 133
toggle() (gpiozero.TrafficHat method), 126
toggle() (gpiozero.TrafficLights method), 113
toggle() (gpiozero.TrafficLightsBuzzer method), 124
TrafficHat (class in gpiozero), 126
TrafficLights (class in gpiozero), 111
TrafficLightsBuzzer (class in gpiozero), 124
transfer() (gpiozero.SPI method), 170
trigger (gpiozero.DistanceSensor attribute), 77

U
usb (gpiozero.PiBoardInfo attribute), 161

V
value (gpiozero.AnalogInputDevice attribute), 103
value (gpiozero.AngularServo attribute), 91
value (gpiozero.CamJamKitRobot attribute), 130
value (gpiozero.CompositeOutputDevice attribute), 138
value (gpiozero.Device attribute), 147
value (gpiozero.FishDish attribute), 125
value (gpiozero.LEDBarGraph attribute), 109
value (gpiozero.LEDBoard attribute), 107
value (gpiozero.LedBorg attribute), 116
value (gpiozero.MCP3001 attribute), 98
value (gpiozero.MCP3002 attribute), 98
value (gpiozero.MCP3004 attribute), 99
value (gpiozero.MCP3008 attribute), 99
value (gpiozero.MCP3201 attribute), 99
value (gpiozero.MCP3202 attribute), 99
value (gpiozero.MCP3204 attribute), 100
value (gpiozero.MCP3208 attribute), 100
value (gpiozero.MCP3301 attribute), 100
value (gpiozero.MCP3302 attribute), 101
value (gpiozero.MCP3304 attribute), 101
value (gpiozero.OutputDevice attribute), 95
value (gpiozero.PiLiter attribute), 118
value (gpiozero.PiLiterBarGraph attribute), 119
value (gpiozero.PiStop attribute), 124
value (gpiozero.PiTraffic attribute), 122
value (gpiozero.PWMLED attribute), 84
value (gpiozero.PWMOutputDevice attribute), 95
value (gpiozero.Robot attribute), 127
value (gpiozero.RyanteckRobot attribute), 129
value (gpiozero.Servo attribute), 89
value (gpiozero.SmoothedInputDevice attribute), 79
value (gpiozero.SnowPi attribute), 136
value (gpiozero.StatusBoard attribute), 134
value (gpiozero.StatusZero attribute), 133
value (gpiozero.TrafficHat attribute), 126
value (gpiozero.TrafficLights attribute), 114
value (gpiozero.TrafficLightsBuzzer attribute), 125
values (gpiozero.AngularServo attribute), 91
values (gpiozero.ButtonBoard attribute), 111
values (gpiozero.CamJamKitRobot attribute), 130
values (gpiozero.Energenie attribute), 131
values (gpiozero.FishDish attribute), 125

values (gpiozero.LEDBarGraph attribute), 109
values (gpiozero.LEDBoard attribute), 107
values (gpiozero.LedBorg attribute), 116
values (gpiozero.PiLiter attribute), 118
values (gpiozero.PiLiterBarGraph attribute), 120
values (gpiozero.PiStop attribute), 124
values (gpiozero.PiTraffic attribute), 122
values (gpiozero.Robot attribute), 128
values (gpiozero.RyanteckRobot attribute), 129
values (gpiozero.Servo attribute), 89
values (gpiozero.SnowPi attribute), 136
values (gpiozero.StatusBoard attribute), 134
values (gpiozero.StatusZero attribute), 133
values (gpiozero.TrafficHat attribute), 126
values (gpiozero.TrafficLights attribute), 114
values (gpiozero.TrafficLightsBuzzer attribute), 125
values (gpiozero.ValuesMixin attribute), 148
ValuesMixin (class in gpiozero), 147

W
wait_for_active() (gpiozero.ButtonBoard method), 110
wait_for_active() (gpiozero.EventsMixin method), 148
wait_for_dark() (gpiozero.LightSensor method), 74
wait_for_in_range() (gpiozero.DistanceSensor

method), 76
wait_for_inactive() (gpiozero.ButtonBoard method),

110
wait_for_inactive() (gpiozero.EventsMixin method),

149
wait_for_light() (gpiozero.LightSensor method), 75
wait_for_line() (gpiozero.LineSensor method), 72
wait_for_motion() (gpiozero.MotionSensor method),

73
wait_for_no_line() (gpiozero.LineSensor method), 72
wait_for_no_motion() (gpiozero.MotionSensor

method), 73
wait_for_out_of_range() (gpiozero.DistanceSensor

method), 76
wait_for_press() (gpiozero.Button method), 70
wait_for_press() (gpiozero.ButtonBoard method), 110
wait_for_release() (gpiozero.Button method), 70
wait_for_release() (gpiozero.ButtonBoard method),

110
when_activated (gpiozero.ButtonBoard attribute), 111
when_activated (gpiozero.EventsMixin attribute), 149
when_changed (gpiozero.Pin attribute), 169
when_dark (gpiozero.LightSensor attribute), 75
when_deactivated (gpiozero.ButtonBoard attribute),

111
when_deactivated (gpiozero.EventsMixin attribute),

149
when_held (gpiozero.Button attribute), 70
when_held (gpiozero.ButtonBoard attribute), 111
when_held (gpiozero.HoldMixin attribute), 149
when_in_range (gpiozero.DistanceSensor attribute), 77
when_light (gpiozero.LightSensor attribute), 75
when_line (gpiozero.LineSensor attribute), 72
when_motion (gpiozero.MotionSensor attribute), 73

196 Index

Gpiozero Documentation, Release 1.4.0

when_no_line (gpiozero.LineSensor attribute), 72
when_no_motion (gpiozero.MotionSensor attribute),

73
when_out_of_range (gpiozero.DistanceSensor at-

tribute), 77
when_pressed (gpiozero.Button attribute), 71
when_pressed (gpiozero.ButtonBoard attribute), 111
when_released (gpiozero.Button attribute), 71
when_released (gpiozero.ButtonBoard attribute), 111
wifi (gpiozero.PiBoardInfo attribute), 161
write() (gpiozero.SPI method), 170

Index 197

	Installing GPIO Zero
	Basic Recipes
	Advanced Recipes
	Configuring Remote GPIO
	Remote GPIO Recipes
	Source/Values
	Command-line Tools
	Frequently Asked Questions
	Contributing
	Development
	API - Input Devices
	API - Output Devices
	API - SPI Devices
	API - Boards and Accessories
	API - Internal Devices
	API - Generic Classes
	API - Device Source Tools
	API - Pi Information
	API - Pins
	API - Exceptions
	Changelog
	License
	Python Module Index

