

gpiozero

[image: Latest Version]
[image: Build Tests]
[image: Code Coverage]
A simple interface to GPIO devices with Raspberry Pi.

Created by Ben Nuttall of the Raspberry Pi Foundation, Dave Jones, and
other contributors.

About

Component interfaces are provided to allow a frictionless way to get started
with physical computing:

from gpiozero import LED
from time import sleep

led = LED(17)

while True:
 led.on()
 sleep(1)
 led.off()
 sleep(1)

With very little code, you can quickly get going connecting your components
together:

from gpiozero import LED, Button
from signal import pause

led = LED(17)
button = Button(3)

button.when_pressed = led.on
button.when_released = led.off

pause()

You can advance to using the declarative paradigm along with provided
source tools to describe the behaviour of devices and their
interactions:

from gpiozero import LED, MotionSensor, LightSensor
from gpiozero.tools import booleanized, all_values
from signal import pause

garden = LED(17)
motion = MotionSensor(4)
light = LightSensor(5)

garden.source = all_values(booleanized(light, 0, 0.1), motion)

pause()

See the chapter on Source/Values for more information.

The library includes interfaces to many simple everyday components, as well as
some more complex things like sensors, analogue-to-digital converters, full
colour LEDs, robotics kits and more. See the Recipes chapter of the
documentation for ideas on how to get started.

Pin factories

GPIO Zero builds on a number of underlying pin libraries, including RPi.GPIO
and pigpio, each with their own benefits. You can select a particular pin
library to be used, either for the whole script or per-device, according to your
needs. See the section on changing the pin factory.

A “mock pin” interface is also provided for testing purposes. Read more about
this in the section on mock pins.

Installation

GPIO Zero is installed by default in the Raspbian desktop image, available from
raspberrypi.org. To install on Raspbian Lite or other operating systems,
including for PCs using remote GPIO, see the Installing chapter.

Documentation

Comprehensive documentation is available at https://gpiozero.readthedocs.io/.
Please refer to the Contributing and Development chapters in the
documentation for information on contributing to the project.

Contributors

Core developers:

	Ben Nuttall

	Dave Jones

	Andrew Scheller

Other contributors:

	Martin O’Hanlon

	Steve Amor

	David Glaude

	Edward Betts

	Alex Chan

	Thijs Triemstra

	Schelto van Doorn

	Alex Eames

	Barry Byford

	Clare Macrae

	Tim Golden

	Phil Howard

	Stewart Adcock

	Ian Harcombe

	Russel Winder

	Mike Kazantsev

	Fatih Sarhan

	Rick Ansell

	Jeevan M R

	Claire Pollard

	Philippe Muller

Table of Contents

	1. Installing GPIO Zero

	2. Basic Recipes

	3. Advanced Recipes

	4. Configuring Remote GPIO

	5. Remote GPIO Recipes

	6. Pi Zero USB OTG

	7. Source/Values

	8. Command-line Tools

	9. Frequently Asked Questions

	10. Migrating from RPi.GPIO

	11. Contributing

	12. Development

	13. API - Input Devices

	14. API - Output Devices

	15. API - SPI Devices

	16. API - Boards and Accessories

	17. API - Internal Devices

	18. API - Generic Classes

	19. API - Device Source Tools

	20. API - Tones

	21. API - Pi Information

	22. API - Pins

	23. API - Exceptions

	24. Changelog

	25. License

Indices and tables

	Index

	Module Index

	Search Page

1. Installing GPIO Zero

GPIO Zero is installed by default in the Raspbian image, and the
Raspberry Pi Desktop image for PC/Mac, both available from
raspberrypi.org. Follow these guides to installing on Raspbian Lite
and other operating systems, including for PCs using the
remote GPIO feature.

1.1. Raspberry Pi

First, update your repositories list:

pi@raspberrypi:~$ sudo apt update

Then install the package for Python 3:

pi@raspberrypi:~$ sudo apt install python3-gpiozero

or Python 2:

pi@raspberrypi:~$ sudo apt install python-gpiozero

If you’re using another operating system on your Raspberry Pi, you may need to
use pip to install GPIO Zero instead. Install pip using get-pip and then
type:

pi@raspberrypi:~$ sudo pip3 install gpiozero

or for Python 2:

pi@raspberrypi:~$ sudo pip install gpiozero

To install GPIO Zero in a virtual environment, see the Development page.

1.2. PC/Mac

In order to use GPIO Zero’s remote GPIO feature from a PC or Mac, you’ll need
to install GPIO Zero on that computer using pip. See the Configuring Remote GPIO
page for more information.

2. Basic Recipes

The following recipes demonstrate some of the capabilities of the GPIO Zero
library. Please note that all recipes are written assuming Python 3. Recipes
may work under Python 2, but no guarantees!

2.1. Importing GPIO Zero

In Python, libraries and functions used in a script must be imported by name
at the top of the file, with the exception of the functions built into Python
by default.

For example, to use the Button interface from GPIO Zero, it
should be explicitly imported:

from gpiozero import Button

Now Button is available directly in your script:

button = Button(2)

Alternatively, the whole GPIO Zero library can be imported:

import gpiozero

In this case, all references to items within GPIO Zero must be prefixed:

button = gpiozero.Button(2)

2.2. Pin Numbering

This library uses Broadcom (BCM) pin numbering for the GPIO pins, as opposed to
physical (BOARD) numbering. Unlike in the RPi.GPIO library, this is not
configurable. However, translation from other schemes can be used by providing
prefixes to pin numbers (see below).

Any pin marked “GPIO” in the diagram below can be used as a pin number. For
example, if an LED was attached to “GPIO17” you would specify the pin number as
17 rather than 11:

[image: _images/pin_layout.svg]

If you wish to use physical (BOARD) numbering you can specify the pin number as
“BOARD11”. If you are familiar with the wiringPi pin numbers (another
physical layout) you could use “WPI0” instead. Finally, you can specify pins as
“header:number”, e.g. “J8:11” meaning physical pin 11 on header J8 (the GPIO
header on modern Pis). Hence, the following lines are all equivalent:

>>> led = LED(17)
>>> led = LED("GPIO17")
>>> led = LED("BCM17")
>>> led = LED("BOARD11")
>>> led = LED("WPI0")
>>> led = LED("J8:11")

Note that these alternate schemes are merely translations. If you request the
state of a device on the command line, the associated pin number will always
be reported in the Broadcom (BCM) scheme:

>>> led = LED("BOARD11")
>>> led
<gpiozero.LED object on pin GPIO17, active_high=True, is_active=False>

Throughout this manual we will use the default integer pin numbers, in the
Broadcom (BCM) layout shown above.

2.3. LED

[image: _images/led_bb.svg]Turn an LED on and off repeatedly:

from gpiozero import LED
from time import sleep

red = LED(17)

while True:
 red.on()
 sleep(1)
 red.off()
 sleep(1)

Alternatively:

from gpiozero import LED
from signal import pause

red = LED(17)

red.blink()

pause()

Note

Reaching the end of a Python script will terminate the process and GPIOs
may be reset. Keep your script alive with signal.pause(). See
How do I keep my script running? for more information.

2.4. LED with variable brightness

[image: _images/led_bb.svg]Any regular LED can have its brightness value set using PWM
(pulse-width-modulation). In GPIO Zero, this can be achieved using
PWMLED using values between 0 and 1:

from gpiozero import PWMLED
from time import sleep

led = PWMLED(17)

while True:
 led.value = 0 # off
 sleep(1)
 led.value = 0.5 # half brightness
 sleep(1)
 led.value = 1 # full brightness
 sleep(1)

Similarly to blinking on and off continuously, a PWMLED can pulse (fade in and
out continuously):

from gpiozero import PWMLED
from signal import pause

led = PWMLED(17)

led.pulse()

pause()

2.5. Button

[image: _images/button_bb.svg]Check if a Button is pressed:

from gpiozero import Button

button = Button(2)

while True:
 if button.is_pressed:
 print("Button is pressed")
 else:
 print("Button is not pressed")

Wait for a button to be pressed before continuing:

from gpiozero import Button

button = Button(2)

button.wait_for_press()
print("Button was pressed")

Run a function every time the button is pressed:

from gpiozero import Button
from signal import pause

def say_hello():
 print("Hello!")

button = Button(2)

button.when_pressed = say_hello

pause()

Note

Note that the line button.when_pressed = say_hello does not run the
function say_hello, rather it creates a reference to the function to be
called when the button is pressed. Accidental use of button.when_pressed
= say_hello() would set the when_pressed action to None (the
return value of this function) which would mean nothing happens when the
button is pressed.

Similarly, functions can be attached to button releases:

from gpiozero import Button
from signal import pause

def say_hello():
 print("Hello!")

def say_goodbye():
 print("Goodbye!")

button = Button(2)

button.when_pressed = say_hello
button.when_released = say_goodbye

pause()

2.6. Button controlled LED

[image: _images/led_button_bb.svg]Turn on an LED when a Button is pressed:

from gpiozero import LED, Button
from signal import pause

led = LED(17)
button = Button(2)

button.when_pressed = led.on
button.when_released = led.off

pause()

Alternatively:

from gpiozero import LED, Button
from signal import pause

led = LED(17)
button = Button(2)

led.source = button

pause()

2.7. Button controlled camera

Using the button press to trigger PiCamera to take a picture
using button.when_pressed = camera.capture would not work because the
capture() method requires an output parameter.
However, this can be achieved using a custom function which requires no
parameters:

from gpiozero import Button
from picamera import PiCamera
from datetime import datetime
from signal import pause

button = Button(2)
camera = PiCamera()

def capture():
 timestamp = datetime.now().isoformat()
 camera.capture('/home/pi/%s.jpg' % timestamp)

button.when_pressed = capture

pause()

Another example could use one button to start and stop the camera preview, and
another to capture:

from gpiozero import Button
from picamera import PiCamera
from datetime import datetime
from signal import pause

left_button = Button(2)
right_button = Button(3)
camera = PiCamera()

def capture():
 timestamp = datetime.now().isoformat()
 camera.capture('/home/pi/%s.jpg' % timestamp)

left_button.when_pressed = camera.start_preview
left_button.when_released = camera.stop_preview
right_button.when_pressed = capture

pause()

2.8. Shutdown button

The Button class also provides the ability to run a function when the
button has been held for a given length of time. This example will shut down
the Raspberry Pi when the button is held for 2 seconds:

from gpiozero import Button
from subprocess import check_call
from signal import pause

def shutdown():
 check_call(['sudo', 'poweroff'])

shutdown_btn = Button(17, hold_time=2)
shutdown_btn.when_held = shutdown

pause()

2.9. LEDBoard

[image: _images/ledboard_bb.svg]A collection of LEDs can be accessed using LEDBoard:

from gpiozero import LEDBoard
from time import sleep
from signal import pause

leds = LEDBoard(5, 6, 13, 19, 26)

leds.on()
sleep(1)
leds.off()
sleep(1)
leds.value = (1, 0, 1, 0, 1)
sleep(1)
leds.blink()

pause()

Using LEDBoard with pwm=True allows each LED’s brightness to be
controlled:

from gpiozero import LEDBoard
from signal import pause

leds = LEDBoard(5, 6, 13, 19, 26, pwm=True)

leds.value = (0.2, 0.4, 0.6, 0.8, 1.0)

pause()

See more LEDBoard examples in the advanced LEDBoard recipes.

2.10. LEDBarGraph

[image: _images/ledbargraph_bb.svg]A collection of LEDs can be treated like a bar graph using
LEDBarGraph:

from gpiozero import LEDBarGraph
from time import sleep
from __future__ import division # required for python 2

graph = LEDBarGraph(5, 6, 13, 19, 26, 20)

graph.value = 1 # (1, 1, 1, 1, 1, 1)
sleep(1)
graph.value = 1/2 # (1, 1, 1, 0, 0, 0)
sleep(1)
graph.value = -1/2 # (0, 0, 0, 1, 1, 1)
sleep(1)
graph.value = 1/4 # (1, 0, 0, 0, 0, 0)
sleep(1)
graph.value = -1 # (1, 1, 1, 1, 1, 1)
sleep(1)

Note values are essentially rounded to account for the fact LEDs can only be on
or off when pwm=False (the default).

However, using LEDBarGraph with pwm=True allows more precise
values using LED brightness:

from gpiozero import LEDBarGraph
from time import sleep
from __future__ import division # required for python 2

graph = LEDBarGraph(5, 6, 13, 19, 26, pwm=True)

graph.value = 1/10 # (0.5, 0, 0, 0, 0)
sleep(1)
graph.value = 3/10 # (1, 0.5, 0, 0, 0)
sleep(1)
graph.value = -3/10 # (0, 0, 0, 0.5, 1)
sleep(1)
graph.value = 9/10 # (1, 1, 1, 1, 0.5)
sleep(1)
graph.value = 95/100 # (1, 1, 1, 1, 0.75)
sleep(1)

2.11. Traffic Lights

[image: _images/traffic_lights_bb.svg]A full traffic lights system.

Using a TrafficLights kit like Pi-Stop:

from gpiozero import TrafficLights
from time import sleep

lights = TrafficLights(2, 3, 4)

lights.green.on()

while True:
 sleep(10)
 lights.green.off()
 lights.amber.on()
 sleep(1)
 lights.amber.off()
 lights.red.on()
 sleep(10)
 lights.amber.on()
 sleep(1)
 lights.green.on()
 lights.amber.off()
 lights.red.off()

Alternatively:

from gpiozero import TrafficLights
from time import sleep
from signal import pause

lights = TrafficLights(2, 3, 4)

def traffic_light_sequence():
 while True:
 yield (0, 0, 1) # green
 sleep(10)
 yield (0, 1, 0) # amber
 sleep(1)
 yield (1, 0, 0) # red
 sleep(10)
 yield (1, 1, 0) # red+amber
 sleep(1)

lights.source = traffic_light_sequence()

pause()

Using LED components:

from gpiozero import LED
from time import sleep

red = LED(2)
amber = LED(3)
green = LED(4)

green.on()
amber.off()
red.off()

while True:
 sleep(10)
 green.off()
 amber.on()
 sleep(1)
 amber.off()
 red.on()
 sleep(10)
 amber.on()
 sleep(1)
 green.on()
 amber.off()
 red.off()

2.12. Push button stop motion

Capture a picture with the camera module every time a button is pressed:

from gpiozero import Button
from picamera import PiCamera

button = Button(2)
camera = PiCamera()

camera.start_preview()
frame = 1
while True:
 button.wait_for_press()
 camera.capture('/home/pi/frame%03d.jpg' % frame)
 frame += 1

See Push Button Stop Motion for a full resource.

2.13. Reaction Game

[image: _images/reaction_game_bb.svg]When you see the light come on, the first person to press their button wins!

from gpiozero import Button, LED
from time import sleep
import random

led = LED(17)

player_1 = Button(2)
player_2 = Button(3)

time = random.uniform(5, 10)
sleep(time)
led.on()

while True:
 if player_1.is_pressed:
 print("Player 1 wins!")
 break
 if player_2.is_pressed:
 print("Player 2 wins!")
 break

led.off()

See Quick Reaction Game for a full resource.

2.14. GPIO Music Box

[image: _images/music_box_bb.svg]Each button plays a different sound!

from gpiozero import Button
import pygame.mixer
from pygame.mixer import Sound
from signal import pause

pygame.mixer.init()

button_sounds = {
 Button(2): Sound("samples/drum_tom_mid_hard.wav"),
 Button(3): Sound("samples/drum_cymbal_open.wav"),
}

for button, sound in button_sounds.items():
 button.when_pressed = sound.play

pause()

See GPIO Music Box for a full resource.

2.15. All on when pressed

While the button is pressed down, the buzzer and all the lights come on.

FishDish:

from gpiozero import FishDish
from signal import pause

fish = FishDish()

fish.button.when_pressed = fish.on
fish.button.when_released = fish.off

pause()

Ryanteck TrafficHat:

from gpiozero import TrafficHat
from signal import pause

th = TrafficHat()

th.button.when_pressed = th.on
th.button.when_released = th.off

pause()

Using LED, Buzzer, and Button components:

from gpiozero import LED, Buzzer, Button
from signal import pause

button = Button(2)
buzzer = Buzzer(3)
red = LED(4)
amber = LED(5)
green = LED(6)

things = [red, amber, green, buzzer]

def things_on():
 for thing in things:
 thing.on()

def things_off():
 for thing in things:
 thing.off()

button.when_pressed = things_on
button.when_released = things_off

pause()

2.16. Full color LED

[image: _images/rgb_led_bb.svg]Making colours with an RGBLED:

from gpiozero import RGBLED
from time import sleep
from __future__ import division # required for python 2

led = RGBLED(red=9, green=10, blue=11)

led.red = 1 # full red
sleep(1)
led.red = 0.5 # half red
sleep(1)

led.color = (0, 1, 0) # full green
sleep(1)
led.color = (1, 0, 1) # magenta
sleep(1)
led.color = (1, 1, 0) # yellow
sleep(1)
led.color = (0, 1, 1) # cyan
sleep(1)
led.color = (1, 1, 1) # white
sleep(1)

led.color = (0, 0, 0) # off
sleep(1)

slowly increase intensity of blue
for n in range(100):
 led.blue = n/100
 sleep(0.1)

2.17. Motion sensor

[image: _images/motion_sensor_bb.svg]Light an LED when a MotionSensor detects motion:

from gpiozero import MotionSensor, LED
from signal import pause

pir = MotionSensor(4)
led = LED(16)

pir.when_motion = led.on
pir.when_no_motion = led.off

pause()

2.18. Light sensor

[image: _images/light_sensor_bb.svg]Have a LightSensor detect light and dark:

from gpiozero import LightSensor

sensor = LightSensor(18)

while True:
 sensor.wait_for_light()
 print("It's light! :)")
 sensor.wait_for_dark()
 print("It's dark :(")

Run a function when the light changes:

from gpiozero import LightSensor, LED
from signal import pause

sensor = LightSensor(18)
led = LED(16)

sensor.when_dark = led.on
sensor.when_light = led.off

pause()

Or make a PWMLED change brightness according to the detected light
level:

from gpiozero import LightSensor, PWMLED
from signal import pause

sensor = LightSensor(18)
led = PWMLED(16)

led.source = sensor

pause()

2.19. Distance sensor

[image: _images/distance_sensor_bb.svg]
Note

In the diagram above, the wires leading from the sensor to the breadboard
can be omitted; simply plug the sensor directly into the breadboard facing
the edge (unfortunately this is difficult to illustrate in the diagram
without the sensor’s diagram obscuring most of the breadboard!)

Have a DistanceSensor detect the distance to the nearest object:

from gpiozero import DistanceSensor
from time import sleep

sensor = DistanceSensor(23, 24)

while True:
 print('Distance to nearest object is', sensor.distance, 'm')
 sleep(1)

Run a function when something gets near the sensor:

from gpiozero import DistanceSensor, LED
from signal import pause

sensor = DistanceSensor(23, 24, max_distance=1, threshold_distance=0.2)
led = LED(16)

sensor.when_in_range = led.on
sensor.when_out_of_range = led.off

pause()

2.20. Servo

Control a servo between its minimum, mid-point and maximum positions in
sequence:

from gpiozero import Servo
from time import sleep

servo = Servo(17)

while True:
 servo.min()
 sleep(2)
 servo.mid()
 sleep(2)
 servo.max()
 sleep(2)

Use a button to control the servo between its minimum and maximum positions:

from gpiozero import Servo, Button

servo = Servo(17)
btn = Button(14)

while True:
 servo.min()
 btn.wait_for_press()
 servo.max()
 btn.wait_for_press()

Automate the servo to continuously slowly sweep:

from gpiozero import Servo
from gpiozero.tools import sin_values

servo = Servo(17)

servo.source = sin_values()
servo.source_delay = 0.1

Use AngularServo so you can specify an angle:

from gpiozero import AngularServo
from time import sleep

servo = AngularServo(17, min_angle=-90, max_angle=90)

while True:
 servo.angle = -90
 sleep(2)
 servo.angle = -45
 sleep(2)
 servo.angle = 0
 sleep(2)
 servo.angle = 45
 sleep(2)
 servo.angle = 90
 sleep(2)

2.21. Motors

[image: _images/motor_bb.svg]Spin a Motor around forwards and backwards:

from gpiozero import Motor
from time import sleep

motor = Motor(forward=4, backward=14)

while True:
 motor.forward()
 sleep(5)
 motor.backward()
 sleep(5)

2.22. Robot

[image: _images/robot_bb.svg]Make a Robot drive around in (roughly) a square:

from gpiozero import Robot
from time import sleep

robot = Robot(left=(4, 14), right=(17, 18))

for i in range(4):
 robot.forward()
 sleep(10)
 robot.right()
 sleep(1)

Make a robot with a distance sensor that runs away when things get within
20cm of it:

from gpiozero import Robot, DistanceSensor
from signal import pause

sensor = DistanceSensor(23, 24, max_distance=1, threshold_distance=0.2)
robot = Robot(left=(4, 14), right=(17, 18))

sensor.when_in_range = robot.backward
sensor.when_out_of_range = robot.stop
pause()

2.23. Button controlled robot

[image: _images/button_robot_bb.svg]Use four GPIO buttons as forward/back/left/right controls for a robot:

from gpiozero import Robot, Button
from signal import pause

robot = Robot(left=(4, 14), right=(17, 18))

left = Button(26)
right = Button(16)
fw = Button(21)
bw = Button(20)

fw.when_pressed = robot.forward
fw.when_released = robot.stop

left.when_pressed = robot.left
left.when_released = robot.stop

right.when_pressed = robot.right
right.when_released = robot.stop

bw.when_pressed = robot.backward
bw.when_released = robot.stop

pause()

2.24. Keyboard controlled robot

[image: _images/robot_bb.svg]Use up/down/left/right keys to control a robot:

import curses
from gpiozero import Robot

robot = Robot(left=(4, 14), right=(17, 18))

actions = {
 curses.KEY_UP: robot.forward,
 curses.KEY_DOWN: robot.backward,
 curses.KEY_LEFT: robot.left,
 curses.KEY_RIGHT: robot.right,
}

def main(window):
 next_key = None
 while True:
 curses.halfdelay(1)
 if next_key is None:
 key = window.getch()
 else:
 key = next_key
 next_key = None
 if key != -1:
 # KEY PRESSED
 curses.halfdelay(3)
 action = actions.get(key)
 if action is not None:
 action()
 next_key = key
 while next_key == key:
 next_key = window.getch()
 # KEY RELEASED
 robot.stop()

curses.wrapper(main)

Note

This recipe uses the standard curses module. This module requires
that Python is running in a terminal in order to work correctly, hence this
recipe will not work in environments like IDLE.

If you prefer a version that works under IDLE, the following recipe should
suffice:

from gpiozero import Robot
from evdev import InputDevice, list_devices, ecodes

robot = Robot(left=(4, 14), right=(17, 18))

Get the list of available input devices
devices = [InputDevice(device) for device in list_devices()]
Filter out everything that's not a keyboard. Keyboards are defined as any
device which has keys, and which specifically has keys 1..31 (roughly Esc,
the numeric keys, the first row of QWERTY plus a few more) and which does
not have key 0 (reserved)
must_have = {i for i in range(1, 32)}
must_not_have = {0}
devices = [
 dev
 for dev in devices
 for keys in (set(dev.capabilities().get(ecodes.EV_KEY, [])),)
 if must_have.issubset(keys)
 and must_not_have.isdisjoint(keys)
]
Pick the first keyboard
keyboard = devices[0]

keypress_actions = {
 ecodes.KEY_UP: robot.forward,
 ecodes.KEY_DOWN: robot.backward,
 ecodes.KEY_LEFT: robot.left,
 ecodes.KEY_RIGHT: robot.right,
}

for event in keyboard.read_loop():
 if event.type == ecodes.EV_KEY and event.code in keypress_actions:
 if event.value == 1: # key pressed
 keypress_actions[event.code]()
 if event.value == 0: # key released
 robot.stop()

Note

This recipe uses the third-party evdev module. Install this library
with sudo pip3 install evdev first. Be aware that evdev will only
work with local input devices; this recipe will not work over SSH.

2.25. Motion sensor robot

[image: _images/motion_robot_bb.svg]Make a robot drive forward when it detects motion:

from gpiozero import Robot, MotionSensor
from signal import pause

robot = Robot(left=(4, 14), right=(17, 18))
pir = MotionSensor(5)

pir.when_motion = robot.forward
pir.when_no_motion = robot.stop

pause()

Alternatively:

from gpiozero import Robot, MotionSensor
from gpiozero.tools import zip_values
from signal import pause

robot = Robot(left=(4, 14), right=(17, 18))
pir = MotionSensor(5)

robot.source = zip_values(pir, pir)

pause()

2.26. Potentiometer

[image: _images/potentiometer_bb.svg]Continually print the value of a potentiometer (values between 0 and 1)
connected to a MCP3008 analog to digital converter:

from gpiozero import MCP3008

pot = MCP3008(channel=0)

while True:
 print(pot.value)

Present the value of a potentiometer on an LED bar graph using PWM to represent
states that won’t “fill” an LED:

from gpiozero import LEDBarGraph, MCP3008
from signal import pause

graph = LEDBarGraph(5, 6, 13, 19, 26, pwm=True)
pot = MCP3008(channel=0)

graph.source = pot

pause()

2.27. Measure temperature with an ADC

Wire a TMP36 temperature sensor to the first channel of an MCP3008
analog to digital converter:

from gpiozero import MCP3008
from time import sleep

def convert_temp(gen):
 for value in gen:
 yield (value * 3.3 - 0.5) * 100

adc = MCP3008(channel=0)

for temp in convert_temp(adc.values):
 print('The temperature is', temp, 'C')
 sleep(1)

2.28. Full color LED controlled by 3 potentiometers

[image: _images/rgbled_pot_bb.svg]Wire up three potentiometers (for red, green and blue) and use each of their
values to make up the colour of the LED:

from gpiozero import RGBLED, MCP3008

led = RGBLED(red=2, green=3, blue=4)
red_pot = MCP3008(channel=0)
green_pot = MCP3008(channel=1)
blue_pot = MCP3008(channel=2)

while True:
 led.red = red_pot.value
 led.green = green_pot.value
 led.blue = blue_pot.value

Alternatively, the following example is identical, but uses the
source property rather than a while loop:

from gpiozero import RGBLED, MCP3008
from gpiozero.tools import zip_values
from signal import pause

led = RGBLED(2, 3, 4)
red_pot = MCP3008(0)
green_pot = MCP3008(1)
blue_pot = MCP3008(2)

led.source = zip_values(red_pot, green_pot, blue_pot)

pause()

2.29. Timed heat lamp

If you have a pet (e.g. a tortoise) which requires a heat lamp to be switched
on for a certain amount of time each day, you can use an Energenie Pi-mote
to remotely control the lamp, and the TimeOfDay class to control the
timing:

from gpiozero import Energenie, TimeOfDay
from datetime import time
from signal import pause

lamp = Energenie(1)
daytime = TimeOfDay(time(8), time(20))

lamp.source = daytime
lamp.source_delay = 60

pause()

2.30. Internet connection status indicator

You can use a pair of green and red LEDs to indicate whether or not your
internet connection is working. Simply use the PingServer class to
identify whether a ping to google.com is successful. If successful, the green
LED is lit, and if not, the red LED is lit:

from gpiozero import LED, PingServer
from gpiozero.tools import negated
from signal import pause

green = LED(17)
red = LED(18)

google = PingServer('google.com')

green.source = google
green.source_delay = 60
red.source = negated(green)

pause()

2.31. CPU Temperature Bar Graph

You can read the Raspberry Pi’s own CPU temperature using the built-in
CPUTemperature class, and display this on a “bar graph” of LEDs:

from gpiozero import LEDBarGraph, CPUTemperature
from signal import pause

cpu = CPUTemperature(min_temp=50, max_temp=90)
leds = LEDBarGraph(2, 3, 4, 5, 6, 7, 8, pwm=True)

leds.source = cpu

pause()

2.32. More recipes

Continue to:

	Advanced Recipes

	Remote GPIO Recipes

3. Advanced Recipes

The following recipes demonstrate some of the capabilities of the GPIO Zero
library. Please note that all recipes are written assuming Python 3. Recipes
may work under Python 2, but no guarantees!

3.1. LEDBoard

You can iterate over the LEDs in a LEDBoard object one-by-one:

from gpiozero import LEDBoard
from time import sleep

leds = LEDBoard(5, 6, 13, 19, 26)

for led in leds:
 led.on()
 sleep(1)
 led.off()

LEDBoard also supports indexing. This means you can access the
individual LED objects using leds[i] where i is an integer
from 0 up to (not including) the number of LEDs:

from gpiozero import LEDBoard
from time import sleep

leds = LEDBoard(2, 3, 4, 5, 6, 7, 8, 9)

leds[0].on() # first led on
sleep(1)
leds[7].on() # last led on
sleep(1)
leds[-1].off() # last led off
sleep(1)

This also means you can use slicing to access a subset of the LEDs:

from gpiozero import LEDBoard
from time import sleep

leds = LEDBoard(2, 3, 4, 5, 6, 7, 8, 9)

for led in leds[3:]: # leds 3 and onward
 led.on()
sleep(1)
leds.off()

for led in leds[:2]: # leds 0 and 1
 led.on()
sleep(1)
leds.off()

for led in leds[::2]: # even leds (0, 2, 4...)
 led.on()
sleep(1)
leds.off()

for led in leds[1::2]: # odd leds (1, 3, 5...)
 led.on()
sleep(1)
leds.off()

LEDBoard objects can have their LED objects named upon construction.
This means the individual LEDs can be accessed by their name:

from gpiozero import LEDBoard
from time import sleep

leds = LEDBoard(red=2, green=3, blue=4)

leds.red.on()
sleep(1)
leds.green.on()
sleep(1)
leds.blue.on()
sleep(1)

LEDBoard objects can also be nested within other LEDBoard
objects:

from gpiozero import LEDBoard
from time import sleep

leds = LEDBoard(red=LEDBoard(top=2, bottom=3), green=LEDBoard(top=4, bottom=5))

leds.red.on() ## both reds on
sleep(1)
leds.green.on() # both greens on
sleep(1)
leds.off() # all off
sleep(1)
leds.red.top.on() # top red on
sleep(1)
leds.green.bottom.on() # bottom green on
sleep(1)

3.2. Who’s home indicator

Using a number of green-red LED pairs, you can show the status of who’s home,
according to which IP addresses you can ping successfully. Note that this
assumes each person’s mobile phone has a reserved IP address on the home router.

from gpiozero import PingServer, LEDBoard
from gpiozero.tools import negated
from signal import pause

status = LEDBoard(
 mum=LEDBoard(red=14, green=15),
 dad=LEDBoard(red=17, green=18),
 alice=LEDBoard(red=21, green=22)
)

statuses = {
 PingServer('192.168.1.5'): status.mum,
 PingServer('192.168.1.6'): status.dad,
 PingServer('192.168.1.7'): status.alice,
}

for server, leds in statuses.items():
 leds.green.source = server
 leds.green.source_delay = 60
 leds.red.source = negated(leds.green)

pause()

Alternatively, using the STATUS Zero board:

from gpiozero import PingServer, StatusZero
from gpiozero.tools import negated
from signal import pause

status = StatusZero('mum', 'dad', 'alice')

statuses = {
 PingServer('192.168.1.5'): status.mum,
 PingServer('192.168.1.6'): status.dad,
 PingServer('192.168.1.7'): status.alice,
}

for server, leds in statuses.items():
 leds.green.source = server
 leds.green.source_delay = 60
 leds.red.source = negated(leds.green)

pause()

3.3. Travis build LED indicator

Use LEDs to indicate the status of a Travis build. A green light means the
tests are passing, a red light means the build is broken:

from travispy import TravisPy
from gpiozero import LED
from gpiozero.tools import negated
from time import sleep
from signal import pause

def build_passed(repo):
 t = TravisPy()
 r = t.repo(repo)
 while True:
 yield r.last_build_state == 'passed'

red = LED(12)
green = LED(16)

green.source = build_passed('RPi-Distro/python-gpiozero')
green.source_delay = 60 * 5 # check every 5 minutes
red.source = negated(green)

pause()

Note this recipe requires travispy. Install with sudo pip3 install
travispy.

3.4. Button controlled robot

Alternatively to the examples in the simple recipes, you can use four buttons
to program the directions and add a fifth button to process them in turn, like
a Bee-Bot or Turtle robot.

from gpiozero import Button, Robot
from time import sleep
from signal import pause

robot = Robot((17, 18), (22, 23))

left = Button(2)
right = Button(3)
forward = Button(4)
backward = Button(5)
go = Button(6)

instructions = []

def add_instruction(btn):
 instructions.append({
 left: (-1, 1),
 right: (1, -1),
 forward: (1, 1),
 backward: (-1, -1),
 }[btn])

def do_instructions():
 instructions.append((0, 0))
 robot.source_delay = 0.5
 robot.source = instructions
 sleep(robot.source_delay * len(instructions))
 del instructions[:]

go.when_pressed = do_instructions
for button in (left, right, forward, backward):
 button.when_pressed = add_instruction

pause()

3.5. Robot controlled by 2 potentiometers

Use two potentiometers to control the left and right motor speed of a robot:

from gpiozero import Robot, MCP3008
from gpiozero.tools import zip_values
from signal import pause

robot = Robot(left=(4, 14), right=(17, 18))

left_pot = MCP3008(0)
right_pot = MCP3008(1)

robot.source = zip_values(left_pot, right_pot)

pause()

To include reverse direction, scale the potentiometer values from 0->1 to -1->1:

from gpiozero import Robot, MCP3008
from gpiozero.tools import scaled
from signal import pause

robot = Robot(left=(4, 14), right=(17, 18))

left_pot = MCP3008(0)
right_pot = MCP3008(1)

robot.source = zip(scaled(left_pot, -1, 1), scaled(right_pot, -1, 1))

pause()

Note

Please note the example above requires Python 3. In Python 2, zip()
doesn’t support lazy evaluation so the script will simply hang.

3.6. BlueDot LED

BlueDot is a Python library an Android app which allows you to easily add
Bluetooth control to your Raspberry Pi project. A simple example to control a
LED using the BlueDot app:

from bluedot import BlueDot
from gpiozero import LED

bd = BlueDot()
led = LED(17)

while True:
 bd.wait_for_press()
 led.on()
 bd.wait_for_release()
 led.off()

Note this recipe requires bluedot and the associated Android app. See the
BlueDot documentation for installation instructions.

3.7. BlueDot robot

You can create a Bluetooth controlled robot which moves forward when the dot is
pressed and stops when it is released:

from bluedot import BlueDot
from gpiozero import Robot
from signal import pause

bd = BlueDot()
robot = Robot(left=(4, 14), right=(17, 18))

def move(pos):
 if pos.top:
 robot.forward(pos.distance)
 elif pos.bottom:
 robot.backward(pos.distance)
 elif pos.left:
 robot.left(pos.distance)
 elif pos.right:
 robot.right(pos.distance)

bd.when_pressed = move
bd.when_moved = move
bd.when_released = robot.stop

pause()

Or a more advanced example including controlling the robot’s speed and precise
direction:

from gpiozero import Robot
from bluedot import BlueDot
from signal import pause

def pos_to_values(x, y):
 left = y if x > 0 else y + x
 right = y if x < 0 else y - x
 return (clamped(left), clamped(right))

def clamped(v):
 return max(-1, min(1, v))

def drive():
 while True:
 if bd.is_pressed:
 x, y = bd.position.x, bd.position.y
 yield pos_to_values(x, y)
 else:
 yield (0, 0)

robot = Robot(left=(4, 14), right=(17, 18))
bd = BlueDot()

robot.source = drive()

pause()

3.8. Controlling the Pi’s own LEDs

On certain models of Pi (specifically the model A+, B+, and 2B) it’s possible
to control the power and activity LEDs. This can be useful for testing GPIO
functionality without the need to wire up your own LEDs (also useful because
the power and activity LEDs are “known good”).

Firstly you need to disable the usual triggers for the built-in LEDs. This can
be done from the terminal with the following commands:

$ echo none | sudo tee /sys/class/leds/led0/trigger
$ echo gpio | sudo tee /sys/class/leds/led1/trigger

Now you can control the LEDs with gpiozero like so:

from gpiozero import LED
from signal import pause

power = LED(35) # /sys/class/leds/led1
activity = LED(47) # /sys/class/leds/led0

activity.blink()
power.blink()
pause()

To revert the LEDs to their usual purpose you can either reboot your Pi or
run the following commands:

$ echo mmc0 | sudo tee /sys/class/leds/led0/trigger
$ echo input | sudo tee /sys/class/leds/led1/trigger

Note

On the Pi Zero you can control the activity LED with this recipe, but
there’s no separate power LED to control (it’s also worth noting the
activity LED is active low, so set active_high=False when constructing
your LED component).

On the original Pi 1 (model A or B), the activity LED can be controlled
with GPIO16 (after disabling its trigger as above) but the power LED is
hard-wired on.

On the Pi 3 the LEDs are controlled by a GPIO expander which is not
accessible from gpiozero (yet).

4. Configuring Remote GPIO

GPIO Zero supports a number of different pin implementations (low-level pin
libraries which deal with the GPIO pins directly). By default, the RPi.GPIO
library is used (assuming it is installed on your system), but you can
optionally specify one to use. For more information, see the API - Pins
documentation page.

One of the pin libraries supported, pigpio, provides the ability to control
GPIO pins remotely over the network, which means you can use GPIO Zero to
control devices connected to a Raspberry Pi on the network. You can do this
from another Raspberry Pi, or even from a PC.

See the Remote GPIO Recipes page for examples on how remote pins can be
used.

4.1. Preparing the Raspberry Pi

If you’re using Raspbian (desktop - not Raspbian Lite) then you have everything
you need to use the remote GPIO feature. If you’re using Raspbian Lite, or
another distribution, you’ll need to install pigpio:

$ sudo apt install pigpio

Alternatively, pigpio is available from abyz.me.uk.

You’ll need to enable remote connections, and launch the pigpio daemon on the
Raspberry Pi.

4.1.1. Enable remote connections

On the Raspbian desktop image, you can enable Remote GPIO in the Raspberry
Pi configuration tool:

[image: _images/raspi-config.png]
Alternatively, enter sudo raspi-config on the command line, and enable
Remote GPIO. This is functionally equivalent to the desktop method.

This will allow remote connections (until disabled) when the pigpio daemon is
launched using systemctl (see below). It will also launch the pigpio
daemon for the current session. Therefore, nothing further is required for the
current session, but after a reboot, a systemctl command will be
required.

4.1.2. Command-line: systemctl

To automate running the daemon at boot time, run:

$ sudo systemctl enable pigpiod

To run the daemon once using systemctl, run:

$ sudo systemctl start pigpiod

4.1.3. Command-line: pigpiod

Another option is to launch the pigpio daemon manually:

$ sudo pigpiod

This is for single-session-use and will not persist after a reboot. However,
this method can be used to allow connections from a specific IP address, using
the -n flag. For example:

$ sudo pigpiod -n localhost # allow localhost only
$ sudo pigpiod -n 192.168.1.65 # allow 192.168.1.65 only
$ sudo pigpiod -n localhost -n 192.168.1.65 # allow localhost and 192.168.1.65 only

Note

Note that running sudo pigpiod will not honour the Remote GPIO
configuration setting (i.e. without the -n flag it will allow remote
connections even if the remote setting is disabled), but sudo systemctl
enable pigpiod or sudo systemctl start pigpiod will not allow remote
connections unless configured accordingly.

4.2. Preparing the control computer

If the control computer (the computer you’re running your Python code from) is
a Raspberry Pi running Raspbian (or a PC running Raspberry Pi Desktop x86),
then you have everything you need. If you’re using another Linux distribution,
Mac OS or Windows then you’ll need to install the pigpio Python library on
the PC.

4.2.1. Raspberry Pi

First, update your repositories list:

$ sudo apt update

Then install GPIO Zero and the pigpio library for Python 3:

$ sudo apt install python3-gpiozero python3-pigpio

or Python 2:

$ sudo apt install python-gpiozero python-pigpio

Alternatively, install with pip:

$ sudo pip3 install gpiozero pigpio

or for Python 2:

$ sudo pip install gpiozero pigpio

4.2.2. Linux

First, update your distribution’s repositories list. For example:

$ sudo apt update

Then install pip for Python 3:

$ sudo apt install python3-pip

or Python 2:

$ sudo apt install python-pip

(Alternatively, install pip with get-pip.)

Next, install GPIO Zero and pigpio for Python 3:

$ sudo pip3 install gpiozero pigpio

or Python 2:

$ sudo pip install gpiozero pigpio

4.2.3. Mac OS

First, install pip. If you installed Python 3 using brew, you will already have
pip. If not, install pip with get-pip.

Next, install GPIO Zero and pigpio with pip:

$ pip3 install gpiozero pigpio

Or for Python 2:

$ pip install gpiozero pigpio

4.2.4. Windows

Modern Python installers for Windows bundle pip with Python. If pip is not
installed, you can follow this guide. Next, install GPIO Zero and pigpio with
pip:

C:\Users\user1> pip install gpiozero pigpio

4.3. Environment variables

The simplest way to use devices with remote pins is to set the
PIGPIO_ADDR environment variable to the IP address of the desired
Raspberry Pi. You must run your Python script or launch your development
environment with the environment variable set using the command line. For
example, one of the following:

$ PIGPIO_ADDR=192.168.1.3 python3 hello.py
$ PIGPIO_ADDR=192.168.1.3 python3
$ PIGPIO_ADDR=192.168.1.3 ipython3
$ PIGPIO_ADDR=192.168.1.3 idle3 &

If you are running this from a PC (not a Raspberry Pi) with gpiozero and the
pigpio Python library installed, this will work with no further
configuration. However, if you are running this from a Raspberry Pi, you will
also need to ensure the default pin factory is set to
PiGPIOFactory. If RPi.GPIO is installed,
this will be selected as the default pin factory, so either uninstall it, or
use the GPIOZERO_PIN_FACTORY environment variable to override it:

$ GPIOZERO_PIN_FACTORY=pigpio PIGPIO_ADDR=192.168.1.3 python3 hello.py

This usage will set the pin factory to
PiGPIOFactory with a default host of
192.168.1.3. The pin factory can be changed inline in the code, as seen in
the following sections.

With this usage, you can write gpiozero code like you would on a Raspberry Pi,
with no modifications needed. For example:

from gpiozero import LED
from time import sleep

red = LED(17)

while True:
 red.on()
 sleep(1)
 red.off()
 sleep(1)

When run with:

$ PIGPIO_ADDR=192.168.1.3 python3 led.py

will flash the LED connected to pin 17 of the Raspberry Pi with the IP address
192.168.1.3. And:

$ PIGPIO_ADDR=192.168.1.4 python3 led.py

will flash the LED connected to pin 17 of the Raspberry Pi with the IP address
192.168.1.4, without any code changes, as long as the Raspberry Pi has the
pigpio daemon running.

Note

When running code directly on a Raspberry Pi, any pin factory can be used
(assuming the relevant library is installed), but when a device is used
remotely, only PiGPIOFactory can be used, as
pigpio is the only pin library which supports remote GPIO.

4.4. Pin factories

An alternative (or additional) method of configuring gpiozero objects to use
remote pins is to create instances of
PiGPIOFactory objects, and use them when
instantiating device objects. For example, with no environment variables set:

from gpiozero import LED
from gpiozero.pins.pigpio import PiGPIOFactory
from time import sleep

factory = PiGPIOFactory(host='192.168.1.3')
led = LED(17, pin_factory=factory)

while True:
 led.on()
 sleep(1)
 led.off()
 sleep(1)

This allows devices on multiple Raspberry Pis to be used in the same script:

from gpiozero import LED
from gpiozero.pins.pigpio import PiGPIOFactory
from time import sleep

factory3 = PiGPIOFactory(host='192.168.1.3')
factory4 = PiGPIOFactory(host='192.168.1.4')
led_1 = LED(17, pin_factory=factory3)
led_2 = LED(17, pin_factory=factory4)

while True:
 led_1.on()
 led_2.off()
 sleep(1)
 led_1.off()
 led_2.on()
 sleep(1)

You can, of course, continue to create gpiozero device objects as normal, and
create others using remote pins. For example, if run on a Raspberry Pi, the
following script will flash an LED on the controller Pi, and also on another Pi
on the network:

from gpiozero import LED
from gpiozero.pins.pigpio import PiGPIOFactory
from time import sleep

remote_factory = PiGPIOFactory(host='192.168.1.3')
led_1 = LED(17) # local pin
led_2 = LED(17, pin_factory=remote_factory) # remote pin

while True:
 led_1.on()
 led_2.off()
 sleep(1)
 led_1.off()
 led_2.on()
 sleep(1)

Alternatively, when run with the environment variables
GPIOZERO_PIN_FACTORY=pigpio PIGPIO_ADDR=192.168.1.3 set, the following
script will behave exactly the same as the previous one:

from gpiozero import LED
from gpiozero.pins.rpigpio import RPiGPIOFactory
from time import sleep

local_factory = RPiGPIOFactory()
led_1 = LED(17, pin_factory=local_factory) # local pin
led_2 = LED(17) # remote pin

while True:
 led_1.on()
 led_2.off()
 sleep(1)
 led_1.off()
 led_2.on()
 sleep(1)

Of course, multiple IP addresses can be used:

from gpiozero import LED
from gpiozero.pins.pigpio import PiGPIOFactory
from time import sleep

factory3 = PiGPIOFactory(host='192.168.1.3')
factory4 = PiGPIOFactory(host='192.168.1.4')

led_1 = LED(17) # local pin
led_2 = LED(17, pin_factory=factory3) # remote pin on one pi
led_3 = LED(17, pin_factory=factory4) # remote pin on another pi

while True:
 led_1.on()
 led_2.off()
 led_3.on()
 sleep(1)
 led_1.off()
 led_2.on()
 led_3.off()
 sleep(1)

Note that these examples use the LED class, which takes a pin
argument to initialise. Some classes, particularly those representing HATs and
other add-on boards, do not require their pin numbers to be specified. However,
it is still possible to use remote pins with these devices, either using
environment variables, or the pin_factory keyword argument:

import gpiozero
from gpiozero import TrafficHat
from gpiozero.pins.pigpio import PiGPIOFactory
from time import sleep

gpiozero.Device.pin_factory = PiGPIOFactory(host='192.168.1.3')
th = TrafficHat() # traffic hat on 192.168.1.3 using remote pins

This also allows you to swap between two IP addresses and create instances of
multiple HATs connected to different Pis:

import gpiozero
from gpiozero import TrafficHat
from gpiozero.pins.pigpio import PiGPIOFactory
from time import sleep

remote_factory = PiGPIOFactory(host='192.168.1.3')

th_1 = TrafficHat() # traffic hat using local pins
th_2 = TrafficHat(pin_factory=remote_factory) # traffic hat on 192.168.1.3 using remote pins

You could even use a HAT which is not supported by GPIO Zero (such as the
Sense HAT) on one Pi, and use remote pins to control another over the
network:

from gpiozero import MotionSensor
from gpiozero.pins.pigpio import PiGPIOFactory
from sense_hat import SenseHat

remote_factory = PiGPIOFactory(host='192.198.1.4')
pir = MotionSensor(4, pin_factory=remote_factory) # remote motion sensor
sense = SenseHat() # local sense hat

while True:
 pir.wait_for_motion()
 sense.show_message(sense.temperature)

Note that in this case, the Sense HAT code must be run locally, and the GPIO
remotely.

4.5. Remote GPIO usage

Continue to:

	Remote GPIO Recipes

	Pi Zero USB OTG

5. Remote GPIO Recipes

The following recipes demonstrate some of the capabilities of the remote GPIO
feature of the GPIO Zero library. Before you start following these examples,
please read up on preparing your Pi and your host PC to work with
Configuring Remote GPIO.

Please note that all recipes are written assuming Python 3. Recipes may work
under Python 2, but no guarantees!

5.1. LED + Button

Let a Button on one Raspberry Pi control the LED of another:

from gpiozero import LED
from gpiozero.pins.pigpio import PiGPIOFactory
from signal import pause

factory = PiGPIOFactory(host='192.168.1.3')

button = Button(2)
led = LED(17, pin_factory=factory)

led.source = button

pause()

5.2. LED + 2 Buttons

The LED will come on when both buttons are pressed:

from gpiozero import LED
from gpiozero.pins.pigpio import PiGPIOFactory
from gpiozero.tools import all_values
from signal import pause

factory3 = PiGPIOFactory(host='192.168.1.3')
factory4 = PiGPIOFactory(host='192.168.1.4')

led = LED(17)
button_1 = Button(17, pin_factory=factory3)
button_2 = Button(17, pin_factory=factory4)

led.source = all_values(button_1, button_2)

pause()

5.3. Multi-room motion alert

Install a Raspberry Pi with a MotionSensor in each room of your house,
and have an class:LED indicator showing when there’s motion in each room:

from gpiozero import LEDBoard, MotionSensor
from gpiozero.pins.pigpio import PiGPIOFactory
from gpiozero.tools import zip_values
from signal import pause

ips = ['192.168.1.3', '192.168.1.4', '192.168.1.5', '192.168.1.6']
remotes = [PiGPIOFactory(host=ip) for ip in ips]

leds = LEDBoard(2, 3, 4, 5) # leds on this pi
sensors = [MotionSensor(17, pin_factory=r) for r in remotes] # remote sensors

leds.source = zip_values(*sensors)

pause()

5.4. Multi-room doorbell

Install a Raspberry Pi with a Buzzer attached in each room you want to
hear the doorbell, and use a push Button as the doorbell:

from gpiozero import LEDBoard, MotionSensor
from gpiozero.pins.pigpio import PiGPIOFactory
from signal import pause

ips = ['192.168.1.3', '192.168.1.4', '192.168.1.5', '192.168.1.6']
remotes = [PiGPIOFactory(host=ip) for ip in ips]

button = Button(17) # button on this pi
buzzers = [Buzzer(pin, pin_factory=r) for r in remotes] # buzzers on remote pins

for buzzer in buzzers:
 buzzer.source = button

pause()

This could also be used as an internal doorbell (tell people it’s time for
dinner from the kitchen).

5.5. Remote button robot

Similarly to the simple recipe for the button controlled Robot, this
example uses four buttons to control the direction of a robot. However, using
remote pins for the robot means the control buttons can be separate from the
robot:

from gpiozero import Button, Robot
from gpiozero.pins.pigpio import PiGPIOFactory
from signal import pause

factory = PiGPIOFactory(host='192.168.1.17')
robot = Robot(left=(4, 14), right=(17, 18), pin_factory=factory) # remote pins

local buttons
left = Button(26)
right = Button(16)
fw = Button(21)
bw = Button(20)

fw.when_pressed = robot.forward
fw.when_released = robot.stop

left.when_pressed = robot.left
left.when_released = robot.stop

right.when_pressed = robot.right
right.when_released = robot.stop

bw.when_pressed = robot.backward
bw.when_released = robot.stop

pause()

5.6. Light sensor + Sense HAT

The Sense HAT (not supported by GPIO Zero) includes temperature, humidity
and pressure sensors, but no light sensor. Remote GPIO allows an external
LightSensor to be used as well. The Sense HAT LED display can be used
to show different colours according to the light levels:

from gpiozero import LightSensor
from gpiozero.pins.pigpio import PiGPIOFactory
from sense_hat import SenseHat

remote_factory = PiGPIOFactory(host='192.168.1.4')
light = LightSensor(4, pin_factory=remote_factory) # remote motion sensor
sense = SenseHat() # local sense hat

blue = (0, 0, 255)
yellow = (255, 255, 0)

while True:
 if light.value > 0.5:
 sense.clear(yellow)
 else:
 sense.clear(blue)

Note that in this case, the Sense HAT code must be run locally, and the GPIO
remotely.

6. Pi Zero USB OTG

The Raspberry Pi Zero and Pi Zero W feature a USB OTG port, allowing
users to configure the device as (amongst other things) an Ethernet device. In
this mode, it is possible to control the Pi Zero’s GPIO pins over USB from
another computer using the remote GPIO feature.

6.1. GPIO expander method - no SD card required

The GPIO expander method allows you to boot the Pi Zero over USB from the PC,
without an SD card. Your PC sends the required boot firmware to the Pi over the
USB cable, launching a mini version of Raspbian and booting it in RAM. The OS
then starts the pigpio daemon, allowing “remote” access over the USB cable.

At the time of writing, this is only possible using either the Raspberry Pi
Desktop x86 OS, or Ubuntu (or a derivative), or from another Raspberry Pi.
Usage from Windows and Mac OS is not supported at present.

6.1.1. Raspberry Pi Desktop x86 setup

	Download an ISO of the Raspberry Pi Desktop OS from raspberrypi.org (this
must be the Stretch release, not the older Jessie image).

	Write the image to a USB stick or burn to a DVD.

	Live boot your PC or Mac into the OS (select “Run with persistence” and your
computer will be back to normal afterwards).

6.1.2. Raspberry Pi (Raspbian) setup

	Update your package list and install the usbbootgui package:

$ sudo apt update
$ sudo apt install usbbootgui

6.1.3. Ubuntu setup

	Add the Raspberry Pi PPA to your system:

$ sudo add-apt-repository ppa:rpi-distro/ppa

2. If you have previously installed gpiozero or pigpio with pip,
uninstall these first:

$ sudo pip3 uninstall gpiozero pigpio

	Install the required packages from the PPA:

$ sudo apt install usbbootgui pigpio python3-gpiozero python3-pigpio

6.1.4. Access the GPIOs

Once your PC or Pi has the USB Boot GUI tool installed, connecting a Pi Zero
will automatically launch a prompt to select a role for the device. Select
“GPIO expansion board” and continue:

[image: _images/gpio-expansion-prompt.png]
It will take 30 seconds or so to flash it, then the dialogue will disappear.

Raspberry Pi Desktop and Raspbian will name your Pi Zero connection usb0.
On Ubuntu, this will likely be something else. You can ping it using the
address fe80::1% followed by the connection string. You can look this up
using ifconfig.

Set the GPIOZERO_PIN_FACTORY and PIGPIO_ADDR environment
variables on your PC so GPIO Zero connects to the “remote” Pi Zero:

$ export GPIOZERO_PIN_FACTORY=pigpio
$ export PIGPIO_ADDR=fe80::1%usb0

Now any GPIO Zero code you run on the PC will use the GPIOs of the attached Pi
Zero:

[image: _images/gpio-expansion-example.png]
Alternatively, you can set the pin factory in-line, as explained in
Configuring Remote GPIO.

Read more on the GPIO expander in blog posts on raspberrypi.org and
bennuttall.com.

6.2. Legacy method - SD card required

The legacy method requires the Pi Zero to have a Raspbian SD card inserted.

Start by creating a Raspbian (desktop or lite) SD card, and then configure the
boot partition like so:

	Edit config.txt and add dtoverlay=dwc2 on a new line, then save
the file.

	Create an empty file called ssh (no file extension) and save it in
the boot partition.

	Edit cmdline.txt` and insert modules-load=dwc2,g_ether after
rootwait.

(See guides on blog.gbaman.info and learn.adafruit.com for more detailed
instructions)

Then connect the Pi Zero to your computer using a micro USB cable (connecting
it to the USB port, not the power port). You’ll see the indicator LED flashing
as the Pi Zero boots. When it’s ready, you will be able to ping and SSH into it
using the hostname raspberrypi.local. SSH into the Pi Zero, install pigpio
and run the pigpio daemon.

Then, drop out of the SSH session and you can run Python code on your computer
to control devices attached to the Pi Zero, referencing it by its hostname (or
IP address if you know it), for example:

$ GPIOZERO_PIN_FACTORY=pigpio PIGPIO_ADDR=raspberrypi.local python3 led.py

7. Source/Values

GPIO Zero provides a method of using the declarative programming paradigm to
connect devices together: feeding the values of one device into another, for
example the values of a button into an LED:

[image: _images/led_button.svg]

from gpiozero import LED, Button
from signal import pause

led = LED(17)
button = Button(2)

led.source = button

pause()

which is equivalent to:

from gpiozero import LED, Button
from time import sleep

led = LED(17)
button = Button(2)

while True:
 led.value = button.value
 sleep(0.01)

except that the former is updated in a background thread, which enables you to
do other things at the same time.

Every device has a value property (the device’s current value).
Input devices (like buttons) can only have their values read, but output devices
(like LEDs) can also have their value set to alter the state of the device:

>>> led = PWMLED(17)
>>> led.value # LED is initially off
0.0
>>> led.on() # LED is now on
>>> led.value
1.0
>>> led.value = 0 # LED is now off

Every device also has a values property (a generator
continuously yielding the device’s current value). All output devices have a
source property which can be set to any iterator. The
device will iterate over the values of the device provided, setting the device’s
value to each element at a rate specified in the
source_delay property (the default is 0.01 seconds).

[image: _images/source_values.svg]

The most common use case for this is to set the source of an output device to
match the values of an input device, like the example above. A more interesting
example would be a potentiometer controlling the brightness of an LED:

[image: _images/pwmled_pot.svg]

from gpiozero import PWMLED, MCP3008
from signal import pause

led = PWMLED(17)
pot = MCP3008()

led.source = pot

pause()

The way this works is that the input device’s values
property is used to feed values into the output device. Prior to v1.5, the
source had to be set directly to a device’s
values property:

from gpiozero import PWMLED, MCP3008
from signal import pause

led = PWMLED(17)
pot = MCP3008()

led.source = pot.values

pause()

Note

Although this method is still supported, the recommended way is now to set
the source to a device object.

It is also possible to set an output device’s source to
another output device, to keep them matching. In this example, the red LED is
set to match the button, and the green LED is set to match the red LED, so both
LEDs will be on when the button is pressed:

[image: _images/matching_leds.svg]

from gpiozero import LED, Button
from signal import pause

red = LED(14)
green = LED(15)
button = Button(17)

red.source = button
green.source = red

pause()

7.1. Processing values

The device’s values can also be processed before they are passed to the
source:

[image: _images/value_processing.svg]

For example, writing a generator function to pass the opposite of the Button
value into the LED:

[image: _images/led_button_opposite.svg]

from gpiozero import Button, LED
from signal import pause

def opposite(device):
 for value in device.values:
 yield not value

led = LED(4)
btn = Button(17)

led.source = opposite(btn)

pause()

Alternatively, a custom generator can be used to provide values from an
artificial source:

[image: _images/custom_generator.svg]

For example, writing a generator function to randomly yield 0 or 1:

[image: _images/random_led.svg]

from gpiozero import LED
from random import randint
from signal import pause

def rand():
 while True:
 yield randint(0, 1)

led = LED(17)
led.source = rand()

pause()

If the iterator is infinite (i.e. an infinite generator), the elements will be
processed until the source is changed or set to
None.

If the iterator is finite (e.g. a list), this will terminate once all elements
are processed (leaving the device’s value at the final element):

from gpiozero import LED
from signal import pause

led = LED(17)
led.source_delay = 1
led.source = [1, 0, 1, 1, 1, 0, 0, 1, 0, 1]

pause()

7.2. Source Tools

GPIO Zero provides a set of ready-made functions for dealing with
source/values, called source tools. These are available by importing from
gpiozero.tools.

Some of these source tools are artificial sources which require no input:

[image: _images/source_tool.svg]

In this example, random values between 0 and 1 are passed to the LED, giving it
a flickering candle effect:

[image: _images/source_tool_candle.svg]

from gpiozero import PWMLED
from gpiozero.tools import random_values
from signal import pause

led = PWMLED(4)
led.source = random_values()
led.source_delay = 0.1

pause()

Note that in the above example, source_delay is used to
make the LED iterate over the random values slightly slower.
source_delay can be set to a larger number (e.g. 1 for a
one second delay) or set to 0 to disable any delay.

Some tools take a single source and process its values:

[image: _images/source_tool_value_processor.svg]

In this example, the LED is lit only when the button is not pressed:

[image: _images/led_button_negated.svg]

from gpiozero import Button, LED
from gpiozero.tools import negated
from signal import pause

led = LED(4)
btn = Button(17)

led.source = negated(btn)

pause()

Note

Note that source tools which take one or more value parameters support
passing either ValuesMixin derivatives, or iterators, including a
device’s values property.

Some tools combine the values of multiple sources:

[image: _images/combining_sources.svg]

In this example, the LED is lit only if both buttons are pressed (like an
AND gate):

[image: _images/combining_sources_led_buttons.svg]

from gpiozero import Button, LED
from gpiozero.tools import all_values
from signal import pause

button_a = Button(2)
button_b = Button(3)
led = LED(17)

led.source = all_values(button_a, button_b)

pause()

Similarly, any_values() with two buttons would simulate an OR
gate.

While most devices have a value range between 0 and 1, some have
a range between -1 and 1 (e.g. Motor, Servo and
TonalBuzzer). Some source tools output values between -1 and 1, which
are ideal for these devices, for example passing sin_values() in:

[image: _images/sin_values.svg]

from gpiozero import Motor, Servo, TonalBuzzer
from gpiozero.tools import sin_values
from signal import pause

motor = Motor(2, 3)
servo = Servo(4)
buzzer = TonalBuzzer(5)

motor.source = sin_values()
servo.source = motor
buzzer.source = motor

pause()

In this example, all three devices are following the sine wave. The motor
value ramps up from 0 (stopped) to 1 (full speed forwards), then back down to 0
and on to -1 (full speed backwards) in a cycle. Similarly, the servo moves from
its mid point to the right, then towards the left; and the buzzer starts with
its mid tone, gradually raises its frequency, to its highest tone, then down
towards its lowest tone. Note that setting source_delay
will alter the speed at which the device iterates through the values.
Alternatively, the tool cos_values() could be used to start from -1
and go up to 1, and so on.

7.3. Internal devices

GPIO Zero also provides several internal devices which
represent facilities provided by the operating system itself. These can be used
to react to things like the time of day, or whether a server is available on the
network. These classes include a values property which can
be used to feed values into a device’s source. For example,
a lamp connected to an Energenie socket can be controlled by a
TimeOfDay object so that it is on between the hours of 8am and 8pm:

[image: _images/timed_heat_lamp.svg]

from gpiozero import Energenie, TimeOfDay
from datetime import time
from signal import pause

lamp = Energenie(1)
daytime = TimeOfDay(time(8), time(20))

lamp.source = daytime
lamp.source_delay = 60

pause()

Using the DiskUsage class with LEDBarGraph can show your Pi’s
disk usage percentage on a bar graph:

[image: _images/disk_usage_bar_graph.svg]

from gpiozero import DiskUsage, LEDBarGraph
from signal import pause

disk = DiskUsage()
graph = LEDBarGraph(2, 3, 4, 5, 6, 7, 8)

graph.source = disk

pause()

Demonstrating a garden light system whereby the light comes on if it’s dark and
there’s motion is simple enough, but it requires using the
booleanized() source tool to convert the light sensor from a float
value into a boolean:

[image: _images/garden_light.svg]

from gpiozero import LED, MotionSensor, LightSensor
from gpiozero.tools import booleanized, all_values
from signal import pause

garden = LED(2)
motion = MotionSensor(4)
light = LightSensor(5)

garden.source = all_values(booleanized(light, 0, 0.1), motion)

pause()

7.4. Composite devices

The value of a composite device made up of the nested values of
its devices. For example, the value of a Robot object is a 2-tuple
containing its left and right motor values:

>>> from gpiozero import Robot
>>> robot = Robot(left=(14, 15), right=(17, 18))
>>> robot.value
RobotValue(left_motor=0.0, right_motor=0.0)
>>> tuple(robot.value)
(0.0, 0.0)
>>> robot.forward()
>>> tuple(robot.value)
(1.0, 1.0)
>>> robot.backward()
>>> tuple(robot.value)
(-1.0, -1.0)
>>> robot.value = (1, 1) # robot is now driven forwards

Use two potentiometers to control the left and right motor speed of a robot:

[image: _images/robot_pots_1.svg]

from gpiozero import Robot, MCP3008
from gpiozero.tools import zip_values
from signal import pause

robot = Robot(left=(4, 14), right=(17, 18))

left_pot = MCP3008(0)
right_pot = MCP3008(1)

robot.source = zip_values(left_pot, right_pot)

pause()

To include reverse direction, scale the potentiometer values from 0->1 to -1->1:

[image: _images/robot_pots_2.svg]

from gpiozero import Robot, MCP3008
from gpiozero.tools import scaled
from signal import pause

robot = Robot(left=(4, 14), right=(17, 18))

left_pot = MCP3008(0)
right_pot = MCP3008(1)

robot.source = zip(scaled(left_pot, -1, 1), scaled(right_pot, -1, 1))

pause()

Note that this example uses the built-in zip() rather than the tool
zip_values() as the scaled() tool yields values which
do not need converting, just zipping. Also note that this use of zip()
will not work in Python 2, instead use izip.

8. Command-line Tools

The gpiozero package contains a database of information about the various
revisions of Raspberry Pi. This is queried by the pinout
command-line tool to output details of the GPIO pins available.

8.1. pinout

[image: _images/pinout_pi3.png]

8.1.1. Synopsis

pinout [-h] [-r REVISION] [-c] [-m] [-x]

8.1.2. Description

A utility for querying Raspberry Pi GPIO pin-out information. Running
pinout on its own will output a board diagram, and GPIO header
diagram for the current Raspberry Pi. It is also possible to manually specify a
revision of Pi, or (by Configuring Remote GPIO) to output information about a
remote Pi.

8.1.3. Options

	
-h, --help

	show this help message and exit

	
-r REVISION, --revision REVISION

	RPi revision. Default is to autodetect revision of current device

	
-c, --color

	Force colored output (by default, the output will include ANSI color codes
if run in a color-capable terminal). See also --monochrome

	
-m, --monochrome

	Force monochrome output. See also --color

	
-x, --xyz

	Open pinout.xyz in the default web browser

8.1.4. Examples

To output information about the current Raspberry Pi:

$ pinout

For a Raspberry Pi model 3B, this will output something like the following:

,--------------------------------.
| oooooooooooooooooooo J8 +====
| 1ooooooooooooooooooo | USB
| +====
| Pi Model 3B V1.1 |
| +----+ +====
| |D| |SoC | | USB
| |S| | | +====
| |I| +----+ |
| |C| +======
| |S| | Net
| pwr |HDMI| |I||A| +======
`-| |--------| |----|V|-------'

Revision : a02082
SoC : BCM2837
RAM : 1024Mb
Storage : MicroSD
USB ports : 4 (excluding power)
Ethernet ports : 1
Wi-fi : True
Bluetooth : True
Camera ports (CSI) : 1
Display ports (DSI): 1

J8:
 3V3 (1) (2) 5V
 GPIO2 (3) (4) 5V
 GPIO3 (5) (6) GND
 GPIO4 (7) (8) GPIO14
 GND (9) (10) GPIO15
GPIO17 (11) (12) GPIO18
GPIO27 (13) (14) GND
GPIO22 (15) (16) GPIO23
 3V3 (17) (18) GPIO24
GPIO10 (19) (20) GND
 GPIO9 (21) (22) GPIO25
GPIO11 (23) (24) GPIO8
 GND (25) (26) GPIO7
 GPIO0 (27) (28) GPIO1
 GPIO5 (29) (30) GND
 GPIO6 (31) (32) GPIO12
GPIO13 (33) (34) GND
GPIO19 (35) (36) GPIO16
GPIO26 (37) (38) GPIO20
 GND (39) (40) GPIO21

By default, if stdout is a console that supports color, ANSI codes will be used
to produce color output. Output can be forced to be --monochrome:

$ pinout --monochrome

Or forced to be --color, in case you are redirecting to something
capable of supporting ANSI codes:

$ pinout --color | less -SR

To manually specify the revision of Pi you want to query, use
--revision. The tool understands both old-style revision codes
(such as for the model B):

$ pinout -r 000d

Or new-style revision codes (such as for the Pi Zero W):

$ pinout -r 9000c1

[image: _images/pinout_pizero_w.png]
You can also use the tool with Configuring Remote GPIO to query remote Raspberry
Pi’s:

$ GPIOZERO_PIN_FACTORY=pigpio PIGPIO_ADDR=other_pi pinout

Or run the tool directly on a PC using the mock pin implementation (although in
this case you’ll almost certainly want to specify the Pi revision manually):

$ GPIOZERO_PIN_FACTORY=mock pinout -r a22042

8.1.5. Environment Variables

	
GPIOZERO_PIN_FACTORY

	The library to use when communicating with the GPIO pins. Defaults to
attempting to load RPi.GPIO, then RPIO, then pigpio, and finally uses a
native Python implementation. Valid values include “rpigpio”, “rpio”,
“pigpio”, “native”, and “mock”. The latter is most useful on non-Pi
platforms as it emulates a Raspberry Pi model 3B (by default).

	
PIGPIO_ADDR

	The hostname of the Raspberry Pi the pigpio library should attempt to
connect to (if the pigpio pin factory is being used). Defaults to
localhost.

	
PIGPIO_PORT

	The port number the pigpio library should attempt to connect to (if the
pigpio pin factory is being used). Defaults to 8888.

9. Frequently Asked Questions

9.1. How do I keep my script running?

The following script looks like it should turn an LED on:

from gpiozero import LED

led = LED(17)
led.on()

And it does, if you’re using the Python (or IPython or IDLE) shell. However,
if you saved this script as a Python file and ran it, it would flash on
briefly, then the script would end and it would turn off.

The following file includes an intentional pause() to keep the
script alive:

from gpiozero import LED
from signal import pause

led = LED(17)
led.on()

pause()

Now the script will stay running, leaving the LED on, until it is terminated
manually (e.g. by pressing Ctrl+C). Similarly, when setting up callbacks on
button presses or other input devices, the script needs to be running for the
events to be detected:

from gpiozero import Button
from signal import pause

def hello():
 print("Hello")

button = Button(2)
button.when_pressed = hello

pause()

9.2. My event handler isn’t being called

When assigning event handlers, don’t call the function you’re assigning. For
example:

from gpiozero import Button

def pushed():
 print("Don't push the button!")

b = Button(17)
b.when_pressed = pushed()

In the case above, when assigning to when_pressed, the thing
that is assigned is the result of calling the pushed function. Because
pushed doesn’t explicitly return anything, the result is None.
Hence this is equivalent to doing:

b.when_pressed = None

This doesn’t raise an error because it’s perfectly valid: it’s what you assign
when you don’t want the event handler to do anything. Instead, you want to
do the following:

b.when_pressed = pushed

This will assign the function to the event handler without calling it. This
is the crucial difference between my_function (a reference to a function)
and my_function() (the result of calling a function).

Note

Note that as of v1.5, setting a callback to None when it was previously
None will raise a CallbackSetToNone warning, with the intention
of alerting users when callbacks are set to None accidentally. However,
if this is intentional, the warning can be suppressed. See the
warnings module for reference.

9.3. Why do I get PinFactoryFallback warnings when I import gpiozero?

You are most likely working in a virtual Python environment and have forgotten
to install a pin driver library like RPi.GPIO. GPIO Zero relies upon lower
level pin drivers to handle interfacing to the GPIO pins on the Raspberry Pi,
so you can eliminate the warning simply by installing GPIO Zero’s first
preference:

$ pip install rpi.gpio

When GPIO Zero is imported it attempts to find a pin driver by importing them
in a preferred order (detailed in API - Pins). If it fails to load its
first preference (RPi.GPIO) it notifies you with a warning, then falls back
to trying its second preference and so on. Eventually it will fall back all the
way to the native implementation. This is a pure Python implementation
built into GPIO Zero itself. While this will work for most things it’s almost
certainly not what you want (it doesn’t support PWM, and it’s quite slow at
certain things).

If you want to use a pin driver other than the default, and you want to
suppress the warnings you’ve got a couple of options:

	Explicitly specify what pin driver you want via the
GPIOZERO_PIN_FACTORY environment variable. For example:

$ GPIOZERO_PIN_FACTORY=pigpio python3

In this case no warning is issued because there’s no fallback; either the
specified factory loads or it fails in which case an ImportError will
be raised.

	Suppress the warnings and let the fallback mechanism work:

>>> import warnings
>>> warnings.simplefilter('ignore')
>>> import gpiozero

Refer to the warnings module documentation for more refined ways to
filter out specific warning classes.

9.4. How can I tell what version of gpiozero I have installed?

The gpiozero library relies on the setuptools package for installation
services. You can use the setuptools pkg_resources API to query which
version of gpiozero is available in your Python environment like so:

>>> from pkg_resources import require
>>> require('gpiozero')
[gpiozero 1.5.0 (/usr/lib/python3/dist-packages)]
>>> require('gpiozero')[0].version
'1.5.0'

If you have multiple versions installed (e.g. from pip and
apt) they will not show up in the list returned by the
pkg_resources.require() method. However, the first entry in the list will
be the version that import gpiozero will import.

If you receive the error “No module named pkg_resources”, you need to install
pip. This can be done with the following command in Raspbian:

$ sudo apt install python3-pip

Alternatively, install pip with get-pip.

9.5. Why do I get “command not found” when running pinout?

The gpiozero library is available as a Debian package for Python 2 and Python
3, but the pinout tool cannot be made available by both packages, so
it’s only included with the Python 3 version of the package. To make sure the
pinout tool is available, the “python3-gpiozero” package must be
installed:

$ sudo apt install python3-gpiozero

Alternatively, installing gpiozero using pip will install the
command line tool, regardless of Python version:

$ sudo pip3 install gpiozero

or:

$ sudo pip install gpiozero

9.6. The pinout command line tool incorrectly identifies my Raspberry Pi model

If your Raspberry Pi model is new, it’s possible it wasn’t known about at the
time of the gpiozero release you are using. Ensure you have the latest version
installed (remember, the pinout tool usually comes from the Python 3
version of the package as noted in the previous FAQ).

If the Pi model you are using isn’t known to gpiozero, it may have been added
since the last release. You can check the GitHub issues to see if it’s been
reported before, or check the commits on GitHub since the last release to
see if it’s been added. The model determination can be found in
gpiozero/pins/data.py.

9.7. What’s the gpiozero equivalent of GPIO.cleanup()?

Many people ask how to do the equivalent of the cleanup function from
RPi.GPIO. In gpiozero, at the end of your script, cleanup is run
automatically, restoring your GPIO pins to the state they were found.

To explicitly close a connection to a pin, you can manually call the
close() method on a device object:

>>> led = LED(2)
>>> led.on()
>>> led
<gpiozero.LED object on pin GPIO2, active_high=True, is_active=True>
>>> led.close()
>>> led
<gpiozero.LED object closed>

This means that you can reuse the pin for another device, and that despite
turning the LED on (and hence, the pin high), after calling
close() it is restored to its previous state (LED off, pin low).

9.8. How do I use button.when_pressed and button.when_held together?

The Button class provides a when_held property which
is used to set a callback for when the button is held down for a set amount of
time (as determined by the hold_time property). If you want to
set when_held as well as when_pressed, you’ll
notice that both callbacks will fire. Sometimes, this is acceptable, but often
you’ll want to only fire the when_pressed callback when the
button has not been held, only pressed.

The way to achieve this is to not set a callback on
when_pressed, and instead use when_released to
work out whether it had been held or just pressed:

from gpiozero import Button

Button.was_held = False

def held(btn):
 btn.was_held = True
 print("button was held not just pressed")

def released(btn):
 if not btn.was_held:
 pressed()
 btn.was_held = False

def pressed():
 print("button was pressed not held")

btn = Button(2)

btn.when_held = held
btn.when_released = released

9.9. Why do I get “ImportError: cannot import name” when trying to import from gpiozero?

It’s common to see people name their first gpiozero script gpiozero.py.
Unfortunately, this will cause your script to try to import itself, rather than
the gpiozero library from the libraries path. You’ll see an error like this:

Traceback (most recent call last):
 File "gpiozero.py", line 1, in <module>
 from gpiozero import LED
 File "/home/pi/gpiozero.py", line 1, in <module>
 from gpiozero import LED
ImportError: cannot import name 'LED'

Simply rename your script to something else, and run it again. Be sure not to
name any of your scripts the same name as a Python module you may be importing,
such as picamera.py.

9.10. Why do I get an AttributeError trying to set attributes on a device object?

If you try to add an attribute to a gpiozero device object after its
initialization, you’ll find you can’t:

>>> from gpiozero import Button
>>> btn = Button(2)
>>> btn.label = 'alarm'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/usr/lib/python3/dist-packages/gpiozero/devices.py", line 118, in __setattr__
 self.__class__.__name__, name))
AttributeError: 'Button' object has no attribute 'label'

This is in order to prevent users accidentally setting new attributes by
mistake. Because gpiozero provides functionality through setting attributes via
properties, such as callbacks on buttons (and often there is no immediate
feedback when setting a property), this could lead to bugs very difficult to
find. Consider the following example:

from gpiozero import Button

def hello():
 print("hello")

btn = Button(2)

btn.pressed = hello

This is perfectly valid Python code, and no errors would occur, but the program
would not behave as expected: pressing the button would do nothing, because the
property for setting a callback is when_pressed not pressed. But
without gpiozero preventing this non-existent attribute from being set, the
user would likely struggle to see the mistake.

If you really want to set a new attribute on a device object, you need to
create it in the class before initializing your object:

>>> from gpiozero import Button
>>> Button.label = ''
>>> btn = Button(2)
>>> btn.label = 'alarm'
>>> def press(btn):
...: print(btn.label, "was pressed")
>>> btn.when_pressed = press

9.11. Why is it called GPIO Zero? Does it only work on Pi Zero?

gpiozero works on all Raspberry Pi models, not just the Pi Zero.

The “zero” is part of a naming convention for “zero-boilerplate” education
friendly libraries, which started with Pygame Zero, and has been followed by
NetworkZero, guizero and more.

These libraries aim to remove barrier to entry and provide a smooth learning
curve for beginners by making it easy to get started and easy to build up to
more advanced projects.

10. Migrating from RPi.GPIO

If you are familiar with the RPi.GPIO library, you will be used to writing
code which deals with pins and the state of pins. You will see from the
examples in this documentation that we generally refer to things like LEDs and
Buttons rather than input pins and output pins.

GPIO Zero provides classes which represent devices, so instead of having a
pin number and telling it to go high, you have an LED and you tell it to turn
on, and instead of having a pin number and asking if it’s high or low, you have
a button and ask if it’s pressed. There is also no boilerplate code to get
started — you just import the parts you need.

GPIO Zero provides many device classes, each with specific methods and
properties bespoke to that device. For example, the functionality for an
HC-SR04 Distance Sensor can be found in the DistanceSensor class.

As well as specific device classes, we provide base classes
InputDevice and OutputDevice. One main difference between
these and the equivalents in RPi.GPIO is that they are classes, not functions,
which means that you initialize one to begin, and provide its pin number, but
then you never need to use the pin number again, as it’s stored by the object.

GPIO Zero was originally just a layer on top of RPi.GPIO, but we later added
support for various other underlying pin libraries. RPi.GPIO is currently the
default pin library used. Read more about this in Changing the pin factory.

10.1. Output devices

Turning an LED on in RPi.GPIO:

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)

GPIO.setup(2, GPIO.OUT)

GPIO.output(2, GPIO.HIGH)

Turning an LED on in GPIO Zero:

from gpiozero import LED

led = LED(2)

led.on()

The LED class also supports threaded blinking through the
blink() method.

OutputDevice is the base class for output devices, and can be used in a
similar way to output devices in RPi.GPIO.

See a full list of supported output devices. Other output
devices have similar property and method names. There is commonality in naming
at base level, such as OutputDevice.is_active, which is aliased in a
device class, such as LED.is_lit.

10.2. Input devices

Reading a button press in RPi.GPIO:

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)

GPIO.setup(4, GPIO.IN, GPIO.PUD_UP)

if not GPIO.input(4):
 print("button is pressed")

Reading a button press in GPIO Zero:

from gpiozero import Button

btn = Button(4)

if btn.is_pressed:
 print("button is pressed")

Note that in the RPi.GPIO example, the button is set up with the option
GPIO.PUD_UP which means “pull-up”, and therefore when the button is not
pressed, the pin is high. When the button is pressed, the pin goes low, so the
condition requires negation (if not). If the button was configured as
pull-down, the logic is reversed and the condition would become if
GPIO.input(4):

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)

GPIO.setup(4, GPIO.IN, GPIO.PUD_DOWN)

if GPIO.input(4):
 print("button is pressed")

In GPIO Zero, the default configuration for a button is pull-up, but this can
be configured at initialization, and the rest of the code stays the same:

from gpiozero import Button

btn = Button(4, pull_up=False)

if btn.is_pressed:
 print("button is pressed")

RPi.GPIO also supports blocking edge detection.

Wait for a pull-up button to be pressed in RPi.GPIO:

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)

GPIO.setup(4, GPIO.IN, GPIO.PUD_UP)

GPIO.wait_for_edge(4, GPIO.FALLING):
print("button was pressed")

The equivalent in GPIO Zero:

from gpiozero import Buttons

btn = Button(4)

btn.wait_for_press()
print("button was pressed")

Again, if the button is pulled down, the logic is reversed. Instead of waiting
for a falling edge, we’re waiting for a rising edge:

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)

GPIO.setup(4, GPIO.IN, GPIO.PUD_UP)

GPIO.wait_for_edge(4, GPIO.FALLING):
print("button was pressed")

Again, in GPIO Zero, the only difference is in the initialization:

from gpiozero import Buttons

btn = Button(4, pull_up=False)

btn.wait_for_press()
print("button was pressed")

RPi.GPIO has threaded callbacks. You create a function (which must take one
argument), and pass it in to add_event_detect, along with the pin number
and the edge direction:

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)

def pressed(pin):
 print("button was pressed")

def released(pin):
 print("button was released")

GPIO.setup(4, GPIO.IN, GPIO.PUD_UP)

GPIO.add_event_detect(4, GPIO.FALLING, pressed)
GPIO.add_event_detect(4, GPIO.RISING, released)

In GPIO Zero, you assign the when_pressed and
when_released properties to set up callbacks on those actions:

from gpiozero import Buttons

def pressed():
 print("button was pressed")

def released():
 print("button was released")

btn = Button(4)

btn.when_pressed = pressed
btn.when_released = released

when_held is also provided, where the length of time considered
a “hold” is configurable.

The callback functions don’t have to take any arguments, but if they take one,
the button object is passed in, allowing you to determine which button called
the function.

InputDevice is the base class for input devices, and can be used in a
similar way to input devices in RPi.GPIO.

See a full list of input devices. Other input devices have
similar property and method names. There is commonality in naming at base level,
such as InputDevice.is_active, which is aliased in a device class, such
as Button.is_pressed and LightSensor.light_detected.

10.3. Composite devices, boards and accessories

Some devices require connections to multiple pins, for example a distance
sensor, a combination of LEDs or a HAT. Some GPIO Zero devices comprise
multiple device connections within one object, such as RGBLED,
LEDBoard, DistanceSensor, Motor and Robot.

With RPi.GPIO, you would have one output pin for the trigger, and one input pin
for the echo. You would time the echo and calculate the distance. With GPIO
Zero, you create a single DistanceSensor object, specifying the
trigger and echo pins, and you would read the DistanceSensor.distance
property which automatically calculates the distance within the implementation
of the class.

The Motor class controls two output pins to drive the motor forwards
or backwards. The Robot class controls four output pins (two motors)
in the right combination to drive a robot forwards or backwards, and turn left
and right.

The LEDBoard class takes an arbitrary number of pins, each controlling
a single LED. The resulting LEDBoard object can be used to control all
LEDs together (all on / all off), or individually by index. Also the object can
be iterated over to turn LEDs on in order. See examples of this (including
slicing) in the advanced recipes.

10.4. PWM (Pulse-width modulation)

Both libraries support software PWM control on any pin. Depending on the pin
library used, GPIO Zero can also support hardware PWM (using
RPIOPin or PiGPIOPin).

A simple example of using PWM is to control the brightness of an LED.

In RPi.GPIO:

import RPi.GPIO as GPIO
from time import sleep

GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)

GPIO.setup(2, GPIO.OUT)
pwm = GPIO.PWM(2, 100)
pwm.start(0)

for dc in range(100):
 pwm.changeDutyCycle(dc)
 sleep(0.01)

In GPIO Zero:

from gpiozero import PWMLED
from time import sleep

led = PWMLED(2)

for b in range(100):
 led.value = b / 100
 sleep(0.01)

PWMLED has a blink() method which can be used the same
was as LED’s blink() method, but its PWM capabilities allow
for fade_in and fade_out options to be provided. There is also the
pulse() method which provides a neat way to have an LED fade in
and out repeatedly.

Other devices can make use of PWM, such as motors (for variable speed) and
servos. See the Motor, Servo and AngularServo
classes for information on those. Motor and Robot default to
using PWM, but it can be disabled with pwm=False at initialization. Servos
cannot be used without PWM. Devices containing LEDs default to not using PWM,
but pwm=True can be specified and any LED objects within the device will be
initialized as PWMLED objects.

10.5. Cleanup

Pin state cleanup is explicit in RPi.GPIO, and is done manually with
GPIO.cleanup() but in GPIO Zero, cleanup is automatically performed on every
pin used, at the end of the script. Manual cleanup is possible by use of the
close() method on the device.

Read more in the relevant FAQ: What’s the gpiozero equivalent of GPIO.cleanup()?

10.6. Pi Information

RPi.GPIO provides information about the Pi you’re using. The equivalent in GPIO
Zero is the function pi_info():

>>> from gpiozero import pi_info
>>> pi = pi_info()
>>> pi
PiBoardInfo(revision='a02082', model='3B', pcb_revision='1.2', released='2016Q1', soc='BCM2837', manufacturer='Sony', memory=1024, storage='MicroSD', usb=4, ethernet=1, wifi=True, bluetooth=True, csi=1, dsi=1, headers=..., board=...)
>>> pi.soc
'BCM2837'
>>> pi.wifi
True

Read more about what PiBoardInfo provides.

10.7. More

GPIO Zero provides more than just GPIO device support, it includes some support
for SPI devices including a range of analog to digital
converters.

Device classes which are compatible with other GPIO devices, but have no
relation to GPIO pins, such as CPUTemperature, TimeOfDay,
PingServer and LoadAverage are also provided.

GPIO Zero features support for multiple pin libraries. The default is to use
RPi.GPIO to control the pins, but you can choose to use another library,
such as pigpio, which supports network controlled GPIO. See
Changing the pin factory and Configuring Remote GPIO for more information.

It is possible to run GPIO Zero on your PC, both for remote GPIO and for testing
purposes, using Mock pins.

Another feature of this library is configuring devices to be connected together
in a logical way, for example in one line you can say that an LED and button are
“paired”, i.e. the button being pressed turns the LED on. Read about this in
Source/Values.

10.8. FAQs

Note the following FAQs which may catch out users too familiar with RPi.GPIO:

	How do I keep my script running?

	Why do I get PinFactoryFallback warnings when I import gpiozero?

	What’s the gpiozero equivalent of GPIO.cleanup()?

11. Contributing

Contributions to the library are welcome! Here are some guidelines to follow.

11.1. Suggestions

Please make suggestions for additional components or enhancements to the
codebase by opening an issue explaining your reasoning clearly.

11.2. Bugs

Please submit bug reports by opening an issue explaining the problem clearly
using code examples.

11.3. Documentation

The documentation source lives in the docs folder. Contributions to the
documentation are welcome but should be easy to read and understand.

11.4. Commit messages and pull requests

Commit messages should be concise but descriptive, and in the form of a patch
description, i.e. instructional not past tense (“Add LED example” not “Added
LED example”).

Commits which close (or intend to close) an issue should include the phrase
“fix #123” or “close #123” where #123 is the issue number, as well as
include a short description, for example: “Add LED example, close #123”, and
pull requests should aim to match or closely match the corresponding issue
title.

Copyrights on submissions are owned by their authors (we don’t bother with
copyright assignments), and we assume that authors are happy for their code to
be released under the project’s license. Do feel free to add
your name to the list of contributors in README.rst at the top level of
the project in your pull request! Don’t worry about adding your name to the
copyright headers in whatever files you touch; these are updated automatically
from the git metadata before each release.

11.5. Backwards compatibility

Since this library reached v1.0 we aim to maintain backwards-compatibility
thereafter. Changes which break backwards-compatibility will not be accepted.

11.6. Python 2/3

The library is 100% compatible with both Python 2.7 and Python 3 from version
3.2 onwards. We intend to drop Python 2 support in 2020 when Python 2 reaches
end-of-life.

12. Development

The main GitHub repository for the project can be found at:

https://github.com/RPi-Distro/python-gpiozero

For anybody wishing to hack on the project, we recommend starting off by
getting to grips with some simple device classes. Pick something like
LED and follow its heritage backward to DigitalOutputDevice.
Follow that back to OutputDevice and you should have a good
understanding of simple output devices along with a grasp of how GPIO Zero
relies fairly heavily upon inheritance to refine the functionality of devices.
The same can be done for input devices, and eventually more complex devices
(composites and SPI based).

12.1. Development installation

If you wish to develop GPIO Zero itself, we recommend obtaining the source by
cloning the GitHub repository and then use the “develop” target of the Makefile
which will install the package as a link to the cloned repository allowing
in-place development (it also builds a tags file for use with vim/emacs with
Exuberant’s ctags utility). The following example demonstrates this method
within a virtual Python environment:

$ sudo apt install lsb-release build-essential git git-core \
 exuberant-ctags virtualenvwrapper python-virtualenv python3-virtualenv \
 python-dev python3-dev

After installing virtualenvwrapper you’ll need to restart your shell before
commands like mkvirtualenv will operate correctly. Once you’ve
restarted your shell, continue:

$ cd
$ mkvirtualenv -p /usr/bin/python3 python-gpiozero
$ workon python-gpiozero
(python-gpiozero) $ git clone https://github.com/RPi-Distro/python-gpiozero.git
(python-gpiozero) $ cd python-gpiozero
(python-gpiozero) $ make develop

You will likely wish to install one or more pin implementations within the
virtual environment (if you don’t, GPIO Zero will use the “native” pin
implementation which is usable at this stage, but doesn’t support facilities
like PWM):

(python-gpiozero) $ pip install rpi.gpio pigpio

If you are working on SPI devices you may also wish to install the spidev
package to provide hardware SPI capabilities (again, GPIO Zero will work
without this, but a big-banging software SPI implementation will be used
instead which limits bandwidth):

(python-gpiozero) $ pip install spidev

To pull the latest changes from git into your clone and update your
installation:

$ workon python-gpiozero
(python-gpiozero) $ cd ~/python-gpiozero
(python-gpiozero) $ git pull
(python-gpiozero) $ make develop

To remove your installation, destroy the sandbox and the clone:

(python-gpiozero) $ deactivate
$ rmvirtualenv python-gpiozero
$ rm -fr ~/python-gpiozero

12.2. Building the docs

If you wish to build the docs, you’ll need a few more dependencies. Inkscape
is used for conversion of SVGs to other formats, Graphviz is used for rendering
certain charts, and TeX Live is required for building PDF output. The following
command should install all required dependencies:

$ sudo apt install texlive-latex-recommended texlive-latex-extra \
 texlive-fonts-recommended graphviz inkscape python-sphinx latexmk

Once these are installed, you can use the “doc” target to build the
documentation:

$ workon python-gpiozero
(python-gpiozero) $ cd ~/python-gpiozero
(python-gpiozero) $ make doc

The HTML output is written to build/html while the PDF output
goes to build/latex.

12.3. Test suite

If you wish to run the GPIO Zero test suite, follow the instructions in
Development installation above and then make the “test” target within the sandbox.
You’ll also need to install some pip packages:

$ workon python-gpiozero
(python-gpiozero) $ pip install coverage mock pytest
(python-gpiozero) $ cd ~/python-gpiozero
(python-gpiozero) $ make test

The test suite expects pins 22 and 27 (by default) to be wired together in
order to run the “real” pin tests. The pins used by the test suite can be
overridden with the environment variables GPIOZERO_TEST_PIN (defaults
to 22) and GPIOZERO_TEST_INPUT_PIN (defaults to 27).

Warning

When wiring GPIOs together, ensure a load (like a 1KΩ resistor) is placed
between them. Failure to do so may lead to blown GPIO pins (your humble
author has a fried GPIO27 as a result of such laziness, although it did
take many runs of the test suite before this occurred!).

The test suite is also setup for usage with the tox utility, in
which case it will attempt to execute the test suite with all supported
versions of Python. If you are developing under Ubuntu you may wish to look
into the Dead Snakes PPA in order to install old/new versions of Python; the
tox setup should work with the version of tox shipped with Ubuntu Xenial, but
more features (like parallel test execution) are available with later versions.

On the subject of parallel test execution, this is also supported in the tox
setup, including the “real” pin tests (a file-system level lock is used to
ensure different interpreters don’t try to access the physical pins
simultaneously).

For example, to execute the test suite under tox, skipping interpreter versions
which are not installed:

$ tox -s

To execute the test suite under all installed interpreter versions in parallel,
using as many parallel tasks as there are CPUs, then displaying a combined
report of coverage from all environments:

$ tox -p auto -s
$ coverage combine --rcfile coverage.cfg
$ coverage report --rcfile coverage.cfg

13. API - Input Devices

These input device component interfaces have been provided for simple use of
everyday components. Components must be wired up correctly before use in code.

Note

All GPIO pin numbers use Broadcom (BCM) numbering by default. See the
Pin Numbering section for more information.

13.1. Regular Classes

The following classes are intended for general use with the devices they
represent. All classes in this section are concrete (not abstract).

13.1.1. Button

	
class gpiozero.Button(pin, *, pull_up=True, active_state=None, bounce_time=None, hold_time=1, hold_repeat=False, pin_factory=None)

	Extends DigitalInputDevice and represents a simple push button
or switch.

Connect one side of the button to a ground pin, and the other to any GPIO
pin. Alternatively, connect one side of the button to the 3V3 pin, and the
other to any GPIO pin, then set pull_up to False in the
Button constructor.

The following example will print a line of text when the button is pushed:

from gpiozero import Button

button = Button(4)
button.wait_for_press()
print("The button was pressed!")

	Parameters

	
	pin (int or str) – The GPIO pin which the button is connected to. See Pin Numbering
for valid pin numbers. If this is None a GPIODeviceError
will be raised.

	pull_up (bool or None) – If True (the default), the GPIO pin will be pulled high by
default. In this case, connect the other side of the button to ground.
If False, the GPIO pin will be pulled low by default. In this
case, connect the other side of the button to 3V3. If None, the
pin will be floating, so it must be externally pulled up or down and
the active_state parameter must be set accordingly.

	active_state (bool or None) – See description under InputDevice for more information.

	bounce_time (float or None) – If None (the default), no software bounce compensation will be
performed. Otherwise, this is the length of time (in seconds) that the
component will ignore changes in state after an initial change.

	hold_time (float) – The length of time (in seconds) to wait after the button is pushed,
until executing the when_held handler. Defaults to 1.

	hold_repeat (bool) – If True, the when_held handler will be repeatedly
executed as long as the device remains active, every hold_time
seconds. If False (the default) the when_held handler
will be only be executed once per hold.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

	
wait_for_press(timeout=None)

	Pause the script until the device is activated, or the timeout is
reached.

	Parameters

	timeout (float or None) – Number of seconds to wait before proceeding. If this is
None (the default), then wait indefinitely until the device
is active.

	
wait_for_release(timeout=None)

	Pause the script until the device is deactivated, or the timeout is
reached.

	Parameters

	timeout (float or None) – Number of seconds to wait before proceeding. If this is
None (the default), then wait indefinitely until the device
is inactive.

	
held_time

	The length of time (in seconds) that the device has been held for.
This is counted from the first execution of the when_held event
rather than when the device activated, in contrast to
active_time. If the device is not currently held,
this is None.

	
hold_repeat

	If True, when_held will be executed repeatedly with
hold_time seconds between each invocation.

	
hold_time

	The length of time (in seconds) to wait after the device is activated,
until executing the when_held handler. If hold_repeat
is True, this is also the length of time between invocations of
when_held.

	
is_held

	When True, the device has been active for at least
hold_time seconds.

	
is_pressed

	Returns True if the device is currently active and
False otherwise. This property is usually derived from
value. Unlike value, this is always a boolean.

	
pin

	The Pin that the device is connected to. This will be
None if the device has been closed (see the
close() method). When dealing with GPIO pins, query
pin.number to discover the GPIO pin (in BCM numbering) that the
device is connected to.

	
pull_up

	If True, the device uses a pull-up resistor to set the GPIO pin
“high” by default.

	
value

	Returns 1 if the button is currently pressed, and 0 if it is not.

	
when_held

	The function to run when the device has remained active for
hold_time seconds.

This can be set to a function which accepts no (mandatory) parameters,
or a Python function which accepts a single mandatory parameter (with
as many optional parameters as you like). If the function accepts a
single mandatory parameter, the device that activated will be passed
as that parameter.

Set this property to None (the default) to disable the event.

	
when_pressed

	The function to run when the device changes state from inactive to
active.

This can be set to a function which accepts no (mandatory) parameters,
or a Python function which accepts a single mandatory parameter (with
as many optional parameters as you like). If the function accepts a
single mandatory parameter, the device that activated will be passed
as that parameter.

Set this property to None (the default) to disable the event.

	
when_released

	The function to run when the device changes state from active to
inactive.

This can be set to a function which accepts no (mandatory) parameters,
or a Python function which accepts a single mandatory parameter (with
as many optional parameters as you like). If the function accepts a
single mandatory parameter, the device that deactivated will be
passed as that parameter.

Set this property to None (the default) to disable the event.

13.1.2. LineSensor (TRCT5000)

	
class gpiozero.LineSensor(pin, *, queue_len=5, sample_rate=100, threshold=0.5, partial=False, pin_factory=None)

	Extends SmoothedInputDevice and represents a single pin line
sensor like the TCRT5000 infra-red proximity sensor found in the CamJam #3
EduKit.

A typical line sensor has a small circuit board with three pins: VCC, GND,
and OUT. VCC should be connected to a 3V3 pin, GND to one of the ground
pins, and finally OUT to the GPIO specified as the value of the pin
parameter in the constructor.

The following code will print a line of text indicating when the sensor
detects a line, or stops detecting a line:

from gpiozero import LineSensor
from signal import pause

sensor = LineSensor(4)
sensor.when_line = lambda: print('Line detected')
sensor.when_no_line = lambda: print('No line detected')
pause()

	Parameters

	
	pin (int or str) – The GPIO pin which the sensor is connected to. See Pin Numbering
for valid pin numbers. If this is None a GPIODeviceError
will be raised.

	pull_up (bool or None) – See descrpition under InputDevice for more information.

	active_state (bool or None) – See description under InputDevice for more information.

	queue_len (int) – The length of the queue used to store values read from the sensor. This
defaults to 5.

	sample_rate (float) – The number of values to read from the device (and append to the
internal queue) per second. Defaults to 100.

	threshold (float) – Defaults to 0.5. When the average of all values in the internal queue
rises above this value, the sensor will be considered “active” by the
is_active property, and all appropriate
events will be fired.

	partial (bool) – When False (the default), the object will not return a value
for is_active until the internal queue has
filled with values. Only set this to True if you require
values immediately after object construction.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

	
wait_for_line(timeout=None)

	Pause the script until the device is deactivated, or the timeout is
reached.

	Parameters

	timeout (float or None) – Number of seconds to wait before proceeding. If this is
None (the default), then wait indefinitely until the device
is inactive.

	
wait_for_no_line(timeout=None)

	Pause the script until the device is activated, or the timeout is
reached.

	Parameters

	timeout (float or None) – Number of seconds to wait before proceeding. If this is
None (the default), then wait indefinitely until the device
is active.

	
pin

	The Pin that the device is connected to. This will be
None if the device has been closed (see the
close() method). When dealing with GPIO pins, query
pin.number to discover the GPIO pin (in BCM numbering) that the
device is connected to.

	
value

	Returns a value representing the average of the queued values. This
is nearer 0 for black under the sensor, and nearer 1 for white under
the sensor.

	
when_line

	The function to run when the device changes state from active to
inactive.

This can be set to a function which accepts no (mandatory) parameters,
or a Python function which accepts a single mandatory parameter (with
as many optional parameters as you like). If the function accepts a
single mandatory parameter, the device that deactivated will be
passed as that parameter.

Set this property to None (the default) to disable the event.

	
when_no_line

	The function to run when the device changes state from inactive to
active.

This can be set to a function which accepts no (mandatory) parameters,
or a Python function which accepts a single mandatory parameter (with
as many optional parameters as you like). If the function accepts a
single mandatory parameter, the device that activated will be passed
as that parameter.

Set this property to None (the default) to disable the event.

13.1.3. MotionSensor (D-SUN PIR)

	
class gpiozero.MotionSensor(pin, *, queue_len=1, sample_rate=10, threshold=0.5, partial=False, pin_factory=None)

	Extends SmoothedInputDevice and represents a passive infra-red
(PIR) motion sensor like the sort found in the CamJam #2 EduKit.

A typical PIR device has a small circuit board with three pins: VCC, OUT,
and GND. VCC should be connected to a 5V pin, GND to one of the ground
pins, and finally OUT to the GPIO specified as the value of the pin
parameter in the constructor.

The following code will print a line of text when motion is detected:

from gpiozero import MotionSensor

pir = MotionSensor(4)
pir.wait_for_motion()
print("Motion detected!")

	Parameters

	
	pin (int or str) – The GPIO pin which the sensor is connected to. See Pin Numbering
for valid pin numbers. If this is None a GPIODeviceError
will be raised.

	pull_up (bool or None) – See descrpition under InputDevice for more information.

	active_state (bool or None) – See description under InputDevice for more information.

	queue_len (int) – The length of the queue used to store values read from the sensor. This
defaults to 1 which effectively disables the queue. If your motion
sensor is particularly “twitchy” you may wish to increase this value.

	sample_rate (float) – The number of values to read from the device (and append to the
internal queue) per second. Defaults to 100.

	threshold (float) – Defaults to 0.5. When the average of all values in the internal queue
rises above this value, the sensor will be considered “active” by the
is_active property, and all appropriate
events will be fired.

	partial (bool) – When False (the default), the object will not return a value
for is_active until the internal queue has
filled with values. Only set this to True if you require
values immediately after object construction.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

	
wait_for_motion(timeout=None)

	Pause the script until the device is activated, or the timeout is
reached.

	Parameters

	timeout (float or None) – Number of seconds to wait before proceeding. If this is
None (the default), then wait indefinitely until the device
is active.

	
wait_for_no_motion(timeout=None)

	Pause the script until the device is deactivated, or the timeout is
reached.

	Parameters

	timeout (float or None) – Number of seconds to wait before proceeding. If this is
None (the default), then wait indefinitely until the device
is inactive.

	
motion_detected

	Returns True if the value
currently exceeds threshold and
False otherwise.

	
pin

	The Pin that the device is connected to. This will be
None if the device has been closed (see the
close() method). When dealing with GPIO pins, query
pin.number to discover the GPIO pin (in BCM numbering) that the
device is connected to.

	
value

	With the default queue_len of 1, this is effectively boolean where 0
means no motion detected and 1 means motion detected. If you specify
a queue_len greater than 1, this will be an averaged value where
values closer to 1 imply motion detection.

	
when_motion

	The function to run when the device changes state from inactive to
active.

This can be set to a function which accepts no (mandatory) parameters,
or a Python function which accepts a single mandatory parameter (with
as many optional parameters as you like). If the function accepts a
single mandatory parameter, the device that activated will be passed
as that parameter.

Set this property to None (the default) to disable the event.

	
when_no_motion

	The function to run when the device changes state from active to
inactive.

This can be set to a function which accepts no (mandatory) parameters,
or a Python function which accepts a single mandatory parameter (with
as many optional parameters as you like). If the function accepts a
single mandatory parameter, the device that deactivated will be
passed as that parameter.

Set this property to None (the default) to disable the event.

13.1.4. LightSensor (LDR)

	
class gpiozero.LightSensor(pin, *, queue_len=5, charge_time_limit=0.01, threshold=0.1, partial=False, pin_factory=None)

	Extends SmoothedInputDevice and represents a light dependent
resistor (LDR).

Connect one leg of the LDR to the 3V3 pin; connect one leg of a 1µF
capacitor to a ground pin; connect the other leg of the LDR and the other
leg of the capacitor to the same GPIO pin. This class repeatedly discharges
the capacitor, then times the duration it takes to charge (which will vary
according to the light falling on the LDR).

The following code will print a line of text when light is detected:

from gpiozero import LightSensor

ldr = LightSensor(18)
ldr.wait_for_light()
print("Light detected!")

	Parameters

	
	pin (int or str) – The GPIO pin which the sensor is attached to. See Pin Numbering
for valid pin numbers. If this is None a GPIODeviceError
will be raised.

	queue_len (int) – The length of the queue used to store values read from the circuit.
This defaults to 5.

	charge_time_limit (float) – If the capacitor in the circuit takes longer than this length of time
to charge, it is assumed to be dark. The default (0.01 seconds) is
appropriate for a 1µF capacitor coupled with the LDR from the
CamJam #2 EduKit. You may need to adjust this value for different
valued capacitors or LDRs.

	threshold (float) – Defaults to 0.1. When the average of all values in the internal queue
rises above this value, the area will be considered “light”, and all
appropriate events will be fired.

	partial (bool) – When False (the default), the object will not return a value
for is_active until the internal queue has
filled with values. Only set this to True if you require
values immediately after object construction.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

	
wait_for_dark(timeout=None)

	Pause the script until the device is deactivated, or the timeout is
reached.

	Parameters

	timeout (float or None) – Number of seconds to wait before proceeding. If this is
None (the default), then wait indefinitely until the device
is inactive.

	
wait_for_light(timeout=None)

	Pause the script until the device is activated, or the timeout is
reached.

	Parameters

	timeout (float or None) – Number of seconds to wait before proceeding. If this is
None (the default), then wait indefinitely until the device
is active.

	
light_detected

	Returns True if the value
currently exceeds threshold and
False otherwise.

	
pin

	The Pin that the device is connected to. This will be
None if the device has been closed (see the
close() method). When dealing with GPIO pins, query
pin.number to discover the GPIO pin (in BCM numbering) that the
device is connected to.

	
value

	Returns a value between 0 (dark) and 1 (light).

	
when_dark

	The function to run when the device changes state from active to
inactive.

This can be set to a function which accepts no (mandatory) parameters,
or a Python function which accepts a single mandatory parameter (with
as many optional parameters as you like). If the function accepts a
single mandatory parameter, the device that deactivated will be
passed as that parameter.

Set this property to None (the default) to disable the event.

	
when_light

	The function to run when the device changes state from inactive to
active.

This can be set to a function which accepts no (mandatory) parameters,
or a Python function which accepts a single mandatory parameter (with
as many optional parameters as you like). If the function accepts a
single mandatory parameter, the device that activated will be passed
as that parameter.

Set this property to None (the default) to disable the event.

13.1.5. DistanceSensor (HC-SR04)

	
class gpiozero.DistanceSensor(echo, trigger, *, queue_len=30, max_distance=1, threshold_distance=0.3, partial=False, pin_factory=None)

	Extends SmoothedInputDevice and represents an HC-SR04 ultrasonic
distance sensor, as found in the CamJam #3 EduKit.

The distance sensor requires two GPIO pins: one for the trigger (marked
TRIG on the sensor) and another for the echo (marked ECHO on the sensor).
However, a voltage divider is required to ensure the 5V from the ECHO pin
doesn’t damage the Pi. Wire your sensor according to the following
instructions:

	Connect the GND pin of the sensor to a ground pin on the Pi.

	Connect the TRIG pin of the sensor a GPIO pin.

	Connect one end of a 330Ω resistor to the ECHO pin of the sensor.

	Connect one end of a 470Ω resistor to the GND pin of the sensor.

	Connect the free ends of both resistors to another GPIO pin. This forms
the required voltage divider.

	Finally, connect the VCC pin of the sensor to a 5V pin on the Pi.

Alternatively, the 3V3 tolerant HC-SR04P sensor (which does not require a
voltage divider) will work with this class.

Note

If you do not have the precise values of resistor specified above,
don’t worry! What matters is the ratio of the resistors to each
other.

You also don’t need to be absolutely precise; the voltage divider
given above will actually output ~3V (rather than 3.3V). A simple 2:3
ratio will give 3.333V which implies you can take three resistors of
equal value, use one of them instead of the 330Ω resistor, and two of
them in series instead of the 470Ω resistor.

The following code will periodically report the distance measured by the
sensor in cm assuming the TRIG pin is connected to GPIO17, and the ECHO
pin to GPIO18:

from gpiozero import DistanceSensor
from time import sleep

sensor = DistanceSensor(echo=18, trigger=17)
while True:
 print('Distance: ', sensor.distance * 100)
 sleep(1)

Note

For improved accuracy, use the pigpio pin driver rather than the default
RPi.GPIO driver (pigpio uses DMA sampling for much more precise edge
timing). This is particularly relevant if you’re using Pi 1 or Pi Zero.
See Changing the pin factory for further information.

	Parameters

	
	echo (int or str) – The GPIO pin which the ECHO pin is connected to. See
Pin Numbering for valid pin numbers. If this is None a
GPIODeviceError will be raised.

	trigger (int or str) – The GPIO pin which the TRIG pin is connected to. See
Pin Numbering for valid pin numbers. If this is None a
GPIODeviceError will be raised.

	queue_len (int) – The length of the queue used to store values read from the sensor.
This defaults to 30.

	max_distance (float) – The value attribute reports a normalized value between 0 (too
close to measure) and 1 (maximum distance). This parameter specifies
the maximum distance expected in meters. This defaults to 1.

	threshold_distance (float) – Defaults to 0.3. This is the distance (in meters) that will trigger the
in_range and out_of_range events when crossed.

	partial (bool) – When False (the default), the object will not return a value
for is_active until the internal queue has
filled with values. Only set this to True if you require
values immediately after object construction.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

	
wait_for_in_range(timeout=None)

	Pause the script until the device is deactivated, or the timeout is
reached.

	Parameters

	timeout (float or None) – Number of seconds to wait before proceeding. If this is
None (the default), then wait indefinitely until the device
is inactive.

	
wait_for_out_of_range(timeout=None)

	Pause the script until the device is activated, or the timeout is
reached.

	Parameters

	timeout (float or None) – Number of seconds to wait before proceeding. If this is
None (the default), then wait indefinitely until the device
is active.

	
distance

	Returns the current distance measured by the sensor in meters. Note
that this property will have a value between 0 and
max_distance.

	
echo

	Returns the Pin that the sensor’s echo is connected to. This
is simply an alias for the usual pin attribute.

	
max_distance

	The maximum distance that the sensor will measure in meters. This value
is specified in the constructor and is used to provide the scaling for
the value attribute. When distance
is equal to max_distance, value
will be 1.

	
threshold_distance

	The distance, measured in meters, that will trigger the
when_in_range and when_out_of_range events when
crossed. This is simply a meter-scaled variant of the usual
threshold attribute.

	
trigger

	Returns the Pin that the sensor’s trigger is connected to.

	
value

	Returns a value between 0, indicating the reflector is either touching
the sensor or is sufficiently near that the sensor can’t tell the
difference, and 1, indicating the reflector is at or beyond the
specified max_distance.

	
when_in_range

	The function to run when the device changes state from active to
inactive.

This can be set to a function which accepts no (mandatory) parameters,
or a Python function which accepts a single mandatory parameter (with
as many optional parameters as you like). If the function accepts a
single mandatory parameter, the device that deactivated will be
passed as that parameter.

Set this property to None (the default) to disable the event.

	
when_out_of_range

	The function to run when the device changes state from inactive to
active.

This can be set to a function which accepts no (mandatory) parameters,
or a Python function which accepts a single mandatory parameter (with
as many optional parameters as you like). If the function accepts a
single mandatory parameter, the device that activated will be passed
as that parameter.

Set this property to None (the default) to disable the event.

13.2. Base Classes

The classes in the sections above are derived from a series of base classes,
some of which are effectively abstract. The classes form the (partial)
hierarchy displayed in the graph below (abstract classes are shaded lighter
than concrete classes):

[image: _images/input_device_hierarchy.svg]The following sections document these base classes for advanced users that wish
to construct classes for their own devices.

13.2.1. DigitalInputDevice

	
class gpiozero.DigitalInputDevice(pin, *, pull_up=False, active_state=None, bounce_time=None, pin_factory=None)

	Represents a generic input device with typical on/off behaviour.

This class extends InputDevice with machinery to fire the active
and inactive events for devices that operate in a typical digital manner:
straight forward on / off states with (reasonably) clean transitions
between the two.

	Parameters

	
	pin (int or str) – The GPIO pin that the device is connected to. See Pin Numbering
for valid pin numbers. If this is None a GPIODeviceError
will be raised.

	pull_up (bool or None) – See descrpition under InputDevice for more information.

	active_state (bool or None) – See description under InputDevice for more information.

	bounce_time (float or None) – Specifies the length of time (in seconds) that the component will
ignore changes in state after an initial change. This defaults to
None which indicates that no bounce compensation will be
performed.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

	
wait_for_active(timeout=None)

	Pause the script until the device is activated, or the timeout is
reached.

	Parameters

	timeout (float or None) – Number of seconds to wait before proceeding. If this is
None (the default), then wait indefinitely until the device
is active.

	
wait_for_inactive(timeout=None)

	Pause the script until the device is deactivated, or the timeout is
reached.

	Parameters

	timeout (float or None) – Number of seconds to wait before proceeding. If this is
None (the default), then wait indefinitely until the device
is inactive.

	
active_time

	The length of time (in seconds) that the device has been active for.
When the device is inactive, this is None.

	
inactive_time

	The length of time (in seconds) that the device has been inactive for.
When the device is active, this is None.

	
value

	Returns a value representing the device’s state. Frequently, this is a
boolean value, or a number between 0 and 1 but some devices use larger
ranges (e.g. -1 to +1) and composite devices usually use tuples to
return the states of all their subordinate components.

	
when_activated

	The function to run when the device changes state from inactive to
active.

This can be set to a function which accepts no (mandatory) parameters,
or a Python function which accepts a single mandatory parameter (with
as many optional parameters as you like). If the function accepts a
single mandatory parameter, the device that activated will be passed
as that parameter.

Set this property to None (the default) to disable the event.

	
when_deactivated

	The function to run when the device changes state from active to
inactive.

This can be set to a function which accepts no (mandatory) parameters,
or a Python function which accepts a single mandatory parameter (with
as many optional parameters as you like). If the function accepts a
single mandatory parameter, the device that deactivated will be
passed as that parameter.

Set this property to None (the default) to disable the event.

13.2.2. SmoothedInputDevice

	
class gpiozero.SmoothedInputDevice(pin, *, pull_up=False, active_state=None, threshold=0.5, queue_len=5, sample_wait=0.0, partial=False, pin_factory=None)

	Represents a generic input device which takes its value from the average of
a queue of historical values.

This class extends InputDevice with a queue which is filled by a
background thread which continually polls the state of the underlying
device. The average (a configurable function) of the values in the queue is
compared to a threshold which is used to determine the state of the
is_active property.

Note

The background queue is not automatically started upon construction.
This is to allow descendents to set up additional components before the
queue starts reading values. Effectively this is an abstract base
class.

This class is intended for use with devices which either exhibit analog
behaviour (such as the charging time of a capacitor with an LDR), or those
which exhibit “twitchy” behaviour (such as certain motion sensors).

	Parameters

	
	pin (int or str) – The GPIO pin that the device is connected to. See Pin Numbering
for valid pin numbers. If this is None a GPIODeviceError
will be raised.

	pull_up (bool or None) – See descrpition under InputDevice for more information.

	active_state (bool or None) – See description under InputDevice for more information.

	threshold (float) – The value above which the device will be considered “on”.

	queue_len (int) – The length of the internal queue which is filled by the background
thread.

	sample_wait (float) – The length of time to wait between retrieving the state of the
underlying device. Defaults to 0.0 indicating that values are retrieved
as fast as possible.

	partial (bool) – If False (the default), attempts to read the state of the
device (from the is_active property) will block until the queue
has filled. If True, a value will be returned immediately, but
be aware that this value is likely to fluctuate excessively.

	average – The function used to average the values in the internal queue. This
defaults to statistics.median() which is a good selection for
discarding outliers from jittery sensors. The function specified must
accept a sequence of numbers and return a single number.

	ignore (frozenset or None) – The set of values which the queue should ignore, if returned from
querying the device’s value.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

	
is_active

	Returns True if the value
currently exceeds threshold and
False otherwise.

	
partial

	If False (the default), attempts to read the
value or
is_active properties will block until the
queue has filled.

	
queue_len

	The length of the internal queue of values which is averaged to
determine the overall state of the device. This defaults to 5.

	
threshold

	If value exceeds this amount, then
is_active will return True.

	
value

	Returns the average of the values in the internal queue. This is
compared to threshold to determine whether
is_active is True.

13.2.3. InputDevice

	
class gpiozero.InputDevice(pin, *, pull_up=False, active_state=None, pin_factory=None)

	Represents a generic GPIO input device.

This class extends GPIODevice to add facilities common to GPIO
input devices. The constructor adds the optional pull_up parameter to
specify how the pin should be pulled by the internal resistors. The
is_active property is adjusted accordingly so that True
still means active regardless of the pull_up setting.

	Parameters

	
	pin (int or str) – The GPIO pin that the device is connected to. See Pin Numbering
for valid pin numbers. If this is None a GPIODeviceError
will be raised.

	pull_up (bool or None) – If True, the pin will be pulled high with an internal resistor.
If False (the default), the pin will be pulled low. If
None, the pin will be floating. As gpiozero cannot
automatically guess the active state when not pulling the pin, the
active_state parameter must be passed.

	active_state (bool or None) – If True, when the hardware pin state is HIGH, the software
pin is HIGH. If False, the input polarity is reversed: when
the hardware pin state is HIGH, the software pin state is LOW.
Use this parameter to set the active state of the underlying pin when
configuring it as not pulled (when pull_up is None). When
pull_up is True or False, the active state is
automatically set to the proper value.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

	
is_active

	Returns True if the device is currently active and
False otherwise. This property is usually derived from
value. Unlike value, this is always a boolean.

	
pull_up

	If True, the device uses a pull-up resistor to set the GPIO pin
“high” by default.

	
value

	Returns a value representing the device’s state. Frequently, this is a
boolean value, or a number between 0 and 1 but some devices use larger
ranges (e.g. -1 to +1) and composite devices usually use tuples to
return the states of all their subordinate components.

13.2.4. GPIODevice

	
class gpiozero.GPIODevice(pin, pin_factory=None)

	Extends Device. Represents a generic GPIO device and provides
the services common to all single-pin GPIO devices (like ensuring two
GPIO devices do no share a pin).

	Parameters

	pin (int or str) – The GPIO pin that the device is connected to. See Pin Numbering
for valid pin numbers. If this is None a GPIODeviceError
will be raised. If the pin is already in use by another device,
GPIOPinInUse will be raised.

	
close()

	Shut down the device and release all associated resources. This method
can be called on an already closed device without raising an exception.

This method is primarily intended for interactive use at the command
line. It disables the device and releases its pin(s) for use by another
device.

You can attempt to do this simply by deleting an object, but unless
you’ve cleaned up all references to the object this may not work (even
if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By
contrast, the close method provides a means of ensuring that the object
is shut down.

For example, if you have a breadboard with a buzzer connected to pin
16, but then wish to attach an LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device descendents can also be used as context managers using
the with statement. For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

	
closed

	Returns True if the device is closed (see the close()
method). Once a device is closed you can no longer use any other
methods or properties to control or query the device.

	
pin

	The Pin that the device is connected to. This will be
None if the device has been closed (see the
close() method). When dealing with GPIO pins, query
pin.number to discover the GPIO pin (in BCM numbering) that the
device is connected to.

	
value

	Returns a value representing the device’s state. Frequently, this is a
boolean value, or a number between 0 and 1 but some devices use larger
ranges (e.g. -1 to +1) and composite devices usually use tuples to
return the states of all their subordinate components.

14. API - Output Devices

These output device component interfaces have been provided for simple use of
everyday components. Components must be wired up correctly before use in code.

Note

All GPIO pin numbers use Broadcom (BCM) numbering by default. See the
Pin Numbering section for more information.

14.1. Regular Classes

The following classes are intended for general use with the devices they
represent. All classes in this section are concrete (not abstract).

14.1.1. LED

	
class gpiozero.LED(pin, *, active_high=True, initial_value=False, pin_factory=None)

	Extends DigitalOutputDevice and represents a light emitting diode
(LED).

Connect the cathode (short leg, flat side) of the LED to a ground pin;
connect the anode (longer leg) to a limiting resistor; connect the other
side of the limiting resistor to a GPIO pin (the limiting resistor can be
placed either side of the LED).

The following example will light the LED:

from gpiozero import LED

led = LED(17)
led.on()

	Parameters

	
	pin (int or str) – The GPIO pin which the LED is connected to. See Pin Numbering
for valid pin numbers. If this is None a GPIODeviceError
will be raised.

	active_high (bool) – If True (the default), the LED will operate normally with the
circuit described above. If False you should wire the cathode
to the GPIO pin, and the anode to a 3V3 pin (via a limiting resistor).

	initial_value (bool or None) – If False (the default), the LED will be off initially. If
None, the LED will be left in whatever state the pin is found
in when configured for output (warning: this can be on). If
True, the LED will be switched on initially.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

	
blink(on_time=1, off_time=1, n=None, background=True)

	Make the device turn on and off repeatedly.

	Parameters

	
	on_time (float) – Number of seconds on. Defaults to 1 second.

	off_time (float) – Number of seconds off. Defaults to 1 second.

	n (int or None) – Number of times to blink; None (the default) means forever.

	background (bool) – If True (the default), start a background thread to
continue blinking and return immediately. If False, only
return when the blink is finished (warning: the default value of
n will result in this method never returning).

	
off()

	Turns the device off.

	
on()

	Turns the device on.

	
toggle()

	Reverse the state of the device. If it’s on, turn it off; if it’s off,
turn it on.

	
is_lit

	Returns True if the device is currently active and
False otherwise. This property is usually derived from
value. Unlike value, this is always a boolean.

	
pin

	The Pin that the device is connected to. This will be
None if the device has been closed (see the
close() method). When dealing with GPIO pins, query
pin.number to discover the GPIO pin (in BCM numbering) that the
device is connected to.

	
value

	Returns 1 if the device is currently active and 0 otherwise. Setting
this property changes the state of the device.

14.1.2. PWMLED

	
class gpiozero.PWMLED(pin, *, active_high=True, initial_value=0, frequency=100, pin_factory=None)

	Extends PWMOutputDevice and represents a light emitting diode
(LED) with variable brightness.

A typical configuration of such a device is to connect a GPIO pin to the
anode (long leg) of the LED, and the cathode (short leg) to ground, with
an optional resistor to prevent the LED from burning out.

	Parameters

	
	pin (int or str) – The GPIO pin which the LED is connected to. See Pin Numbering
for valid pin numbers. If this is None a GPIODeviceError
will be raised.

	active_high (bool) – If True (the default), the on() method will set the GPIO
to HIGH. If False, the on() method will set the GPIO to
LOW (the off() method always does the opposite).

	initial_value (float) – If 0 (the default), the LED will be off initially. Other values
between 0 and 1 can be specified as an initial brightness for the LED.
Note that None cannot be specified (unlike the parent class) as
there is no way to tell PWM not to alter the state of the pin.

	frequency (int) – The frequency (in Hz) of pulses emitted to drive the LED. Defaults
to 100Hz.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

	
blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, n=None, background=True)

	Make the device turn on and off repeatedly.

	Parameters

	
	on_time (float) – Number of seconds on. Defaults to 1 second.

	off_time (float) – Number of seconds off. Defaults to 1 second.

	fade_in_time (float) – Number of seconds to spend fading in. Defaults to 0.

	fade_out_time (float) – Number of seconds to spend fading out. Defaults to 0.

	n (int or None) – Number of times to blink; None (the default) means forever.

	background (bool) – If True (the default), start a background thread to
continue blinking and return immediately. If False, only
return when the blink is finished (warning: the default value of
n will result in this method never returning).

	
off()

	Turns the device off.

	
on()

	Turns the device on.

	
pulse(fade_in_time=1, fade_out_time=1, n=None, background=True)

	Make the device fade in and out repeatedly.

	Parameters

	
	fade_in_time (float) – Number of seconds to spend fading in. Defaults to 1.

	fade_out_time (float) – Number of seconds to spend fading out. Defaults to 1.

	n (int or None) – Number of times to pulse; None (the default) means forever.

	background (bool) – If True (the default), start a background thread to
continue pulsing and return immediately. If False, only
return when the pulse is finished (warning: the default value of
n will result in this method never returning).

	
toggle()

	Toggle the state of the device. If the device is currently off
(value is 0.0), this changes it to “fully” on (value is
1.0). If the device has a duty cycle (value) of 0.1, this will
toggle it to 0.9, and so on.

	
is_lit

	Returns True if the device is currently active (value
is non-zero) and False otherwise.

	
pin

	The Pin that the device is connected to. This will be
None if the device has been closed (see the
close() method). When dealing with GPIO pins, query
pin.number to discover the GPIO pin (in BCM numbering) that the
device is connected to.

	
value

	The duty cycle of the PWM device. 0.0 is off, 1.0 is fully on. Values
in between may be specified for varying levels of power in the device.

14.1.3. RGBLED

	
class gpiozero.RGBLED(red, green, blue, *, active_high=True, initial_value=(0, 0, 0), pwm=True, pin_factory=None)

	Extends Device and represents a full color LED component (composed
of red, green, and blue LEDs).

Connect the common cathode (longest leg) to a ground pin; connect each of
the other legs (representing the red, green, and blue anodes) to any GPIO
pins. You should use three limiting resistors (one per anode).

The following code will make the LED yellow:

from gpiozero import RGBLED

led = RGBLED(2, 3, 4)
led.color = (1, 1, 0)

The colorzero library is also supported:

from gpiozero import RGBLED
from colorzero import Color

led = RGBLED(2, 3, 4)
led.color = Color('yellow')

	Parameters

	
	red (int or str) – The GPIO pin that controls the red component of the RGB LED. See
Pin Numbering for valid pin numbers. If this is None a
GPIODeviceError will be raised.

	green (int or str) – The GPIO pin that controls the green component of the RGB LED.

	blue (int or str) – The GPIO pin that controls the blue component of the RGB LED.

	active_high (bool) – Set to True (the default) for common cathode RGB LEDs. If you
are using a common anode RGB LED, set this to False.

	initial_value (Color or tuple) – The initial color for the RGB LED. Defaults to black (0, 0, 0).

	pwm (bool) – If True (the default), construct PWMLED instances for
each component of the RGBLED. If False, construct regular
LED instances, which prevents smooth color graduations.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

	
blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, on_color=(1, 1, 1), off_color=(0, 0, 0), n=None, background=True)

	Make the device turn on and off repeatedly.

	Parameters

	
	on_time (float) – Number of seconds on. Defaults to 1 second.

	off_time (float) – Number of seconds off. Defaults to 1 second.

	fade_in_time (float) – Number of seconds to spend fading in. Defaults to 0. Must be 0 if
pwm was False when the class was constructed
(ValueError will be raised if not).

	fade_out_time (float) – Number of seconds to spend fading out. Defaults to 0. Must be 0 if
pwm was False when the class was constructed
(ValueError will be raised if not).

	on_color (Color or tuple) – The color to use when the LED is “on”. Defaults to white.

	off_color (Color or tuple) – The color to use when the LED is “off”. Defaults to black.

	n (int or None) – Number of times to blink; None (the default) means forever.

	background (bool) – If True (the default), start a background thread to
continue blinking and return immediately. If False, only
return when the blink is finished (warning: the default value of
n will result in this method never returning).

	
off()

	Turn the LED off. This is equivalent to setting the LED color to black
(0, 0, 0).

	
on()

	Turn the LED on. This equivalent to setting the LED color to white
(1, 1, 1).

	
pulse(fade_in_time=1, fade_out_time=1, on_color=(1, 1, 1), off_color=(0, 0, 0), n=None, background=True)

	Make the device fade in and out repeatedly.

	Parameters

	
	fade_in_time (float) – Number of seconds to spend fading in. Defaults to 1.

	fade_out_time (float) – Number of seconds to spend fading out. Defaults to 1.

	on_color (Color or tuple) – The color to use when the LED is “on”. Defaults to white.

	off_color (Color or tuple) – The color to use when the LED is “off”. Defaults to black.

	n (int or None) – Number of times to pulse; None (the default) means forever.

	background (bool) – If True (the default), start a background thread to
continue pulsing and return immediately. If False, only
return when the pulse is finished (warning: the default value of
n will result in this method never returning).

	
toggle()

	Toggle the state of the device. If the device is currently off
(value is (0, 0, 0)), this changes it to “fully” on
(value is (1, 1, 1)). If the device has a specific color,
this method inverts the color.

	
blue

	Represents the blue element of the LED as a Blue
object.

	
color

	Represents the color of the LED as a Color object.

	
green

	Represents the green element of the LED as a Green
object.

	
is_lit

	Returns True if the LED is currently active (not black) and
False otherwise.

	
red

	Represents the red element of the LED as a Red
object.

	
value

	Represents the color of the LED as an RGB 3-tuple of (red, green,
blue) where each value is between 0 and 1 if pwm was True
when the class was constructed (and only 0 or 1 if not).

For example, red would be (1, 0, 0) and yellow would be (1, 1,
0), while orange would be (1, 0.5, 0).

14.1.4. Buzzer

	
class gpiozero.Buzzer(pin, *, active_high=True, initial_value=False, pin_factory=None)

	Extends DigitalOutputDevice and represents a digital buzzer
component.

Note

This interface is only capable of simple on/off commands, and is not
capable of playing a variety of tones (see TonalBuzzer).

Connect the cathode (negative pin) of the buzzer to a ground pin; connect
the other side to any GPIO pin.

The following example will sound the buzzer:

from gpiozero import Buzzer

bz = Buzzer(3)
bz.on()

	Parameters

	
	pin (int or str) – The GPIO pin which the buzzer is connected to. See Pin Numbering
for valid pin numbers. If this is None a GPIODeviceError
will be raised.

	active_high (bool) – If True (the default), the buzzer will operate normally with
the circuit described above. If False you should wire the
cathode to the GPIO pin, and the anode to a 3V3 pin.

	initial_value (bool or None) – If False (the default), the buzzer will be silent initially. If
None, the buzzer will be left in whatever state the pin is
found in when configured for output (warning: this can be on). If
True, the buzzer will be switched on initially.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

	
beep(on_time=1, off_time=1, n=None, background=True)

	Make the device turn on and off repeatedly.

	Parameters

	
	on_time (float) – Number of seconds on. Defaults to 1 second.

	off_time (float) – Number of seconds off. Defaults to 1 second.

	n (int or None) – Number of times to blink; None (the default) means forever.

	background (bool) – If True (the default), start a background thread to
continue blinking and return immediately. If False, only
return when the blink is finished (warning: the default value of
n will result in this method never returning).

	
off()

	Turns the device off.

	
on()

	Turns the device on.

	
toggle()

	Reverse the state of the device. If it’s on, turn it off; if it’s off,
turn it on.

	
is_active

	Returns True if the device is currently active and
False otherwise. This property is usually derived from
value. Unlike value, this is always a boolean.

	
pin

	The Pin that the device is connected to. This will be
None if the device has been closed (see the
close() method). When dealing with GPIO pins, query
pin.number to discover the GPIO pin (in BCM numbering) that the
device is connected to.

	
value

	Returns 1 if the device is currently active and 0 otherwise. Setting
this property changes the state of the device.

14.1.5. TonalBuzzer

	
class gpiozero.TonalBuzzer(pin, *, initial_value=None, mid_tone=Tone('A4'), octaves=1, pin_factory=None)

	Extends CompositeDevice and represents a tonal buzzer.

	Parameters

	
	pin (int or str) – The GPIO pin which the buzzer is connected to. See Pin Numbering
for valid pin numbers. If this is None a GPIODeviceError
will be raised.

	initial_value (float) – If None (the default), the buzzer will be off initially. Values
between -1 and 1 can be specified as an initial value for the buzzer.

	mid_tone (int or str) – The tone which is represented the device’s middle value (0). The
default is “A4” (MIDI note 69).

	octaves (int) – The number of octaves to allow away from the base note. The default is
1, meaning a value of -1 goes one octave below the base note, and one
above, i.e. from A3 to A5 with the default base note of A4.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

Note

Note that this class does not currently work with
PiGPIOFactory.

	
play(tone)

	Play the given tone. This can either be an instance of
Tone or can be anything that could be used to
construct an instance of Tone.

For example:

>>> from gpiozero import TonalBuzzer
>>> from gpiozero.tones import Tone
>>> b = TonalBuzzer(17)
>>> b.play(Tone("A4"))
>>> b.play(Tone(220.0)) # Hz
>>> b.play(Tone(60)) # middle C in MIDI notation
>>> b.play("A4")
>>> b.play(220.0)
>>> b.play(60)

	
stop()

	Turn the buzzer off. This is equivalent to setting value to
None.

	
is_active

	Returns True if the buzzer is currently playing, otherwise
False.

	
max_tone

	The highest tone that the buzzer can play, i.e. the tone played when
value is 1.

	
mid_tone

	The middle tone available, i.e. the tone played when value is
0.

	
min_tone

	The lowest tone that the buzzer can play, i.e. the tone played
when value is -1.

	
octaves

	The number of octaves available (above and below mid_tone).

	
tone

	Returns the Tone that the buzzer is currently
playing, or None if the buzzer is silent. This property can
also be set to play the specified tone.

	
value

	Represents the state of the buzzer as a value between -1 (representing
the minimum tone) and 1 (representing the maximum tone). This can also
be the special value None indicating that the buzzer is
currently silent.

14.1.6. Motor

	
class gpiozero.Motor(forward, backward, *, pwm=True, pin_factory=None)

	Extends CompositeDevice and represents a generic motor
connected to a bi-directional motor driver circuit (i.e. an H-bridge).

Attach an H-bridge motor controller to your Pi; connect a power source
(e.g. a battery pack or the 5V pin) to the controller; connect the outputs
of the controller board to the two terminals of the motor; connect the
inputs of the controller board to two GPIO pins.

The following code will make the motor turn “forwards”:

from gpiozero import Motor

motor = Motor(17, 18)
motor.forward()

	Parameters

	
	forward (int or str) – The GPIO pin that the forward input of the motor driver chip is
connected to. See Pin Numbering for valid pin numbers. If this
is None a GPIODeviceError will be raised.

	backward (int or str) – The GPIO pin that the backward input of the motor driver chip is
connected to. See Pin Numbering for valid pin numbers. If this
is None a GPIODeviceError will be raised.

	enable (int or str or None) – The GPIO pin that enables the motor. Required for some motor
controller boards. See Pin Numbering for valid pin numbers.

	pwm (bool) – If True (the default), construct PWMOutputDevice
instances for the motor controller pins, allowing both direction and
variable speed control. If False, construct
DigitalOutputDevice instances, allowing only direction
control.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

	
backward(speed=1)

	Drive the motor backwards.

	Parameters

	speed (float) – The speed at which the motor should turn. Can be any value between
0 (stopped) and the default 1 (maximum speed) if pwm was
True when the class was constructed (and only 0 or 1 if
not).

	
forward(speed=1)

	Drive the motor forwards.

	Parameters

	speed (float) – The speed at which the motor should turn. Can be any value between
0 (stopped) and the default 1 (maximum speed) if pwm was
True when the class was constructed (and only 0 or 1 if
not).

	
reverse()

	Reverse the current direction of the motor. If the motor is currently
idle this does nothing. Otherwise, the motor’s direction will be
reversed at the current speed.

	
stop()

	Stop the motor.

	
is_active

	Returns True if the motor is currently running and
False otherwise.

	
value

	Represents the speed of the motor as a floating point value between -1
(full speed backward) and 1 (full speed forward), with 0 representing
stopped.

14.1.7. PhaseEnableMotor

	
class gpiozero.PhaseEnableMotor(phase, enable, *, pwm=True, pin_factory=None)

	Extends CompositeDevice and represents a generic motor connected
to a Phase/Enable motor driver circuit; the phase of the driver controls
whether the motor turns forwards or backwards, while enable controls the
speed with PWM.

The following code will make the motor turn “forwards”:

from gpiozero import PhaseEnableMotor
motor = PhaseEnableMotor(12, 5)
motor.forward()

	Parameters

	
	phase (int or str) – The GPIO pin that the phase (direction) input of the motor driver chip
is connected to. See Pin Numbering for valid pin numbers. If
this is None a GPIODeviceError will be raised.

	enable (int or str) – The GPIO pin that the enable (speed) input of the motor driver chip
is connected to. See Pin Numbering for valid pin numbers. If
this is None a GPIODeviceError will be raised.

	pwm (bool) – If True (the default), construct PWMOutputDevice
instances for the motor controller pins, allowing both direction and
variable speed control. If False, construct
DigitalOutputDevice instances, allowing only direction
control.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

	
backward(speed=1)

	Drive the motor backwards.

	Parameters

	speed (float) – The speed at which the motor should turn. Can be any value between
0 (stopped) and the default 1 (maximum speed).

	
forward(speed=1)

	Drive the motor forwards.

	Parameters

	speed (float) – The speed at which the motor should turn. Can be any value between
0 (stopped) and the default 1 (maximum speed).

	
reverse()

	Reverse the current direction of the motor. If the motor is currently
idle this does nothing. Otherwise, the motor’s direction will be
reversed at the current speed.

	
stop()

	Stop the motor.

	
is_active

	Returns True if the motor is currently running and
False otherwise.

	
value

	Represents the speed of the motor as a floating point value between -1
(full speed backward) and 1 (full speed forward).

14.1.8. Servo

	
class gpiozero.Servo(pin, *, initial_value=0, min_pulse_width=1/1000, max_pulse_width=2/1000, frame_width=20/1000, pin_factory=None)

	Extends CompositeDevice and represents a PWM-controlled servo
motor connected to a GPIO pin.

Connect a power source (e.g. a battery pack or the 5V pin) to the power
cable of the servo (this is typically colored red); connect the ground
cable of the servo (typically colored black or brown) to the negative of
your battery pack, or a GND pin; connect the final cable (typically colored
white or orange) to the GPIO pin you wish to use for controlling the servo.

The following code will make the servo move between its minimum, maximum,
and mid-point positions with a pause between each:

from gpiozero import Servo
from time import sleep

servo = Servo(17)

while True:
 servo.min()
 sleep(1)
 servo.mid()
 sleep(1)
 servo.max()
 sleep(1)

You can also use the value property to move the servo to a
particular position, on a scale from -1 (min) to 1 (max) where 0 is the
mid-point:

from gpiozero import Servo

servo = Servo(17)

servo.value = 0.5

	Parameters

	
	pin (int or str) – The GPIO pin that the servo is connected to. See Pin Numbering
for valid pin numbers. If this is None a GPIODeviceError
will be raised.

	initial_value (float) – If 0 (the default), the device’s mid-point will be set initially.
Other values between -1 and +1 can be specified as an initial position.
None means to start the servo un-controlled (see
value).

	min_pulse_width (float) – The pulse width corresponding to the servo’s minimum position. This
defaults to 1ms.

	max_pulse_width (float) – The pulse width corresponding to the servo’s maximum position. This
defaults to 2ms.

	frame_width (float) – The length of time between servo control pulses measured in seconds.
This defaults to 20ms which is a common value for servos.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

	
detach()

	Temporarily disable control of the servo. This is equivalent to
setting value to None.

	
max()

	Set the servo to its maximum position.

	
mid()

	Set the servo to its mid-point position.

	
min()

	Set the servo to its minimum position.

	
frame_width

	The time between control pulses, measured in seconds.

	
is_active

	Composite devices are considered “active” if any of their constituent
devices have a “truthy” value.

	
max_pulse_width

	The control pulse width corresponding to the servo’s maximum position,
measured in seconds.

	
min_pulse_width

	The control pulse width corresponding to the servo’s minimum position,
measured in seconds.

	
pulse_width

	Returns the current pulse width controlling the servo.

	
value

	Represents the position of the servo as a value between -1 (the minimum
position) and +1 (the maximum position). This can also be the special
value None indicating that the servo is currently
“uncontrolled”, i.e. that no control signal is being sent. Typically
this means the servo’s position remains unchanged, but that it can be
moved by hand.

14.1.9. AngularServo

	
class gpiozero.AngularServo(pin, *, initial_angle=0, min_angle=-90, max_angle=90, min_pulse_width=1/1000, max_pulse_width=2/1000, frame_width=20/1000, pin_factory=None)

	Extends Servo and represents a rotational PWM-controlled servo
motor which can be set to particular angles (assuming valid minimum and
maximum angles are provided to the constructor).

Connect a power source (e.g. a battery pack or the 5V pin) to the power
cable of the servo (this is typically colored red); connect the ground
cable of the servo (typically colored black or brown) to the negative of
your battery pack, or a GND pin; connect the final cable (typically colored
white or orange) to the GPIO pin you wish to use for controlling the servo.

Next, calibrate the angles that the servo can rotate to. In an interactive
Python session, construct a Servo instance. The servo should move
to its mid-point by default. Set the servo to its minimum value, and
measure the angle from the mid-point. Set the servo to its maximum value,
and again measure the angle:

>>> from gpiozero import Servo
>>> s = Servo(17)
>>> s.min() # measure the angle
>>> s.max() # measure the angle

You should now be able to construct an AngularServo instance
with the correct bounds:

>>> from gpiozero import AngularServo
>>> s = AngularServo(17, min_angle=-42, max_angle=44)
>>> s.angle = 0.0
>>> s.angle
0.0
>>> s.angle = 15
>>> s.angle
15.0

Note

You can set min_angle greater than max_angle if you wish to reverse
the sense of the angles (e.g. min_angle=45, max_angle=-45). This
can be useful with servos that rotate in the opposite direction to your
expectations of minimum and maximum.

	Parameters

	
	pin (int or str) – The GPIO pin that the servo is connected to. See Pin Numbering
for valid pin numbers. If this is None a GPIODeviceError
will be raised.

	initial_angle (float) – Sets the servo’s initial angle to the specified value. The default is
0. The value specified must be between min_angle and max_angle
inclusive. None means to start the servo un-controlled (see
value).

	min_angle (float) – Sets the minimum angle that the servo can rotate to. This defaults to
-90, but should be set to whatever you measure from your servo during
calibration.

	max_angle (float) – Sets the maximum angle that the servo can rotate to. This defaults to
90, but should be set to whatever you measure from your servo during
calibration.

	min_pulse_width (float) – The pulse width corresponding to the servo’s minimum position. This
defaults to 1ms.

	max_pulse_width (float) – The pulse width corresponding to the servo’s maximum position. This
defaults to 2ms.

	frame_width (float) – The length of time between servo control pulses measured in seconds.
This defaults to 20ms which is a common value for servos.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

	
max()

	Set the servo to its maximum position.

	
mid()

	Set the servo to its mid-point position.

	
min()

	Set the servo to its minimum position.

	
angle

	The position of the servo as an angle measured in degrees. This will
only be accurate if min_angle and max_angle have been
set appropriately in the constructor.

This can also be the special value None indicating that the
servo is currently “uncontrolled”, i.e. that no control signal is being
sent. Typically this means the servo’s position remains unchanged, but
that it can be moved by hand.

	
is_active

	Composite devices are considered “active” if any of their constituent
devices have a “truthy” value.

	
max_angle

	The maximum angle that the servo will rotate to when max() is
called.

	
min_angle

	The minimum angle that the servo will rotate to when min() is
called.

	
value

	Represents the position of the servo as a value between -1 (the minimum
position) and +1 (the maximum position). This can also be the special
value None indicating that the servo is currently
“uncontrolled”, i.e. that no control signal is being sent. Typically
this means the servo’s position remains unchanged, but that it can be
moved by hand.

14.2. Base Classes

The classes in the sections above are derived from a series of base classes,
some of which are effectively abstract. The classes form the (partial)
hierarchy displayed in the graph below (abstract classes are shaded lighter
than concrete classes):

[image: _images/output_device_hierarchy.svg]The following sections document these base classes for advanced users that wish
to construct classes for their own devices.

14.2.1. DigitalOutputDevice

	
class gpiozero.DigitalOutputDevice(pin, *, active_high=True, initial_value=False, pin_factory=None)

	Represents a generic output device with typical on/off behaviour.

This class extends OutputDevice with a blink() method which
uses an optional background thread to handle toggling the device state
without further interaction.

	Parameters

	
	pin (int or str) – The GPIO pin that the device is connected to. See Pin Numbering
for valid pin numbers. If this is None a GPIODeviceError
will be raised.

	active_high (bool) – If True (the default), the on() method will set the GPIO
to HIGH. If False, the on() method will set the GPIO to
LOW (the off() method always does the opposite).

	initial_value (bool or None) – If False (the default), the device will be off initially. If
None, the device will be left in whatever state the pin is
found in when configured for output (warning: this can be on). If
True, the device will be switched on initially.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

	
blink(on_time=1, off_time=1, n=None, background=True)

	Make the device turn on and off repeatedly.

	Parameters

	
	on_time (float) – Number of seconds on. Defaults to 1 second.

	off_time (float) – Number of seconds off. Defaults to 1 second.

	n (int or None) – Number of times to blink; None (the default) means forever.

	background (bool) – If True (the default), start a background thread to
continue blinking and return immediately. If False, only
return when the blink is finished (warning: the default value of
n will result in this method never returning).

	
off()

	Turns the device off.

	
on()

	Turns the device on.

	
value

	Returns 1 if the device is currently active and 0 otherwise. Setting
this property changes the state of the device.

14.2.2. PWMOutputDevice

	
class gpiozero.PWMOutputDevice(pin, *, active_high=True, initial_value=0, frequency=100, pin_factory=None)

	Generic output device configured for pulse-width modulation (PWM).

	Parameters

	
	pin (int or str) – The GPIO pin that the device is connected to. See Pin Numbering
for valid pin numbers. If this is None a GPIODeviceError
will be raised.

	active_high (bool) – If True (the default), the on() method will set the GPIO
to HIGH. If False, the on() method will set the GPIO to
LOW (the off() method always does the opposite).

	initial_value (float) – If 0 (the default), the device’s duty cycle will be 0 initially.
Other values between 0 and 1 can be specified as an initial duty cycle.
Note that None cannot be specified (unlike the parent class) as
there is no way to tell PWM not to alter the state of the pin.

	frequency (int) – The frequency (in Hz) of pulses emitted to drive the device. Defaults
to 100Hz.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

	
blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, n=None, background=True)

	Make the device turn on and off repeatedly.

	Parameters

	
	on_time (float) – Number of seconds on. Defaults to 1 second.

	off_time (float) – Number of seconds off. Defaults to 1 second.

	fade_in_time (float) – Number of seconds to spend fading in. Defaults to 0.

	fade_out_time (float) – Number of seconds to spend fading out. Defaults to 0.

	n (int or None) – Number of times to blink; None (the default) means forever.

	background (bool) – If True (the default), start a background thread to
continue blinking and return immediately. If False, only
return when the blink is finished (warning: the default value of
n will result in this method never returning).

	
off()

	Turns the device off.

	
on()

	Turns the device on.

	
pulse(fade_in_time=1, fade_out_time=1, n=None, background=True)

	Make the device fade in and out repeatedly.

	Parameters

	
	fade_in_time (float) – Number of seconds to spend fading in. Defaults to 1.

	fade_out_time (float) – Number of seconds to spend fading out. Defaults to 1.

	n (int or None) – Number of times to pulse; None (the default) means forever.

	background (bool) – If True (the default), start a background thread to
continue pulsing and return immediately. If False, only
return when the pulse is finished (warning: the default value of
n will result in this method never returning).

	
toggle()

	Toggle the state of the device. If the device is currently off
(value is 0.0), this changes it to “fully” on (value is
1.0). If the device has a duty cycle (value) of 0.1, this will
toggle it to 0.9, and so on.

	
frequency

	The frequency of the pulses used with the PWM device, in Hz. The
default is 100Hz.

	
is_active

	Returns True if the device is currently active (value
is non-zero) and False otherwise.

	
value

	The duty cycle of the PWM device. 0.0 is off, 1.0 is fully on. Values
in between may be specified for varying levels of power in the device.

14.2.3. OutputDevice

	
class gpiozero.OutputDevice(pin, *, active_high=True, initial_value=False, pin_factory=None)

	Represents a generic GPIO output device.

This class extends GPIODevice to add facilities common to GPIO
output devices: an on() method to switch the device on, a
corresponding off() method, and a toggle() method.

	Parameters

	
	pin (int or str) – The GPIO pin that the device is connected to. See Pin Numbering
for valid pin numbers. If this is None a GPIODeviceError
will be raised.

	active_high (bool) – If True (the default), the on() method will set the GPIO
to HIGH. If False, the on() method will set the GPIO to
LOW (the off() method always does the opposite).

	initial_value (bool or None) – If False (the default), the device will be off initially. If
None, the device will be left in whatever state the pin is
found in when configured for output (warning: this can be on). If
True, the device will be switched on initially.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

	
off()

	Turns the device off.

	
on()

	Turns the device on.

	
toggle()

	Reverse the state of the device. If it’s on, turn it off; if it’s off,
turn it on.

	
active_high

	When True, the value property is True when the
device’s pin is high. When False the
value property is True when the device’s pin is low
(i.e. the value is inverted).

This property can be set after construction; be warned that changing it
will invert value (i.e. changing this property doesn’t change
the device’s pin state - it just changes how that state is
interpreted).

	
value

	Returns 1 if the device is currently active and 0 otherwise. Setting
this property changes the state of the device.

14.2.4. GPIODevice

	
class gpiozero.GPIODevice(pin, *, pin_factory=None)

	Extends Device. Represents a generic GPIO device and provides
the services common to all single-pin GPIO devices (like ensuring two
GPIO devices do no share a pin).

	Parameters

	pin (int or str) – The GPIO pin that the device is connected to. See Pin Numbering
for valid pin numbers. If this is None a GPIODeviceError
will be raised. If the pin is already in use by another device,
GPIOPinInUse will be raised.

	
close()

	Shut down the device and release all associated resources. This method
can be called on an already closed device without raising an exception.

This method is primarily intended for interactive use at the command
line. It disables the device and releases its pin(s) for use by another
device.

You can attempt to do this simply by deleting an object, but unless
you’ve cleaned up all references to the object this may not work (even
if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By
contrast, the close method provides a means of ensuring that the object
is shut down.

For example, if you have a breadboard with a buzzer connected to pin
16, but then wish to attach an LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device descendents can also be used as context managers using
the with statement. For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

	
closed

	Returns True if the device is closed (see the close()
method). Once a device is closed you can no longer use any other
methods or properties to control or query the device.

	
pin

	The Pin that the device is connected to. This will be
None if the device has been closed (see the
close() method). When dealing with GPIO pins, query
pin.number to discover the GPIO pin (in BCM numbering) that the
device is connected to.

	
value

	Returns a value representing the device’s state. Frequently, this is a
boolean value, or a number between 0 and 1 but some devices use larger
ranges (e.g. -1 to +1) and composite devices usually use tuples to
return the states of all their subordinate components.

15. API - SPI Devices

SPI stands for Serial Peripheral Interface and is a mechanism allowing
compatible devices to communicate with the Pi. SPI is a four-wire protocol
meaning it usually requires four pins to operate:

	A “clock” pin which provides timing information.

	A “MOSI” pin (Master Out, Slave In) which the Pi uses to send information
to the device.

	A “MISO” pin (Master In, Slave Out) which the Pi uses to receive information
from the device.

	A “select” pin which the Pi uses to indicate which device it’s talking to.
This last pin is necessary because multiple devices can share the clock,
MOSI, and MISO pins, but only one device can be connected to each select
pin.

The gpiozero library provides two SPI implementations:

	A software based implementation. This is always available, can use any four
GPIO pins for SPI communication, but is rather slow and won’t work with all
devices.

	A hardware based implementation. This is only available when the SPI kernel
module is loaded, and the Python spidev library is available. It can only use
specific pins for SPI communication (GPIO11=clock, GPIO10=MOSI, GPIO9=MISO,
while GPIO8 is select for device 0 and GPIO7 is select for device 1).
However, it is extremely fast and works with all devices.

15.1. SPI keyword args

When constructing an SPI device there are two schemes for specifying which pins
it is connected to:

	You can specify port and device keyword arguments. The port parameter
must be 0 (there is only one user-accessible hardware SPI interface on the Pi
using GPIO11 as the clock pin, GPIO10 as the MOSI pin, and GPIO9 as the MISO
pin), while the device parameter must be 0 or 1. If device is 0, the
select pin will be GPIO8. If device is 1, the select pin will be GPIO7.

	Alternatively you can specify clock_pin, mosi_pin, miso_pin, and
select_pin keyword arguments. In this case the pins can be any 4 GPIO pins
(remember that SPI devices can share clock, MOSI, and MISO pins, but not
select pins - the gpiozero library will enforce this restriction).

You cannot mix these two schemes, i.e. attempting to specify port and
clock_pin will result in SPIBadArgs being raised. However, you can
omit any arguments from either scheme. The defaults are:

	port and device both default to 0.

	clock_pin defaults to 11, mosi_pin defaults to 10, miso_pin defaults
to 9, and select_pin defaults to 8.

	As with other GPIO based devices you can optionally specify a pin_factory
argument overriding the default pin factory (see API - Pins for more
information).

Hence the following constructors are all equivalent:

from gpiozero import MCP3008

MCP3008(channel=0)
MCP3008(channel=0, device=0)
MCP3008(channel=0, port=0, device=0)
MCP3008(channel=0, select_pin=8)
MCP3008(channel=0, clock_pin=11, mosi_pin=10, miso_pin=9, select_pin=8)

Note that the defaults describe equivalent sets of pins and that these pins are
compatible with the hardware implementation. Regardless of which scheme you
use, gpiozero will attempt to use the hardware implementation if it is
available and if the selected pins are compatible, falling back to the software
implementation if not.

15.2. Analog to Digital Converters (ADC)

The following classes are intended for general use with the integrated circuits
they are named after. All classes in this section are concrete (not abstract).

15.2.1. MCP3001

	
class gpiozero.MCP3001(max_voltage=3.3, **spi_args)

	The MCP3001 is a 10-bit analog to digital converter with 1 channel.
Please note that the MCP3001 always operates in differential mode,
measuring the value of IN+ relative to IN-.

	
value

	The current value read from the device, scaled to a value between 0 and
1 (or -1 to +1 for certain devices operating in differential mode).

15.2.2. MCP3002

	
class gpiozero.MCP3002(channel=0, differential=False, max_voltage=3.3, **spi_args)

	The MCP3002 is a 10-bit analog to digital converter with 2 channels
(0-1).

	
channel

	The channel to read data from. The MCP3008/3208/3304 have 8 channels
(0-7), while the MCP3004/3204/3302 have 4 channels (0-3), the
MCP3002/3202 have 2 channels (0-1), and the MCP3001/3201/3301 only
have 1 channel.

	
differential

	If True, the device is operated in differential mode. In this mode
one channel (specified by the channel attribute) is read relative to
the value of a second channel (implied by the chip’s design).

Please refer to the device data-sheet to determine which channel is
used as the relative base value (for example, when using an
MCP3008 in differential mode, channel 0 is read relative to
channel 1).

	
value

	The current value read from the device, scaled to a value between 0 and
1 (or -1 to +1 for certain devices operating in differential mode).

15.2.3. MCP3004

	
class gpiozero.MCP3004(channel=0, differential=False, max_voltage=3.3, **spi_args)

	The MCP3004 is a 10-bit analog to digital converter with 4 channels
(0-3).

	
channel

	The channel to read data from. The MCP3008/3208/3304 have 8 channels
(0-7), while the MCP3004/3204/3302 have 4 channels (0-3), the
MCP3002/3202 have 2 channels (0-1), and the MCP3001/3201/3301 only
have 1 channel.

	
differential

	If True, the device is operated in differential mode. In this mode
one channel (specified by the channel attribute) is read relative to
the value of a second channel (implied by the chip’s design).

Please refer to the device data-sheet to determine which channel is
used as the relative base value (for example, when using an
MCP3008 in differential mode, channel 0 is read relative to
channel 1).

	
value

	The current value read from the device, scaled to a value between 0 and
1 (or -1 to +1 for certain devices operating in differential mode).

15.2.4. MCP3008

	
class gpiozero.MCP3008(channel=0, differential=False, max_voltage=3.3, **spi_args)

	The MCP3008 is a 10-bit analog to digital converter with 8 channels
(0-7).

	
channel

	The channel to read data from. The MCP3008/3208/3304 have 8 channels
(0-7), while the MCP3004/3204/3302 have 4 channels (0-3), the
MCP3002/3202 have 2 channels (0-1), and the MCP3001/3201/3301 only
have 1 channel.

	
differential

	If True, the device is operated in differential mode. In this mode
one channel (specified by the channel attribute) is read relative to
the value of a second channel (implied by the chip’s design).

Please refer to the device data-sheet to determine which channel is
used as the relative base value (for example, when using an
MCP3008 in differential mode, channel 0 is read relative to
channel 1).

	
value

	The current value read from the device, scaled to a value between 0 and
1 (or -1 to +1 for certain devices operating in differential mode).

15.2.5. MCP3201

	
class gpiozero.MCP3201(max_voltage=3.3, **spi_args)

	The MCP3201 is a 12-bit analog to digital converter with 1 channel.
Please note that the MCP3201 always operates in differential mode,
measuring the value of IN+ relative to IN-.

	
value

	The current value read from the device, scaled to a value between 0 and
1 (or -1 to +1 for certain devices operating in differential mode).

15.2.6. MCP3202

	
class gpiozero.MCP3202(channel=0, differential=False, max_voltage=3.3, **spi_args)

	The MCP3202 is a 12-bit analog to digital converter with 2 channels
(0-1).

	
channel

	The channel to read data from. The MCP3008/3208/3304 have 8 channels
(0-7), while the MCP3004/3204/3302 have 4 channels (0-3), the
MCP3002/3202 have 2 channels (0-1), and the MCP3001/3201/3301 only
have 1 channel.

	
differential

	If True, the device is operated in differential mode. In this mode
one channel (specified by the channel attribute) is read relative to
the value of a second channel (implied by the chip’s design).

Please refer to the device data-sheet to determine which channel is
used as the relative base value (for example, when using an
MCP3008 in differential mode, channel 0 is read relative to
channel 1).

	
value

	The current value read from the device, scaled to a value between 0 and
1 (or -1 to +1 for certain devices operating in differential mode).

15.2.7. MCP3204

	
class gpiozero.MCP3204(channel=0, differential=False, max_voltage=3.3, **spi_args)

	The MCP3204 is a 12-bit analog to digital converter with 4 channels
(0-3).

	
channel

	The channel to read data from. The MCP3008/3208/3304 have 8 channels
(0-7), while the MCP3004/3204/3302 have 4 channels (0-3), the
MCP3002/3202 have 2 channels (0-1), and the MCP3001/3201/3301 only
have 1 channel.

	
differential

	If True, the device is operated in differential mode. In this mode
one channel (specified by the channel attribute) is read relative to
the value of a second channel (implied by the chip’s design).

Please refer to the device data-sheet to determine which channel is
used as the relative base value (for example, when using an
MCP3008 in differential mode, channel 0 is read relative to
channel 1).

	
value

	The current value read from the device, scaled to a value between 0 and
1 (or -1 to +1 for certain devices operating in differential mode).

15.2.8. MCP3208

	
class gpiozero.MCP3208(channel=0, differential=False, max_voltage=3.3, **spi_args)

	The MCP3208 is a 12-bit analog to digital converter with 8 channels
(0-7).

	
channel

	The channel to read data from. The MCP3008/3208/3304 have 8 channels
(0-7), while the MCP3004/3204/3302 have 4 channels (0-3), the
MCP3002/3202 have 2 channels (0-1), and the MCP3001/3201/3301 only
have 1 channel.

	
differential

	If True, the device is operated in differential mode. In this mode
one channel (specified by the channel attribute) is read relative to
the value of a second channel (implied by the chip’s design).

Please refer to the device data-sheet to determine which channel is
used as the relative base value (for example, when using an
MCP3008 in differential mode, channel 0 is read relative to
channel 1).

	
value

	The current value read from the device, scaled to a value between 0 and
1 (or -1 to +1 for certain devices operating in differential mode).

15.2.9. MCP3301

	
class gpiozero.MCP3301(max_voltage=3.3, **spi_args)

	The MCP3301 is a signed 13-bit analog to digital converter. Please note
that the MCP3301 always operates in differential mode measuring the
difference between IN+ and IN-. Its output value is scaled from -1 to +1.

	
value

	The current value read from the device, scaled to a value between 0 and
1 (or -1 to +1 for devices operating in differential mode).

15.2.10. MCP3302

	
class gpiozero.MCP3302(channel=0, differential=False, max_voltage=3.3, **spi_args)

	The MCP3302 is a 12/13-bit analog to digital converter with 4 channels
(0-3). When operated in differential mode, the device outputs a signed
13-bit value which is scaled from -1 to +1. When operated in single-ended
mode (the default), the device outputs an unsigned 12-bit value scaled from
0 to 1.

	
channel

	The channel to read data from. The MCP3008/3208/3304 have 8 channels
(0-7), while the MCP3004/3204/3302 have 4 channels (0-3), the
MCP3002/3202 have 2 channels (0-1), and the MCP3001/3201/3301 only
have 1 channel.

	
differential

	If True, the device is operated in differential mode. In this mode
one channel (specified by the channel attribute) is read relative to
the value of a second channel (implied by the chip’s design).

Please refer to the device data-sheet to determine which channel is
used as the relative base value (for example, when using an
MCP3304 in differential mode, channel 0 is read relative to
channel 1).

	
value

	The current value read from the device, scaled to a value between 0 and
1 (or -1 to +1 for devices operating in differential mode).

15.2.11. MCP3304

	
class gpiozero.MCP3304(channel=0, differential=False, max_voltage=3.3, **spi_args)

	The MCP3304 is a 12/13-bit analog to digital converter with 8 channels
(0-7). When operated in differential mode, the device outputs a signed
13-bit value which is scaled from -1 to +1. When operated in single-ended
mode (the default), the device outputs an unsigned 12-bit value scaled from
0 to 1.

	
channel

	The channel to read data from. The MCP3008/3208/3304 have 8 channels
(0-7), while the MCP3004/3204/3302 have 4 channels (0-3), the
MCP3002/3202 have 2 channels (0-1), and the MCP3001/3201/3301 only
have 1 channel.

	
differential

	If True, the device is operated in differential mode. In this mode
one channel (specified by the channel attribute) is read relative to
the value of a second channel (implied by the chip’s design).

Please refer to the device data-sheet to determine which channel is
used as the relative base value (for example, when using an
MCP3304 in differential mode, channel 0 is read relative to
channel 1).

	
value

	The current value read from the device, scaled to a value between 0 and
1 (or -1 to +1 for devices operating in differential mode).

15.3. Base Classes

The classes in the sections above are derived from a series of base classes,
some of which are effectively abstract. The classes form the (partial)
hierarchy displayed in the graph below (abstract classes are shaded lighter
than concrete classes):

[image: _images/spi_device_hierarchy.svg]The following sections document these base classes for advanced users that wish
to construct classes for their own devices.

15.3.1. AnalogInputDevice

	
class gpiozero.AnalogInputDevice(bits, max_voltage=3.3, **spi_args)

	Represents an analog input device connected to SPI (serial interface).

Typical analog input devices are analog to digital converters (ADCs).
Several classes are provided for specific ADC chips, including
MCP3004, MCP3008, MCP3204, and MCP3208.

The following code demonstrates reading the first channel of an MCP3008
chip attached to the Pi’s SPI pins:

from gpiozero import MCP3008

pot = MCP3008(0)
print(pot.value)

The value attribute is normalized such that its value is always
between 0.0 and 1.0 (or in special cases, such as differential sampling,
-1 to +1). Hence, you can use an analog input to control the brightness of
a PWMLED like so:

from gpiozero import MCP3008, PWMLED

pot = MCP3008(0)
led = PWMLED(17)
led.source = pot

The voltage attribute reports values between 0.0 and max_voltage
(which defaults to 3.3, the logic level of the GPIO pins).

	
bits

	The bit-resolution of the device/channel.

	
max_voltage

	The voltage required to set the device’s value to 1.

	
raw_value

	The raw value as read from the device.

	
value

	The current value read from the device, scaled to a value between 0 and
1 (or -1 to +1 for certain devices operating in differential mode).

	
voltage

	The current voltage read from the device. This will be a value between
0 and the max_voltage parameter specified in the constructor.

15.3.2. SPIDevice

	
class gpiozero.SPIDevice(**spi_args)

	Extends Device. Represents a device that communicates via the SPI
protocol.

See SPI keyword args for information on the keyword arguments that can be
specified with the constructor.

	
close()

	Shut down the device and release all associated resources. This method
can be called on an already closed device without raising an exception.

This method is primarily intended for interactive use at the command
line. It disables the device and releases its pin(s) for use by another
device.

You can attempt to do this simply by deleting an object, but unless
you’ve cleaned up all references to the object this may not work (even
if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By
contrast, the close method provides a means of ensuring that the object
is shut down.

For example, if you have a breadboard with a buzzer connected to pin
16, but then wish to attach an LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device descendents can also be used as context managers using
the with statement. For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

	
closed

	Returns True if the device is closed (see the close()
method). Once a device is closed you can no longer use any other
methods or properties to control or query the device.

16. API - Boards and Accessories

These additional interfaces are provided to group collections of components
together for ease of use, and as examples. They are composites made up of
components from the various API - Input Devices and API - Output Devices provided by
GPIO Zero. See those pages for more information on using components
individually.

Note

All GPIO pin numbers use Broadcom (BCM) numbering by default. See the
Pin Numbering section for more information.

16.1. Regular Classes

The following classes are intended for general use with the devices they are
named after. All classes in this section are concrete (not abstract).

16.1.1. LEDBoard

	
class gpiozero.LEDBoard(*pins, pwm=False, active_high=True, initial_value=False, pin_factory=None, **named_pins)

	Extends LEDCollection and represents a generic LED board or
collection of LEDs.

The following example turns on all the LEDs on a board containing 5 LEDs
attached to GPIO pins 2 through 6:

from gpiozero import LEDBoard

leds = LEDBoard(2, 3, 4, 5, 6)
leds.on()

	Parameters

	
	*pins – Specify the GPIO pins that the LEDs of the board are attached to. See
Pin Numbering for valid pin numbers. You can designate as many
pins as necessary. You can also specify LEDBoard instances to
create trees of LEDs.

	pwm (bool) – If True, construct PWMLED instances for each pin. If
False (the default), construct regular LED instances.

	active_high (bool) – If True (the default), the on() method will set all the
associated pins to HIGH. If False, the on() method will
set all pins to LOW (the off() method always does the opposite).

	initial_value (bool or None) – If False (the default), all LEDs will be off initially. If
None, each device will be left in whatever state the pin is
found in when configured for output (warning: this can be on). If
True, the device will be switched on initially.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

	**named_pins – Specify GPIO pins that LEDs of the board are attached to, associating
each LED with a property name. You can designate as many pins as
necessary and use any names, provided they’re not already in use by
something else. You can also specify LEDBoard instances to
create trees of LEDs.

	
blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, n=None, background=True)

	Make all the LEDs turn on and off repeatedly.

	Parameters

	
	on_time (float) – Number of seconds on. Defaults to 1 second.

	off_time (float) – Number of seconds off. Defaults to 1 second.

	fade_in_time (float) – Number of seconds to spend fading in. Defaults to 0. Must be 0 if
pwm was False when the class was constructed
(ValueError will be raised if not).

	fade_out_time (float) – Number of seconds to spend fading out. Defaults to 0. Must be 0 if
pwm was False when the class was constructed
(ValueError will be raised if not).

	n (int or None) – Number of times to blink; None (the default) means forever.

	background (bool) – If True, start a background thread to continue blinking and
return immediately. If False, only return when the blink is
finished (warning: the default value of n will result in this
method never returning).

	
off(*args)

	If no arguments are specified, turn all the LEDs off. If arguments are
specified, they must be the indexes of the LEDs you wish to turn off.
For example:

from gpiozero import LEDBoard

leds = LEDBoard(2, 3, 4, 5)
leds.on() # turn on all LEDs
leds.off(0) # turn off the first LED (pin 2)
leds.off(-1) # turn off the last LED (pin 5)
leds.off(1, 2) # turn off the middle LEDs (pins 3 and 4)
leds.on() # turn on all LEDs

If blink() is currently active, it will be stopped first.

	Parameters

	args (int) – The index(es) of the LED(s) to turn off. If no indexes are
specified turn off all LEDs.

	
on(*args)

	If no arguments are specified, turn all the LEDs on. If arguments are
specified, they must be the indexes of the LEDs you wish to turn on.
For example:

from gpiozero import LEDBoard

leds = LEDBoard(2, 3, 4, 5)
leds.on(0) # turn on the first LED (pin 2)
leds.on(-1) # turn on the last LED (pin 5)
leds.on(1, 2) # turn on the middle LEDs (pins 3 and 4)
leds.off() # turn off all LEDs
leds.on() # turn on all LEDs

If blink() is currently active, it will be stopped first.

	Parameters

	args (int) – The index(es) of the LED(s) to turn on. If no indexes are specified
turn on all LEDs.

	
pulse(fade_in_time=1, fade_out_time=1, n=None, background=True)

	Make all LEDs fade in and out repeatedly. Note that this method will
only work if the pwm parameter was True at construction time.

	Parameters

	
	fade_in_time (float) – Number of seconds to spend fading in. Defaults to 1.

	fade_out_time (float) – Number of seconds to spend fading out. Defaults to 1.

	n (int or None) – Number of times to blink; None (the default) means forever.

	background (bool) – If True (the default), start a background thread to
continue blinking and return immediately. If False, only
return when the blink is finished (warning: the default value of
n will result in this method never returning).

	
toggle(*args)

	If no arguments are specified, toggle the state of all LEDs. If
arguments are specified, they must be the indexes of the LEDs you wish
to toggle. For example:

from gpiozero import LEDBoard

leds = LEDBoard(2, 3, 4, 5)
leds.toggle(0) # turn on the first LED (pin 2)
leds.toggle(-1) # turn on the last LED (pin 5)
leds.toggle() # turn the first and last LED off, and the
 # middle pair on

If blink() is currently active, it will be stopped first.

	Parameters

	args (int) – The index(es) of the LED(s) to toggle. If no indexes are specified
toggle the state of all LEDs.

16.1.2. LEDBarGraph

	
class gpiozero.LEDBarGraph(*pins, pwm=False, active_high=True, initial_value=0, pin_factory=None)

	Extends LEDCollection to control a line of LEDs representing a
bar graph. Positive values (0 to 1) light the LEDs from first to last.
Negative values (-1 to 0) light the LEDs from last to first.

The following example demonstrates turning on the first two and last two
LEDs in a board containing five LEDs attached to GPIOs 2 through 6:

from gpiozero import LEDBarGraph
from time import sleep

graph = LEDBarGraph(2, 3, 4, 5, 6)
graph.value = 2/5 # Light the first two LEDs only
sleep(1)
graph.value = -2/5 # Light the last two LEDs only
sleep(1)
graph.off()

As with all other output devices, source and values are
supported:

from gpiozero import LEDBarGraph, MCP3008
from signal import pause

graph = LEDBarGraph(2, 3, 4, 5, 6, pwm=True)
pot = MCP3008(channel=0)

graph.source = pot

pause()

	Parameters

	
	*pins – Specify the GPIO pins that the LEDs of the bar graph are attached to.
See Pin Numbering for valid pin numbers. You can designate as
many pins as necessary.

	pwm (bool) – If True, construct PWMLED instances for each pin. If
False (the default), construct regular LED instances.
This parameter can only be specified as a keyword parameter.

	active_high (bool) – If True (the default), the on() method will set all the
associated pins to HIGH. If False, the on() method will
set all pins to LOW (the off() method always does the opposite).
This parameter can only be specified as a keyword parameter.

	initial_value (float) – The initial value of the graph given as a float between -1 and
+1. Defaults to 0.0. This parameter can only be specified as a
keyword parameter.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

	
lit_count

	The number of LEDs on the bar graph actually lit up. Note that just
like value, this can be negative if the LEDs are lit from last
to first.

	
source

	The iterable to use as a source of values for value.

	
value

	The value of the LED bar graph. When no LEDs are lit, the value is 0.
When all LEDs are lit, the value is 1. Values between 0 and 1
light LEDs linearly from first to last. Values between 0 and -1
light LEDs linearly from last to first.

To light a particular number of LEDs, simply divide that number by
the number of LEDs. For example, if your graph contains 3 LEDs, the
following will light the first:

from gpiozero import LEDBarGraph

graph = LEDBarGraph(12, 16, 19)
graph.value = 1/3

Note

Setting value to -1 will light all LEDs. However, querying it
subsequently will return 1 as both representations are the same in
hardware. The readable range of value is effectively
-1 < value <= 1.

	
values

	An infinite iterator of values read from value.

16.1.3. ButtonBoard

	
class gpiozero.ButtonBoard(*pins, pull_up=True, active_state=None, bounce_time=None, hold_time=1, hold_repeat=False, pin_factory=None, **named_pins)

	Extends CompositeDevice and represents a generic button board or
collection of buttons. The value of the button board is a tuple
of all the buttons states. This can be used to control all the LEDs in a
LEDBoard with a ButtonBoard:

from gpiozero import LEDBoard, ButtonBoard
from signal import pause

leds = LEDBoard(2, 3, 4, 5)
btns = ButtonBoard(6, 7, 8, 9)
leds.source = btns.values
pause()

Alternatively you could represent the number of pressed buttons with an
LEDBarGraph:

from gpiozero import LEDBarGraph, ButtonBoard
from signal import pause

graph = LEDBarGraph(2, 3, 4, 5)
btns = ButtonBoard(6, 7, 8, 9)
graph.source = (sum(value) for value in btn.values)
pause()

	Parameters

	
	*pins – Specify the GPIO pins that the buttons of the board are attached to.
See Pin Numbering for valid pin numbers. You can designate as
many pins as necessary.

	pull_up (bool or None) – If True (the default), the GPIO pins will be pulled high by
default. In this case, connect the other side of the buttons to
ground. If False, the GPIO pins will be pulled low by default.
In this case, connect the other side of the buttons to 3V3. If
None, the pin will be floating, so it must be externally pulled
up or down and the active_state parameter must be set accordingly.

	active_state (bool or None) – See description under InputDevice for more information.

	bounce_time (float) – If None (the default), no software bounce compensation will be
performed. Otherwise, this is the length of time (in seconds) that the
buttons will ignore changes in state after an initial change.

	hold_time (float) – The length of time (in seconds) to wait after any button is pushed,
until executing the when_held handler. Defaults to 1.

	hold_repeat (bool) – If True, the when_held handler will be repeatedly
executed as long as any buttons remain held, every hold_time seconds.
If False (the default) the when_held handler will be
only be executed once per hold.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

	**named_pins – Specify GPIO pins that buttons of the board are attached to,
associating each button with a property name. You can designate as
many pins as necessary and use any names, provided they’re not already
in use by something else.

	
wait_for_press(timeout=None)

	Pause the script until the device is activated, or the timeout is
reached.

	Parameters

	timeout (float or None) – Number of seconds to wait before proceeding. If this is
None (the default), then wait indefinitely until the device
is active.

	
wait_for_release(timeout=None)

	Pause the script until the device is deactivated, or the timeout is
reached.

	Parameters

	timeout (float or None) – Number of seconds to wait before proceeding. If this is
None (the default), then wait indefinitely until the device
is inactive.

	
is_pressed

	Composite devices are considered “active” if any of their constituent
devices have a “truthy” value.

	
pressed_time

	The length of time (in seconds) that the device has been active for.
When the device is inactive, this is None.

	
value

	A namedtuple() containing a value for each
subordinate device. Devices with names will be represented as named
elements. Unnamed devices will have a unique name generated for them,
and they will appear in the position they appeared in the constructor.

	
when_pressed

	The function to run when the device changes state from inactive to
active.

This can be set to a function which accepts no (mandatory) parameters,
or a Python function which accepts a single mandatory parameter (with
as many optional parameters as you like). If the function accepts a
single mandatory parameter, the device that activated will be passed
as that parameter.

Set this property to None (the default) to disable the event.

	
when_released

	The function to run when the device changes state from active to
inactive.

This can be set to a function which accepts no (mandatory) parameters,
or a Python function which accepts a single mandatory parameter (with
as many optional parameters as you like). If the function accepts a
single mandatory parameter, the device that deactivated will be
passed as that parameter.

Set this property to None (the default) to disable the event.

16.1.4. TrafficLights

	
class gpiozero.TrafficLights(red, amber, green, *, yellow=None, pwm=False, initial_value=False, pin_factory=None)

	Extends LEDBoard for devices containing red, yellow, and green
LEDs.

The following example initializes a device connected to GPIO pins 2, 3,
and 4, then lights the amber (yellow) LED attached to GPIO 3:

from gpiozero import TrafficLights

traffic = TrafficLights(2, 3, 4)
traffic.amber.on()

	Parameters

	
	red (int or str) – The GPIO pin that the red LED is attached to. See Pin Numbering
for valid pin numbers.

	amber (int or str or None) – The GPIO pin that the amber LED is attached to. See
Pin Numbering for valid pin numbers.

	yellow (int or str or None) – The GPIO pin that the yellow LED is attached to. This is merely an
alias for the amber parameter; you can’t specify both amber and
yellow. See Pin Numbering for valid pin numbers.

	green (int or str) – The GPIO pin that the green LED is attached to. See
Pin Numbering for valid pin numbers.

	pwm (bool) – If True, construct PWMLED instances to represent each
LED. If False (the default), construct regular LED
instances.

	initial_value (bool or None) – If False (the default), all LEDs will be off initially. If
None, each device will be left in whatever state the pin is
found in when configured for output (warning: this can be on). If
True, the device will be switched on initially.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

	
red

	The red LED or PWMLED.

	
amber

	The amber LED or PWMLED. Note that this attribute
will not be present when the instance is constructed with the
yellow keyword parameter.

	
yellow

	The yellow LED or PWMLED. Note that this attribute
will only be present when the instance is constructed with the
yellow keyword parameter.

	
green

	The green LED or PWMLED.

16.1.5. TrafficLightsBuzzer

	
class gpiozero.TrafficLightsBuzzer(lights, buzzer, button, *, pin_factory=None)

	Extends CompositeOutputDevice and is a generic class for HATs with
traffic lights, a button and a buzzer.

	Parameters

	
	lights (TrafficLights) – An instance of TrafficLights representing the traffic lights
of the HAT.

	buzzer (Buzzer) – An instance of Buzzer representing the buzzer on the HAT.

	button (Button) – An instance of Button representing the button on the HAT.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

	
lights

	The TrafficLights instance passed as the lights parameter.

	
buzzer

	The Buzzer instance passed as the buzzer parameter.

	
button

	The Button instance passed as the button parameter.

16.1.6. PiHutXmasTree

	
class gpiozero.PiHutXmasTree(*, pwm=False, initial_value=False, pin_factory=None)

	Extends LEDBoard for The Pi Hut’s Xmas board: a 3D Christmas
tree board with 24 red LEDs and a white LED as a star on top.

The 24 red LEDs can be accessed through the attributes led0, led1, led2,
and so on. The white star LED is accessed through the star
attribute. Alternatively, as with all descendents of LEDBoard,
you can treat the instance as a sequence of LEDs (the first element is the
star).

The Xmas Tree board pins are fixed and therefore there’s no need to specify
them when constructing this class. The following example turns all the LEDs
on one at a time:

from gpiozero import PiHutXmasTree
from time import sleep

tree = PiHutXmasTree()

for light in tree:
 light.on()
 sleep(1)

The following example turns the star LED on and sets all the red LEDs to
flicker randomly:

from gpiozero import PiHutXmasTree
from gpiozero.tools import random_values
from signal import pause

tree = PiHutXmasTree(pwm=True)

tree.star.on()

for led in tree[1:]:
 led.source_delay = 0.1
 led.source = random_values()

pause()

	Parameters

	
	pwm (bool) – If True, construct PWMLED instances for each pin. If
False (the default), construct regular LED instances.

	initial_value (bool or None) – If False (the default), all LEDs will be off initially. If
None, each device will be left in whatever state the pin is
found in when configured for output (warning: this can be on). If
True, the device will be switched on initially.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

	
star

	Returns the LED or PWMLED representing the white
star on top of the tree.

	
led0, led1, led2, ...

	Returns the LED or PWMLED representing one of the red
LEDs. There are actually 24 of these properties named led0, led1, and
so on but for the sake of brevity we represent all 24 under this
section.

16.1.7. LedBorg

	
class gpiozero.LedBorg(*, pwm=True, initial_value=(0, 0, 0), pin_factory=None)

	Extends RGBLED for the PiBorg LedBorg: an add-on board
containing a very bright RGB LED.

The LedBorg pins are fixed and therefore there’s no need to specify them
when constructing this class. The following example turns the LedBorg
purple:

from gpiozero import LedBorg

led = LedBorg()
led.color = (1, 0, 1)

	Parameters

	
	initial_value (Color or tuple) – The initial color for the LedBorg. Defaults to black (0, 0, 0).

	pwm (bool) – If True (the default), construct PWMLED instances for
each component of the LedBorg. If False, construct regular
LED instances, which prevents smooth color graduations.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

16.1.8. PiLiter

	
class gpiozero.PiLiter(*, pwm=False, initial_value=False, pin_factory=None)

	Extends LEDBoard for the Ciseco Pi-LITEr: a strip of 8 very
bright LEDs.

The Pi-LITEr pins are fixed and therefore there’s no need to specify them
when constructing this class. The following example turns on all the LEDs
of the Pi-LITEr:

from gpiozero import PiLiter

lite = PiLiter()
lite.on()

	Parameters

	
	pwm (bool) – If True, construct PWMLED instances for each pin. If
False (the default), construct regular LED instances.

	initial_value (bool or None) – If False (the default), all LEDs will be off initially. If
None, each LED will be left in whatever state the pin is found
in when configured for output (warning: this can be on). If
True, the each LED will be switched on initially.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

16.1.9. PiLiterBarGraph

	
class gpiozero.PiLiterBarGraph(*, pwm=False, initial_value=False, pin_factory=None)

	Extends LEDBarGraph to treat the Ciseco Pi-LITEr as an
8-segment bar graph.

The Pi-LITEr pins are fixed and therefore there’s no need to specify them
when constructing this class. The following example sets the graph value
to 0.5:

from gpiozero import PiLiterBarGraph

graph = PiLiterBarGraph()
graph.value = 0.5

	Parameters

	
	pwm (bool) – If True, construct PWMLED instances for each pin. If
False (the default), construct regular LED instances.

	initial_value (float) – The initial value of the graph given as a float between -1 and
+1. Defaults to 0.0.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

16.1.10. PiTraffic

	
class gpiozero.PiTraffic(*, pwm=False, initial_value=False, pin_factory=None)

	Extends TrafficLights for the Low Voltage Labs PI-TRAFFIC
vertical traffic lights board when attached to GPIO pins 9, 10, and 11.

There’s no need to specify the pins if the PI-TRAFFIC is connected to the
default pins (9, 10, 11). The following example turns on the amber LED on
the PI-TRAFFIC:

from gpiozero import PiTraffic

traffic = PiTraffic()
traffic.amber.on()

To use the PI-TRAFFIC board when attached to a non-standard set of pins,
simply use the parent class, TrafficLights.

	Parameters

	
	pwm (bool) – If True, construct PWMLED instances to represent each
LED. If False (the default), construct regular LED
instances.

	initial_value (bool) – If False (the default), all LEDs will be off initially. If
None, each device will be left in whatever state the pin is
found in when configured for output (warning: this can be on). If
True, the device will be switched on initially.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

16.1.11. PiStop

	
class gpiozero.PiStop(location, *, pwm=False, initial_value=False, pin_factory=None)

	Extends TrafficLights for the PiHardware Pi-Stop: a vertical
traffic lights board.

The following example turns on the amber LED on a Pi-Stop connected to
location A+:

from gpiozero import PiStop

traffic = PiStop('A+')
traffic.amber.on()

	Parameters

	
	location (str) – The location on the GPIO header to which the Pi-Stop is connected.
Must be one of: A, A+, B, B+, C, D.

	pwm (bool) – If True, construct PWMLED instances to represent each
LED. If False (the default), construct regular LED
instances.

	initial_value (bool) – If False (the default), all LEDs will be off initially. If
None, each device will be left in whatever state the pin is
found in when configured for output (warning: this can be on). If
True, the device will be switched on initially.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

16.1.12. FishDish

	
class gpiozero.FishDish(*, pwm=False, pin_factory=None)

	Extends TrafficLightsBuzzer for the Pi Supply FishDish: traffic
light LEDs, a button and a buzzer.

The FishDish pins are fixed and therefore there’s no need to specify them
when constructing this class. The following example waits for the button
to be pressed on the FishDish, then turns on all the LEDs:

from gpiozero import FishDish

fish = FishDish()
fish.button.wait_for_press()
fish.lights.on()

	Parameters

	
	pwm (bool) – If True, construct PWMLED instances to represent each
LED. If False (the default), construct regular LED
instances.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

16.1.13. TrafficHat

	
class gpiozero.TrafficHat(*, pwm=False, pin_factory=None)

	Extends TrafficLightsBuzzer for the Ryanteck Traffic HAT: traffic
light LEDs, a button and a buzzer.

The Traffic HAT pins are fixed and therefore there’s no need to specify
them when constructing this class. The following example waits for the
button to be pressed on the Traffic HAT, then turns on all the LEDs:

from gpiozero import TrafficHat

hat = TrafficHat()
hat.button.wait_for_press()
hat.lights.on()

	Parameters

	
	pwm (bool) – If True, construct PWMLED instances to represent each
LED. If False (the default), construct regular LED
instances.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

16.1.14. JamHat

	
class gpiozero.JamHat(*, pwm=False, pin_factory=None)

	Extends CompositeOutputDevice for the ModMyPi JamHat board.

There are 6 LEDs, two buttons and a tonal buzzer. The pins are fixed.
Usage:

from gpiozero import JamHat

hat = JamHat()

hat.button_1.wait_for_press()
hat.lights_1.on()
hat.buzzer.play('C4')
hat.button_2.wait_for_press()
hat.off()

	Parameters

	
	pwm (bool) – If True, construct :class: PWMLED instances to represent each
LED on the board. If False (the default), construct regular
LED instances.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

	
lights_1, lights_2

	Two LEDBoard instances representing the top (lights_1) and
bottom (lights_2) rows of LEDs on the JamHat.

	
red, yellow, green

	LED or PWMLED instances representing the red,
yellow, and green LEDs along the top row.

	
button_1, button_2

	The left (button_1) and right (button_2) Button objects on the
JamHat.

	
buzzer

	The Buzzer at the bottom right of the JamHat.

	
off()

	Turns all the LEDs off and stops the buzzer.

	
on()

	Turns all the LEDs on and makes the buzzer play its mid tone.

16.1.15. Robot

	
class gpiozero.Robot(left, right, *, pwm=True, pin_factory=None)

	Extends CompositeDevice to represent a generic dual-motor robot.

This class is constructed with two tuples representing the forward and
backward pins of the left and right controllers respectively. For example,
if the left motor’s controller is connected to GPIOs 4 and 14, while the
right motor’s controller is connected to GPIOs 17 and 18 then the following
example will drive the robot forward:

from gpiozero import Robot

robot = Robot(left=(4, 14), right=(17, 18))
robot.forward()

	Parameters

	
	left (tuple) – A tuple of two (or three) GPIO pins representing the forward and
backward inputs of the left motor’s controller. Use three pins if your
motor controller requires an enable pin.

	right (tuple) – A tuple of two (or three) GPIO pins representing the forward and
backward inputs of the right motor’s controller. Use three pins if your
motor controller requires an enable pin.

	pwm (bool) – If True (the default), construct PWMOutputDevice
instances for the motor controller pins, allowing both direction and
variable speed control. If False, construct
DigitalOutputDevice instances, allowing only direction
control.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

	
left_motor

	The Motor on the left of the robot.

	
right_motor

	The Motor on the right of the robot.

	
backward(speed=1, **kwargs)

	Drive the robot backward by running both motors backward.

	Parameters

	
	speed (float) – Speed at which to drive the motors, as a value between 0 (stopped)
and 1 (full speed). The default is 1.

	curve_left (float) – The amount to curve left while moving backwards, by driving the
left motor at a slower speed. Maximum curve_left is 1, the
default is 0 (no curve). This parameter can only be specified as a
keyword parameter, and is mutually exclusive with curve_right.

	curve_right (float) – The amount to curve right while moving backwards, by driving the
right motor at a slower speed. Maximum curve_right is 1, the
default is 0 (no curve). This parameter can only be specified as a
keyword parameter, and is mutually exclusive with curve_left.

	
forward(speed=1, **kwargs)

	Drive the robot forward by running both motors forward.

	Parameters

	
	speed (float) – Speed at which to drive the motors, as a value between 0 (stopped)
and 1 (full speed). The default is 1.

	curve_left (float) – The amount to curve left while moving forwards, by driving the
left motor at a slower speed. Maximum curve_left is 1, the
default is 0 (no curve). This parameter can only be specified as a
keyword parameter, and is mutually exclusive with curve_right.

	curve_right (float) – The amount to curve right while moving forwards, by driving the
right motor at a slower speed. Maximum curve_right is 1, the
default is 0 (no curve). This parameter can only be specified as a
keyword parameter, and is mutually exclusive with curve_left.

	
left(speed=1)

	Make the robot turn left by running the right motor forward and left
motor backward.

	Parameters

	speed (float) – Speed at which to drive the motors, as a value between 0 (stopped)
and 1 (full speed). The default is 1.

	
reverse()

	Reverse the robot’s current motor directions. If the robot is currently
running full speed forward, it will run full speed backward. If the
robot is turning left at half-speed, it will turn right at half-speed.
If the robot is currently stopped it will remain stopped.

	
right(speed=1)

	Make the robot turn right by running the left motor forward and right
motor backward.

	Parameters

	speed (float) – Speed at which to drive the motors, as a value between 0 (stopped)
and 1 (full speed). The default is 1.

	
stop()

	Stop the robot.

	
value

	Represents the motion of the robot as a tuple of (left_motor_speed,
right_motor_speed) with (-1, -1) representing full speed backwards,
(1, 1) representing full speed forwards, and (0, 0)
representing stopped.

16.1.16. PhaseEnableRobot

	
class gpiozero.PhaseEnableRobot(left, right, *, pwm=True, pin_factory=None)

	Extends CompositeDevice to represent a dual-motor robot based
around a Phase/Enable motor board.

This class is constructed with two tuples representing the phase
(direction) and enable (speed) pins of the left and right controllers
respectively. For example, if the left motor’s controller is connected to
GPIOs 12 and 5, while the right motor’s controller is connected to GPIOs 13
and 6 so the following example will drive the robot forward:

from gpiozero import PhaseEnableRobot

robot = PhaseEnableRobot(left=(5, 12), right=(6, 13))
robot.forward()

	Parameters

	
	left (tuple) – A tuple of two GPIO pins representing the phase and enable inputs
of the left motor’s controller.

	right (tuple) – A tuple of two GPIO pins representing the phase and enable inputs
of the right motor’s controller.

	pwm (bool) – If True (the default), construct PWMOutputDevice
instances for the motor controller’s enable pins, allowing both
direction and variable speed control. If False, construct
DigitalOutputDevice instances, allowing only direction
control.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

	
left_motor

	The PhaseEnableMotor on the left of the robot.

	
right_motor

	The PhaseEnableMotor on the right of the robot.

	
backward(speed=1)

	Drive the robot backward by running both motors backward.

	Parameters

	speed (float) – Speed at which to drive the motors, as a value between 0 (stopped)
and 1 (full speed). The default is 1.

	
forward(speed=1)

	Drive the robot forward by running both motors forward.

	Parameters

	speed (float) – Speed at which to drive the motors, as a value between 0 (stopped)
and 1 (full speed). The default is 1.

	
left(speed=1)

	Make the robot turn left by running the right motor forward and left
motor backward.

	Parameters

	speed (float) – Speed at which to drive the motors, as a value between 0 (stopped)
and 1 (full speed). The default is 1.

	
reverse()

	Reverse the robot’s current motor directions. If the robot is currently
running full speed forward, it will run full speed backward. If the
robot is turning left at half-speed, it will turn right at half-speed.
If the robot is currently stopped it will remain stopped.

	
right(speed=1)

	Make the robot turn right by running the left motor forward and right
motor backward.

	Parameters

	speed (float) – Speed at which to drive the motors, as a value between 0 (stopped)
and 1 (full speed). The default is 1.

	
stop()

	Stop the robot.

	
value

	Returns a tuple of two floating point values (-1 to 1) representing the
speeds of the robot’s two motors (left and right). This property can
also be set to alter the speed of both motors.

16.1.17. RyanteckRobot

	
class gpiozero.RyanteckRobot(*, pwm=True, pin_factory=None)

	Extends Robot for the Ryanteck motor controller board.

The Ryanteck MCB pins are fixed and therefore there’s no need to specify
them when constructing this class. The following example drives the robot
forward:

from gpiozero import RyanteckRobot

robot = RyanteckRobot()
robot.forward()

	Parameters

	
	pwm (bool) – If True (the default), construct PWMOutputDevice
instances for the motor controller pins, allowing both direction and
variable speed control. If False, construct
DigitalOutputDevice instances, allowing only direction
control.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

16.1.18. CamJamKitRobot

	
class gpiozero.CamJamKitRobot(*, pwm=True, pin_factory=None)

	Extends Robot for the CamJam #3 EduKit motor controller board.

The CamJam robot controller pins are fixed and therefore there’s no need
to specify them when constructing this class. The following example drives
the robot forward:

from gpiozero import CamJamKitRobot

robot = CamJamKitRobot()
robot.forward()

	Parameters

	
	pwm (bool) – If True (the default), construct PWMOutputDevice
instances for the motor controller pins, allowing both direction and
variable speed control. If False, construct
DigitalOutputDevice instances, allowing only direction
control.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

16.1.19. PololuDRV8835Robot

	
class gpiozero.PololuDRV8835Robot(*, pwm=True, pin_factory=None)

	Extends PhaseEnableRobot for the Pololu DRV8835 Dual Motor Driver
Kit.

The Pololu DRV8835 pins are fixed and therefore there’s no need to specify
them when constructing this class. The following example drives the robot
forward:

from gpiozero import PololuDRV8835Robot

robot = PololuDRV8835Robot()
robot.forward()

	Parameters

	
	pwm (bool) – If True (the default), construct PWMOutputDevice
instances for the motor controller’s enable pins, allowing both
direction and variable speed control. If False, construct
DigitalOutputDevice instances, allowing only direction
control.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

16.1.20. Energenie

	
class gpiozero.Energenie(socket, *, initial_value=False, pin_factory=None)

	Extends Device to represent an Energenie socket controller.

This class is constructed with a socket number and an optional initial
state (defaults to False, meaning off). Instances of this class can
be used to switch peripherals on and off. For example:

from gpiozero import Energenie

lamp = Energenie(1)
lamp.on()

	Parameters

	
	socket (int) – Which socket this instance should control. This is an integer number
between 1 and 4.

	initial_value (bool) – The initial state of the socket. As Energenie sockets provide no
means of reading their state, you must provide an initial state for
the socket, which will be set upon construction. This defaults to
False which will switch the socket off.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

	
off()

	Turns the socket off.

	
on()

	Turns the socket on.

	
socket

	Returns the socket number.

	
value

	Returns True if the socket is on and False if the
socket is off. Setting this property changes the state of the socket.

16.1.21. StatusZero

	
class gpiozero.StatusZero(*labels, pwm=False, active_high=True, initial_value=False, pin_factory=None)

	Extends LEDBoard for The Pi Hut’s STATUS Zero: a Pi Zero sized
add-on board with three sets of red/green LEDs to provide a status
indicator.

The following example designates the first strip the label “wifi” and the
second “raining”, and turns them green and red respectfully:

from gpiozero import StatusZero

status = StatusZero('wifi', 'raining')
status.wifi.green.on()
status.raining.red.on()

Each designated label will contain two LED objects named “red”
and “green”.

	Parameters

	
	*labels (str) – Specify the names of the labels you wish to designate the strips to.
You can list up to three labels. If no labels are given, three strips
will be initialised with names ‘one’, ‘two’, and ‘three’. If some, but
not all strips are given labels, any remaining strips will not be
initialised.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

	
your-label-here, your-label-here, ...

	This entry represents one of the three labelled attributes supported on
the STATUS Zero board. It is an LEDBoard which contains:

	
red

	The LED or PWMLED representing the red LED
next to the label.

	
green

	The LED or PWMLED representing the green LED
next to the label.

16.1.22. StatusBoard

	
class gpiozero.StatusBoard(*labels, pwm=False, active_high=True, initial_value=False, pin_factory=None)

	Extends CompositeOutputDevice for The Pi Hut’s STATUS board: a
HAT sized add-on board with five sets of red/green LEDs and buttons to
provide a status indicator with additional input.

The following example designates the first strip the label “wifi” and the
second “raining”, turns the wifi green and then activates the button to
toggle its lights when pressed:

from gpiozero import StatusBoard

status = StatusBoard('wifi', 'raining')
status.wifi.lights.green.on()
status.wifi.button.when_pressed = status.wifi.lights.toggle

Each designated label will contain a “lights” LEDBoard containing
two LED objects named “red” and “green”, and a Button
object named “button”.

	Parameters

	
	*labels (str) – Specify the names of the labels you wish to designate the strips to.
You can list up to five labels. If no labels are given, five strips
will be initialised with names ‘one’ to ‘five’. If some, but not all
strips are given labels, any remaining strips will not be initialised.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

	
your-label-here, your-label-here, ...

	This entry represents one of the five labelled attributes supported on
the STATUS board. It is an CompositeOutputDevice which
contains:

	
lights

	A LEDBoard representing the lights next to the label. It
contains:

	
red

	The LED or PWMLED representing the red LED
next to the label.

	
green

	The LED or PWMLED representing the green LED
next to the label.

	
button

	A Button representing the button next to the label.

16.1.23. SnowPi

	
class gpiozero.SnowPi(*, pwm=False, initial_value=False, pin_factory=None)

	Extends LEDBoard for the Ryanteck SnowPi board.

The SnowPi pins are fixed and therefore there’s no need to specify them
when constructing this class. The following example turns on the eyes, sets
the nose pulsing, and the arms blinking:

from gpiozero import SnowPi

snowman = SnowPi(pwm=True)
snowman.eyes.on()
snowman.nose.pulse()
snowman.arms.blink()

	Parameters

	
	pwm (bool) – If True, construct PWMLED instances to represent each
LED. If False (the default), construct regular LED
instances.

	initial_value (bool) – If False (the default), all LEDs will be off initially. If
None, each device will be left in whatever state the pin is
found in when configured for output (warning: this can be on). If
True, the device will be switched on initially.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

	
arms

	A LEDBoard representing the arms of the snow man. It contains
the following attributes:

	
left, right

	Two LEDBoard objects representing the left and right arms
of the snow-man. They contain:

	
top, middle, bottom

	The LED or PWMLED down the snow-man’s arms.

	
eyes

	A LEDBoard representing the eyes of the snow-man. It contains:

	
left, right

	The LED or PWMLED for the snow-man’s eyes.

	
nose

	The LED or PWMLED for the snow-man’s nose.

16.1.24. PumpkinPi

	
class gpiozero.PumpkinPi(*, pwm=False, initial_value=False, pin_factory=None)

	Extends LEDBoard for the ModMyPi PumpkinPi board.

There are twelve LEDs connected up to individual pins, so for the PumpkinPi
the pins are fixed. For example:

from gpiozero import PumpkinPi

pumpkin = PumpkinPi(pwm=True)
pumpkin.sides.pulse()
pumpkin.off()

	Parameters

	
	pwm (bool) – If True, construct PWMLED instances to represent each
LED. If False (the default), construct regular LED
instances

	initial_value (bool or None) – If False (the default), all LEDs will be off initially. If
None, each device will be left in whatever state the pin is
found in when configured for output (warning: this can be on). If
True, the device will be switched on initially.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

	
sides

	A LEDBoard representing the LEDs around the edge of the
pumpkin. It contains:

	
left, right

	Two LEDBoard instances representing the LEDs on the left
and right sides of the pumpkin. They each contain:

	
top, midtop, middle, midbottom, bottom

	Each LED or PWMLED around the specified side
of the pumpkin.

	
eyes

	A LEDBoard representing the eyes of the pumpkin. It contains:

	
left, right

	The LED or PWMLED for each of the pumpkin’s eyes.

16.2. Base Classes

The classes in the sections above are derived from a series of base classes,
some of which are effectively abstract. The classes form the (partial)
hierarchy displayed in the graph below:

[image: _images/composite_device_hierarchy.svg]For composite devices, the following chart shows which devices are composed of
which other devices:

[image: _images/composed_devices.svg]The following sections document these base classes for advanced users that wish
to construct classes for their own devices.

16.2.1. LEDCollection

	
class gpiozero.LEDCollection(*pins, pwm=False, active_high=True, initial_value=False, pin_factory=None, **named_pins)

	Extends CompositeOutputDevice. Abstract base class for
LEDBoard and LEDBarGraph.

	
leds

	A flat tuple of all LEDs contained in this collection (and all
sub-collections).

16.2.2. CompositeOutputDevice

	
class gpiozero.CompositeOutputDevice(*args, _order=None, pin_factory=None, **kwargs)

	Extends CompositeDevice with on(), off(), and
toggle() methods for controlling subordinate output devices. Also
extends value to be writeable.

	Parameters

	
	*args (Device) – The un-named devices that belong to the composite device. The
value attributes of these devices will be represented
within the composite device’s tuple value in the order
specified here.

	_order (list or None) – If specified, this is the order of named items specified by keyword
arguments (to ensure that the value tuple is constructed with a
specific order). All keyword arguments must be included in the
collection. If omitted, an alphabetically sorted order will be selected
for keyword arguments.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

	**kwargs (Device) – The named devices that belong to the composite device. These devices
will be accessible as named attributes on the resulting device, and
their value attributes will be accessible as named elements of
the composite device’s tuple value.

	
off()

	Turn all the output devices off.

	
on()

	Turn all the output devices on.

	
toggle()

	Toggle all the output devices. For each device, if it’s on, turn it
off; if it’s off, turn it on.

	
value

	A tuple containing a value for each subordinate device. This property
can also be set to update the state of all subordinate output devices.

16.2.3. CompositeDevice

	
class gpiozero.CompositeDevice(*args, _order=None, pin_factory=None, **kwargs)

	Extends Device. Represents a device composed of multiple devices
like simple HATs, H-bridge motor controllers, robots composed of multiple
motors, etc.

The constructor accepts subordinate devices as positional or keyword
arguments. Positional arguments form unnamed devices accessed by treating
the composite device as a container, while keyword arguments are added to
the device as named (read-only) attributes.

For example:

>>> from gpiozero import *
>>> d = CompositeDevice(LED(2), LED(3), LED(4), btn=Button(17))
>>> d[0]
<gpiozero.LED object on pin GPIO2, active_high=True, is_active=False>
>>> d[1]
<gpiozero.LED object on pin GPIO3, active_high=True, is_active=False>
>>> d[2]
<gpiozero.LED object on pin GPIO4, active_high=True, is_active=False>
>>> d.btn
<gpiozero.Button object on pin GPIO17, pull_up=True, is_active=False>
>>> d.value
CompositeDeviceValue(device_0=False, device_1=False, device_2=False, btn=False)

	Parameters

	
	*args (Device) – The un-named devices that belong to the composite device. The
value attributes of these devices will be represented within
the composite device’s tuple value in the order specified here.

	_order (list or None) – If specified, this is the order of named items specified by keyword
arguments (to ensure that the value tuple is constructed with a
specific order). All keyword arguments must be included in the
collection. If omitted, an alphabetically sorted order will be selected
for keyword arguments.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

	**kwargs (Device) – The named devices that belong to the composite device. These devices
will be accessible as named attributes on the resulting device, and
their value attributes will be accessible as named elements of
the composite device’s tuple value.

	
close()

	Shut down the device and release all associated resources. This method
can be called on an already closed device without raising an exception.

This method is primarily intended for interactive use at the command
line. It disables the device and releases its pin(s) for use by another
device.

You can attempt to do this simply by deleting an object, but unless
you’ve cleaned up all references to the object this may not work (even
if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By
contrast, the close method provides a means of ensuring that the object
is shut down.

For example, if you have a breadboard with a buzzer connected to pin
16, but then wish to attach an LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device descendents can also be used as context managers using
the with statement. For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

	
closed

	Returns True if the device is closed (see the close()
method). Once a device is closed you can no longer use any other
methods or properties to control or query the device.

	
is_active

	Composite devices are considered “active” if any of their constituent
devices have a “truthy” value.

	
namedtuple

	The namedtuple() type constructed to represent the
value of the composite device. The value attribute returns
values of this type.

	
value

	A namedtuple() containing a value for each
subordinate device. Devices with names will be represented as named
elements. Unnamed devices will have a unique name generated for them,
and they will appear in the position they appeared in the constructor.

17. API - Internal Devices

GPIO Zero also provides several “internal” devices which represent facilities
provided by the operating system itself. These can be used to react to things
like the time of day, or whether a server is available on the network.

Warning

These devices are experimental and their API is not yet considered stable.
We welcome any comments from testers, especially regarding new “internal
devices” that you’d find useful!

17.1. Regular Classes

The following classes are intended for general use with the devices they are
named after. All classes in this section are concrete (not abstract).

17.1.1. TimeOfDay

	
class gpiozero.TimeOfDay(start_time, end_time, *, utc=True, pin_factory=None)

	Extends InternalDevice to provide a device which is active when
the computer’s clock indicates that the current time is between
start_time and end_time (inclusive) which are time
instances.

The following example turns on a lamp attached to an Energenie
plug between 7 and 8 AM:

from gpiozero import TimeOfDay, Energenie
from datetime import time
from signal import pause

lamp = Energenie(1)
morning = TimeOfDay(time(7), time(8))

lamp.source = morning

pause()

Note that start_time may be greater than end_time, indicating a time
period which crosses midnight.

	Parameters

	
	start_time (time) – The time from which the device will be considered active.

	end_time (time) – The time after which the device will be considered inactive.

	utc (bool) – If True (the default), a naive UTC time will be used for the
comparison rather than a local time-zone reading.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

	
end_time

	The time of day after which the device will be considered inactive.

	
start_time

	The time of day after which the device will be considered active.

	
utc

	If True, use a naive UTC time reading for comparison instead of
a local timezone reading.

	
value

	Returns True when the system clock reads between
start_time and end_time, and False otherwise.
If start_time is greater than end_time (indicating a
period that crosses midnight), then this returns True when the
current time is greater than start_time or less than
end_time.

17.1.2. PingServer

	
class gpiozero.PingServer(host, *, pin_factory=None)

	Extends InternalDevice to provide a device which is active when a
host on the network can be pinged.

The following example lights an LED while a server is reachable (note the
use of source_delay to ensure the server is not
flooded with pings):

from gpiozero import PingServer, LED
from signal import pause

google = PingServer('google.com')
led = LED(4)

led.source_delay = 60 # check once per minute
led.source = google

pause()

	Parameters

	
	host (str) – The hostname or IP address to attempt to ping.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

	
host

	The hostname or IP address to test whenever value is queried.

	
value

	Returns True if the host returned a single ping, and
False otherwise.

17.1.3. CPUTemperature

	
class gpiozero.CPUTemperature(sensor_file='/sys/class/thermal/thermal_zone0/temp', *, min_temp=0.0, max_temp=100.0, threshold=80.0, pin_factory=None)

	Extends InternalDevice to provide a device which is active when
the CPU temperature exceeds the threshold value.

The following example plots the CPU’s temperature on an LED bar graph:

from gpiozero import LEDBarGraph, CPUTemperature
from signal import pause

Use minimums and maximums that are closer to "normal" usage so the
bar graph is a bit more "lively"
cpu = CPUTemperature(min_temp=50, max_temp=90)

print('Initial temperature: {}C'.format(cpu.temperature))

graph = LEDBarGraph(5, 6, 13, 19, 25, pwm=True)
graph.source = cpu

pause()

	Parameters

	
	sensor_file (str) – The file from which to read the temperature. This defaults to the
sysfs file /sys/class/thermal/thermal_zone0/temp. Whatever
file is specified is expected to contain a single line containing the
temperature in milli-degrees celsius.

	min_temp (float) – The temperature at which value will read 0.0. This defaults to
0.0.

	max_temp (float) – The temperature at which value will read 1.0. This defaults to
100.0.

	threshold (float) – The temperature above which the device will be considered “active”.
(see is_active). This defaults to 80.0.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

	
is_active

	Returns True when the CPU temperature exceeds the
threshold.

	
temperature

	Returns the current CPU temperature in degrees celsius.

	
value

	Returns the current CPU temperature as a value between 0.0
(representing the min_temp value) and 1.0 (representing the
max_temp value). These default to 0.0 and 100.0 respectively, hence
value is temperature divided by 100 by default.

17.1.4. LoadAverage

	
class gpiozero.LoadAverage(load_average_file='/proc/loadavg', *, min_load_average=0.0, max_load_average=1.0, threshold=0.8, minutes=5, pin_factory=None)

	Extends InternalDevice to provide a device which is active when
the CPU load average exceeds the threshold value.

The following example plots the load average on an LED bar graph:

from gpiozero import LEDBarGraph, LoadAverage
from signal import pause

la = LoadAverage(min_load_average=0, max_load_average=2)
graph = LEDBarGraph(5, 6, 13, 19, 25, pwm=True)

graph.source = la

pause()

	Parameters

	
	load_average_file (str) – The file from which to read the load average. This defaults to the
proc file /proc/loadavg. Whatever file is specified is expected
to contain three space-separated load averages at the beginning of the
file, representing 1 minute, 5 minute and 15 minute averages
respectively.

	min_load_average (float) – The load average at which value will read 0.0. This defaults to
0.0.

	max_load_average (float) – The load average at which value will read 1.0. This defaults to
1.0.

	threshold (float) – The load average above which the device will be considered “active”.
(see is_active). This defaults to 0.8.

	minutes (int) – The number of minutes over which to average the load. Must be 1, 5 or
15. This defaults to 5.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

	
is_active

	Returns True when the load_average exceeds the
threshold.

	
load_average

	Returns the current load average.

	
value

	Returns the current load average as a value between 0.0 (representing
the min_load_average value) and 1.0 (representing the
max_load_average value). These default to 0.0 and 1.0 respectively.

17.1.5. DiskUsage

	
class gpiozero.DiskUsage(filesystem='/', *, threshold=90.0, pin_factory=None)

	Extends InternalDevice to provide a device which is active when
the disk space used exceeds the threshold value.

The following example plots the disk usage on an LED bar graph:

from gpiozero import LEDBarGraph, DiskUsage
from signal import pause

disk = DiskUsage()

print('Current disk usage: {}%'.format(disk.usage))

graph = LEDBarGraph(5, 6, 13, 19, 25, pwm=True)
graph.source = disk

pause()

	Parameters

	
	filesystem (str) – A path within the filesystem for which the disk usage needs to be
computed. This defaults to /, which is the root filesystem.

	threshold (float) – The disk usage percentage above which the device will be considered
“active” (see is_active). This defaults to 90.0.

	pin_factory (Factory or None) – See API - Pins for more information (this is an advanced feature
which most users can ignore).

	
is_active

	Returns True when the disk usage exceeds the
threshold.

	
usage

	Returns the current disk usage in percentage.

	
value

	Returns the current disk usage as a value between 0.0 and 1.0 by
dividing usage by 100.

17.2. Base Classes

The classes in the sections above are derived from a series of base classes,
some of which are effectively abstract. The classes form the (partial)
hierarchy displayed in the graph below (abstract classes are shaded lighter
than concrete classes):

[image: _images/internal_device_hierarchy.svg]The following sections document these base classes for advanced users that wish
to construct classes for their own devices.

17.2.1. InternalDevice

	
class gpiozero.InternalDevice(*, pin_factory=None)

	Extends Device to provide a basis for devices which have no
specific hardware representation. These are effectively pseudo-devices and
usually represent operating system services like the internal clock, file
systems or network facilities.

18. API - Generic Classes

The GPIO Zero class hierarchy is quite extensive. It contains several base
classes (most of which are documented in their corresponding chapters):

	Device is the root of the hierarchy, implementing base functionality
like close() and context manager handlers.

	GPIODevice represents individual devices that attach to a single
GPIO pin

	SPIDevice represents devices that communicate over an SPI interface
(implemented as four GPIO pins)

	InternalDevice represents devices that are entirely internal to
the Pi (usually operating system related services)

	CompositeDevice represents devices composed of multiple other
devices like HATs

There are also several mixin classes for adding important functionality
at numerous points in the hierarchy, which is illustrated below (mixin classes
are represented in purple, while abstract classes are shaded lighter):

[image: _images/device_hierarchy.svg]
18.1. Device

	
class gpiozero.Device(*, pin_factory=None)

	Represents a single device of any type; GPIO-based, SPI-based, I2C-based,
etc. This is the base class of the device hierarchy. It defines the basic
services applicable to all devices (specifically the is_active
property, the value property, and the close() method).

	
pin_factory

	This attribute exists at both a class level (representing the default
pin factory used to construct devices when no pin_factory parameter
is specified), and at an instance level (representing the pin factory
that the device was constructed with).

The pin factory provides various facilities to the device including
allocating pins, providing low level interfaces (e.g. SPI), and clock
facilities (querying and calculating elapsed times).

	
close()

	Shut down the device and release all associated resources. This method
can be called on an already closed device without raising an exception.

This method is primarily intended for interactive use at the command
line. It disables the device and releases its pin(s) for use by another
device.

You can attempt to do this simply by deleting an object, but unless
you’ve cleaned up all references to the object this may not work (even
if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By
contrast, the close method provides a means of ensuring that the object
is shut down.

For example, if you have a breadboard with a buzzer connected to pin
16, but then wish to attach an LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device descendents can also be used as context managers using
the with statement. For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

	
closed

	Returns True if the device is closed (see the close()
method). Once a device is closed you can no longer use any other
methods or properties to control or query the device.

	
is_active

	Returns True if the device is currently active and
False otherwise. This property is usually derived from
value. Unlike value, this is always a boolean.

	
value

	Returns a value representing the device’s state. Frequently, this is a
boolean value, or a number between 0 and 1 but some devices use larger
ranges (e.g. -1 to +1) and composite devices usually use tuples to
return the states of all their subordinate components.

18.2. ValuesMixin

	
class gpiozero.ValuesMixin(...)

	Adds a values property to the class which returns an infinite
generator of readings from the value property. There is
rarely a need to use this mixin directly as all base classes in GPIO Zero
include it.

Note

Use this mixin first in the parent class list.

	
values

	An infinite iterator of values read from value.

18.3. SourceMixin

	
class gpiozero.SourceMixin(...)

	Adds a source property to the class which, given an iterable or a
ValuesMixin descendent, sets value to each member
of that iterable until it is exhausted. This mixin is generally included in
novel output devices to allow their state to be driven from another device.

Note

Use this mixin first in the parent class list.

	
source

	The iterable to use as a source of values for value.

	
source_delay

	The delay (measured in seconds) in the loop used to read values from
source. Defaults to 0.01 seconds which is generally sufficient
to keep CPU usage to a minimum while providing adequate responsiveness.

18.4. SharedMixin

	
class gpiozero.SharedMixin(...)

	This mixin marks a class as “shared”. In this case, the meta-class
(GPIOMeta) will use _shared_key() to convert the constructor
arguments to an immutable key, and will check whether any existing
instances match that key. If they do, they will be returned by the
constructor instead of a new instance. An internal reference counter is
used to determine how many times an instance has been “constructed” in this
way.

When close() is called, an internal reference counter will be
decremented and the instance will only close when it reaches zero.

	
classmethod _shared_key(*args, **kwargs)

	Given the constructor arguments, returns an immutable key representing
the instance. The default simply assumes all positional arguments are
immutable.

18.5. EventsMixin

	
class gpiozero.EventsMixin(...)

	Adds edge-detected when_activated() and when_deactivated()
events to a device based on changes to the is_active
property common to all devices. Also adds wait_for_active() and
wait_for_inactive() methods for level-waiting.

Note

Note that this mixin provides no means of actually firing its events;
call _fire_events() in sub-classes when device state changes to
trigger the events. This should also be called once at the end of
initialization to set initial states.

	
wait_for_active(timeout=None)

	Pause the script until the device is activated, or the timeout is
reached.

	Parameters

	timeout (float or None) – Number of seconds to wait before proceeding. If this is
None (the default), then wait indefinitely until the device
is active.

	
wait_for_inactive(timeout=None)

	Pause the script until the device is deactivated, or the timeout is
reached.

	Parameters

	timeout (float or None) – Number of seconds to wait before proceeding. If this is
None (the default), then wait indefinitely until the device
is inactive.

	
active_time

	The length of time (in seconds) that the device has been active for.
When the device is inactive, this is None.

	
inactive_time

	The length of time (in seconds) that the device has been inactive for.
When the device is active, this is None.

	
when_activated

	The function to run when the device changes state from inactive to
active.

This can be set to a function which accepts no (mandatory) parameters,
or a Python function which accepts a single mandatory parameter (with
as many optional parameters as you like). If the function accepts a
single mandatory parameter, the device that activated will be passed
as that parameter.

Set this property to None (the default) to disable the event.

	
when_deactivated

	The function to run when the device changes state from active to
inactive.

This can be set to a function which accepts no (mandatory) parameters,
or a Python function which accepts a single mandatory parameter (with
as many optional parameters as you like). If the function accepts a
single mandatory parameter, the device that deactivated will be
passed as that parameter.

Set this property to None (the default) to disable the event.

18.6. HoldMixin

	
class gpiozero.HoldMixin(...)

	Extends EventsMixin to add the when_held event and the
machinery to fire that event repeatedly (when hold_repeat is
True) at internals defined by hold_time.

	
held_time

	The length of time (in seconds) that the device has been held for.
This is counted from the first execution of the when_held event
rather than when the device activated, in contrast to
active_time. If the device is not currently held,
this is None.

	
hold_repeat

	If True, when_held will be executed repeatedly with
hold_time seconds between each invocation.

	
hold_time

	The length of time (in seconds) to wait after the device is activated,
until executing the when_held handler. If hold_repeat
is True, this is also the length of time between invocations of
when_held.

	
is_held

	When True, the device has been active for at least
hold_time seconds.

	
when_held

	The function to run when the device has remained active for
hold_time seconds.

This can be set to a function which accepts no (mandatory) parameters,
or a Python function which accepts a single mandatory parameter (with
as many optional parameters as you like). If the function accepts a
single mandatory parameter, the device that activated will be passed
as that parameter.

Set this property to None (the default) to disable the event.

19. API - Device Source Tools

GPIO Zero includes several utility routines which are intended to be used with
the Source/Values attributes common to most devices in the library.
These utility routines are in the tools module of GPIO Zero and are
typically imported as follows:

from gpiozero.tools import scaled, negated, all_values

Given that source and
values deal with infinite iterators, another
excellent source of utilities is the itertools module in the standard
library.

19.1. Single source conversions

	
gpiozero.tools.absoluted(values)

	Returns values with all negative elements negated (so that they’re
positive). For example:

from gpiozero import PWMLED, Motor, MCP3008
from gpiozero.tools import absoluted, scaled
from signal import pause

led = PWMLED(4)
motor = Motor(22, 27)
pot = MCP3008(channel=0)

motor.source = scaled(pot, -1, 1)
led.source = absoluted(motor)

pause()

	
gpiozero.tools.booleanized(values, min_value, max_value, hysteresis=0)

	Returns True for each item in values between min_value and
max_value, and False otherwise. hysteresis can optionally be used to
add hysteresis which prevents the output value rapidly flipping when
the input value is fluctuating near the min_value or max_value
thresholds. For example, to light an LED only when a potentiometer is
between ¼ and ¾ of its full range:

from gpiozero import LED, MCP3008
from gpiozero.tools import booleanized
from signal import pause

led = LED(4)
pot = MCP3008(channel=0)

led.source = booleanized(pot, 0.25, 0.75)

pause()

	
gpiozero.tools.clamped(values, output_min=0, output_max=1)

	Returns values clamped from output_min to output_max, i.e. any items
less than output_min will be returned as output_min and any items
larger than output_max will be returned as output_max (these default to
0 and 1 respectively). For example:

from gpiozero import PWMLED, MCP3008
from gpiozero.tools import clamped
from signal import pause

led = PWMLED(4)
pot = MCP3008(channel=0)

led.source = clamped(pot, 0.5, 1.0)

pause()

	
gpiozero.tools.inverted(values, input_min=0, input_max=1)

	Returns the inversion of the supplied values (input_min becomes
input_max, input_max becomes input_min, input_min + 0.1 becomes
input_max - 0.1, etc.). All items in values are assumed to be between
input_min and input_max (which default to 0 and 1 respectively), and
the output will be in the same range. For example:

from gpiozero import MCP3008, PWMLED
from gpiozero.tools import inverted
from signal import pause

led = PWMLED(4)
pot = MCP3008(channel=0)

led.source = inverted(pot)

pause()

	
gpiozero.tools.negated(values)

	Returns the negation of the supplied values (True becomes
False, and False becomes True). For example:

from gpiozero import Button, LED
from gpiozero.tools import negated
from signal import pause

led = LED(4)
btn = Button(17)

led.source = negated(btn)

pause()

	
gpiozero.tools.post_delayed(values, delay)

	Waits for delay seconds after returning each item from values.

	
gpiozero.tools.post_periodic_filtered(values, repeat_after, block)

	After every repeat_after items, blocks the next block items from
values. Note that unlike pre_periodic_filtered(), repeat_after
can’t be 0. For example, to block every tenth item read from an ADC:

from gpiozero import MCP3008
from gpiozero.tools import post_periodic_filtered

adc = MCP3008(channel=0)

for value in post_periodic_filtered(adc, 9, 1):
 print(value)

	
gpiozero.tools.pre_delayed(values, delay)

	Waits for delay seconds before returning each item from values.

	
gpiozero.tools.pre_periodic_filtered(values, block, repeat_after)

	Blocks the first block items from values, repeating the block after
every repeat_after items, if repeat_after is non-zero. For example, to
discard the first 50 values read from an ADC:

from gpiozero import MCP3008
from gpiozero.tools import pre_periodic_filtered

adc = MCP3008(channel=0)

for value in pre_periodic_filtered(adc, 50, 0):
 print(value)

Or to only display every even item read from an ADC:

from gpiozero import MCP3008
from gpiozero.tools import pre_periodic_filtered

adc = MCP3008(channel=0)

for value in pre_periodic_filtered(adc, 1, 1):
 print(value)

	
gpiozero.tools.quantized(values, steps, input_min=0, input_max=1)

	Returns values quantized to steps increments. All items in values are
assumed to be between input_min and input_max (which default to 0 and
1 respectively), and the output will be in the same range.

For example, to quantize values between 0 and 1 to 5 “steps” (0.0, 0.25,
0.5, 0.75, 1.0):

from gpiozero import PWMLED, MCP3008
from gpiozero.tools import quantized
from signal import pause

led = PWMLED(4)
pot = MCP3008(channel=0)

led.source = quantized(pot, 4)

pause()

	
gpiozero.tools.queued(values, qsize)

	Queues up readings from values (the number of readings queued is
determined by qsize) and begins yielding values only when the queue is
full. For example, to “cascade” values along a sequence of LEDs:

from gpiozero import LEDBoard, Button
from gpiozero.tools import queued
from signal import pause

leds = LEDBoard(5, 6, 13, 19, 26)
btn = Button(17)

for i in range(4):
 leds[i].source = queued(leds[i + 1], 5)
 leds[i].source_delay = 0.01

leds[4].source = btn

pause()

	
gpiozero.tools.smoothed(values, qsize, average=<function mean>)

	Queues up readings from values (the number of readings queued is
determined by qsize) and begins yielding the average of the last
qsize values when the queue is full. The larger the qsize, the more the
values are smoothed. For example, to smooth the analog values read from an
ADC:

from gpiozero import MCP3008
from gpiozero.tools import smoothed

adc = MCP3008(channel=0)

for value in smoothed(adc, 5):
 print(value)

	
gpiozero.tools.scaled(values, output_min, output_max, input_min=0, input_max=1)

	Returns values scaled from output_min to output_max, assuming that
all items in values lie between input_min and input_max (which
default to 0 and 1 respectively). For example, to control the direction of
a motor (which is represented as a value between -1 and 1) using a
potentiometer (which typically provides values between 0 and 1):

from gpiozero import Motor, MCP3008
from gpiozero.tools import scaled
from signal import pause

motor = Motor(20, 21)
pot = MCP3008(channel=0)

motor.source = scaled(pot, -1, 1)

pause()

Warning

If values contains elements that lie outside input_min to
input_max (inclusive) then the function will not produce values that
lie within output_min to output_max (inclusive).

19.2. Combining sources

	
gpiozero.tools.all_values(*values)

	Returns the logical conjunction of all supplied values (the result is
only True if and only if all input values are simultaneously
True). One or more values can be specified. For example, to light
an LED only when both buttons are pressed:

from gpiozero import LED, Button
from gpiozero.tools import all_values
from signal import pause

led = LED(4)
btn1 = Button(20)
btn2 = Button(21)

led.source = all_values(btn1, btn2)

pause()

	
gpiozero.tools.any_values(*values)

	Returns the logical disjunction of all supplied values (the result is
True if any of the input values are currently True). One or
more values can be specified. For example, to light an
LED when any button is pressed:

from gpiozero import LED, Button
from gpiozero.tools import any_values
from signal import pause

led = LED(4)
btn1 = Button(20)
btn2 = Button(21)

led.source = any_values(btn1, btn2)

pause()

	
gpiozero.tools.averaged(*values)

	Returns the mean of all supplied values. One or more values can be
specified. For example, to light a PWMLED as the average
of several potentiometers connected to an MCP3008 ADC:

from gpiozero import MCP3008, PWMLED
from gpiozero.tools import averaged
from signal import pause

pot1 = MCP3008(channel=0)
pot2 = MCP3008(channel=1)
pot3 = MCP3008(channel=2)
led = PWMLED(4)

led.source = averaged(pot1, pot2, pot3)

pause()

	
gpiozero.tools.multiplied(*values)

	Returns the product of all supplied values. One or more values can be
specified. For example, to light a PWMLED as the product
(i.e. multiplication) of several potentiometers connected to an
MCP3008
ADC:

from gpiozero import MCP3008, PWMLED
from gpiozero.tools import multiplied
from signal import pause

pot1 = MCP3008(channel=0)
pot2 = MCP3008(channel=1)
pot3 = MCP3008(channel=2)
led = PWMLED(4)

led.source = multiplied(pot1, pot2, pot3)

pause()

	
gpiozero.tools.summed(*values)

	Returns the sum of all supplied values. One or more values can be
specified. For example, to light a PWMLED as the
(scaled) sum of several potentiometers connected to an
MCP3008 ADC:

from gpiozero import MCP3008, PWMLED
from gpiozero.tools import summed, scaled
from signal import pause

pot1 = MCP3008(channel=0)
pot2 = MCP3008(channel=1)
pot3 = MCP3008(channel=2)
led = PWMLED(4)

led.source = scaled(summed(pot1, pot2, pot3), 0, 1, 0, 3)

pause()

	
gpiozero.tools.zip_values(*devices)

	Provides a source constructed from the values of each item, for example:

from gpiozero import MCP3008, Robot
from gpiozero.tools import zip_values
from signal import pause

robot = Robot(left=(4, 14), right=(17, 18))

left = MCP3008(0)
right = MCP3008(1)

robot.source = zip_values(left, right)

pause()

zip_values(left, right) is equivalent to zip(left.values,
right.values).

19.3. Artificial sources

	
gpiozero.tools.alternating_values(initial_value=False)

	Provides an infinite source of values alternating between True and
False, starting wth initial_value (which defaults to
False). For example, to produce a flashing LED:

from gpiozero import LED
from gpiozero.tools import alternating_values
from signal import pause

red = LED(2)

red.source_delay = 0.5
red.source = alternating_values()

pause()

	
gpiozero.tools.cos_values(period=360)

	Provides an infinite source of values representing a cosine wave (from -1
to +1) which repeats every period values. For example, to produce a
“siren” effect with a couple of LEDs that repeats once a second:

from gpiozero import PWMLED
from gpiozero.tools import cos_values, scaled, inverted
from signal import pause

red = PWMLED(2)
blue = PWMLED(3)

red.source_delay = 0.01
blue.source_delay = red.source_delay
red.source = scaled(cos_values(100), 0, 1, -1, 1)
blue.source = inverted(red)

pause()

If you require a different range than -1 to +1, see scaled().

	
gpiozero.tools.ramping_values(period=360)

	Provides an infinite source of values representing a triangle wave (from 0
to 1 and back again) which repeats every period values. For example, to
pulse an LED once a second:

from gpiozero import PWMLED
from gpiozero.tools import ramping_values
from signal import pause

red = PWMLED(2)

red.source_delay = 0.01
red.source = ramping_values(100)

pause()

If you require a wider range than 0 to 1, see scaled().

	
gpiozero.tools.random_values()

	Provides an infinite source of random values between 0 and 1. For example,
to produce a “flickering candle” effect with an LED:

from gpiozero import PWMLED
from gpiozero.tools import random_values
from signal import pause

led = PWMLED(4)

led.source = random_values()

pause()

If you require a wider range than 0 to 1, see scaled().

	
gpiozero.tools.sin_values(period=360)

	Provides an infinite source of values representing a sine wave (from -1 to
+1) which repeats every period values. For example, to produce a “siren”
effect with a couple of LEDs that repeats once a second:

from gpiozero import PWMLED
from gpiozero.tools import sin_values, scaled, inverted
from signal import pause

red = PWMLED(2)
blue = PWMLED(3)

red.source_delay = 0.01
blue.source_delay = red.source_delay
red.source = scaled(sin_values(100), 0, 1, -1, 1)
blue.source = inverted(red)

pause()

If you require a different range than -1 to +1, see scaled().

20. API - Tones

GPIO Zero includes a Tone class intended for use with the
TonalBuzzer. This class is in the tones module of GPIO
Zero and is typically imported as follows:

from gpiozero.tones import Tone

20.1. Tone

	
class gpiozero.tones.Tone

	Represents a frequency of sound in a variety of musical notations.

Tone class can be used with the TonalBuzzer
class to easily represent musical tones. The class can be constructed in a
variety of ways. For example as a straight frequency in Hz (which is the
internal storage format), as an integer MIDI note, or as a string
representation of a musical note.

All the following constructors are equivalent ways to construct the typical
tuning note, concert A at 440Hz, which is MIDI note #69:

>>> from gpiozero.tones import Tone
>>> Tone(440.0)
>>> Tone(69)
>>> Tone('A4')

If you do not want the constructor to guess which format you are using
(there is some ambiguity between frequencies and MIDI notes at the bottom
end of the frequencies, from 128Hz down), you can use one of the explicit
constructors, from_frequency(), from_midi(), or
from_note(), or you can specify a keyword argument when
constructing:

>>> Tone.from_frequency(440)
>>> Tone.from_midi(69)
>>> Tone.from_note('A4')
>>> Tone(frequency=440)
>>> Tone(midi=69)
>>> Tone(note='A4')

Several attributes are provided to permit conversion to any of the
supported construction formats: frequency, midi, and
note. Methods are provided to step up() or down() to
adjacent MIDI notes.

Warning

Currently Tone derives from float and can be used as
a floating point number in most circumstances (addition, subtraction,
etc). This part of the API is not yet considered “stable”; i.e. we may
decide to enhance / change this behaviour in future versions.

	
down(n=1)

	Return the Tone n semi-tones below this frequency (n
defaults to 1).

	
classmethod from_frequency(freq)

	Construct a Tone from a frequency specified in Hz which
must be a positive floating-point value in the range 0 < freq <= 20000.

	
classmethod from_midi(midi_note)

	Construct a Tone from a MIDI note, which must be an integer
in the range 0 to 127. For reference, A4 (concert A typically used
for tuning) is MIDI note #69.

	
classmethod from_note(note)

	Construct a Tone from a musical note which must consist of
a capital letter A through G, followed by an optional semi-tone
modifier (“b” for flat, “#” for sharp, or their Unicode equivalents),
followed by an octave number (0 through 9).

For example concert A, the typical tuning note at 440Hz, would be
represented as “A4”. One semi-tone above this would be “A#4” or
alternatively “Bb4”. Unicode representations of sharp and flat are also
accepted.

	
up(n=1)

	Return the Tone n semi-tones above this frequency (n
defaults to 1).

	
frequency

	Return the frequency of the tone in Hz.

	
midi

	Return the (nearest) MIDI note to the tone’s frequency. This will be an
integer number in the range 0 to 127. If the frequency is outside the
range represented by MIDI notes (which is approximately 8Hz to 12.5KHz)
ValueError exception will be raised.

	
note

	Return the (nearest) note to the tone’s frequency. This will be a
string in the form accepted by from_note(). If the frequency is
outside the range represented by this format (“A0” is approximately
27.5Hz, and “G9” is approximately 12.5Khz) a ValueError
exception will be raised.

21. API - Pi Information

The GPIO Zero library also contains a database of information about the various
revisions of the Raspberry Pi computer. This is used internally to raise
warnings when non-physical pins are used, or to raise exceptions when
pull-downs are requested on pins with physical pull-up resistors attached. The
following functions and classes can be used to query this database:

21.1. pi_info

	
gpiozero.pi_info(revision=None)

	Returns a PiBoardInfo instance containing information about a
revision of the Raspberry Pi.

	Parameters

	revision (str) – The revision of the Pi to return information about. If this is omitted
or None (the default), then the library will attempt to determine
the model of Pi it is running on and return information about that.

21.2. PiBoardInfo

	
class gpiozero.PiBoardInfo

	This class is a namedtuple() derivative used to
represent information about a particular model of Raspberry Pi. While it is
a tuple, it is strongly recommended that you use the following named
attributes to access the data contained within. The object can be used
in format strings with various custom format specifications:

from gpiozero import *

print('{0}'.format(pi_info()))
print('{0:full}'.format(pi_info()))
print('{0:board}'.format(pi_info()))
print('{0:specs}'.format(pi_info()))
print('{0:headers}'.format(pi_info()))

“color” and “mono” can be prefixed to format specifications to force the
use of ANSI color codes. If neither is specified, ANSI codes will only
be used if stdout is detected to be a tty:

print('{0:color board}'.format(pi_info())) # force use of ANSI codes
print('{0:mono board}'.format(pi_info())) # force plain ASCII

	
physical_pin(function)

	Return the physical pin supporting the specified function. If no pins
support the desired function, this function raises PinNoPins.
If multiple pins support the desired function, PinMultiplePins
will be raised (use physical_pins() if you expect multiple pins
in the result, such as for electrical ground).

	Parameters

	function (str) – The pin function you wish to search for. Usually this is something
like “GPIO9” for Broadcom GPIO pin 9.

	
physical_pins(function)

	Return the physical pins supporting the specified function as tuples
of (header, pin_number) where header is a string specifying the
header containing the pin_number. Note that the return value is a
set which is not indexable. Use physical_pin() if you
are expecting a single return value.

	Parameters

	function (str) – The pin function you wish to search for. Usually this is something
like “GPIO9” for Broadcom GPIO pin 9, or “GND” for all the pins
connecting to electrical ground.

	
pprint(color=None)

	Pretty-print a representation of the board along with header diagrams.

If color is None (the default), the diagram will include ANSI
color codes if stdout is a color-capable terminal. Otherwise color
can be set to True or False to force color or monochrome
output.

	
pulled_up(function)

	Returns a bool indicating whether a physical pull-up is attached to
the pin supporting the specified function. Either PinNoPins
or PinMultiplePins may be raised if the function is not
associated with a single pin.

	Parameters

	function (str) – The pin function you wish to determine pull-up for. Usually this is
something like “GPIO9” for Broadcom GPIO pin 9.

	
to_gpio(spec)

	Parses a pin spec, returning the equivalent Broadcom GPIO port number
or raising a ValueError exception if the spec does not represent
a GPIO port.

The spec may be given in any of the following forms:

	An integer, which will be accepted as a GPIO number

	‘GPIOn’ where n is the GPIO number

	‘WPIn’ where n is the wiringPi pin number

	‘BCMn’ where n is the GPIO number (alias of GPIOn)

	‘BOARDn’ where n is the physical pin number on the main header

	‘h:n’ where h is the header name and n is the physical pin number
(for example J8:5 is physical pin 5 on header J8, which is the main
header on modern Raspberry Pis)

	
revision

	A string indicating the revision of the Pi. This is unique to each
revision and can be considered the “key” from which all other
attributes are derived. However, in itself the string is fairly
meaningless.

	
model

	A string containing the model of the Pi (for example, “B”, “B+”, “A+”,
“2B”, “CM” (for the Compute Module), or “Zero”).

	
pcb_revision

	A string containing the PCB revision number which is silk-screened onto
the Pi (on some models).

Note

This is primarily useful to distinguish between the model B
revision 1.0 and 2.0 (not to be confused with the model 2B) which
had slightly different pinouts on their 26-pin GPIO headers.

	
released

	A string containing an approximate release date for this revision of
the Pi (formatted as yyyyQq, e.g. 2012Q1 means the first quarter of
2012).

	
soc

	A string indicating the SoC (system on a chip) that this revision
of the Pi is based upon.

	
manufacturer

	A string indicating the name of the manufacturer (usually “Sony” but a
few others exist).

	
memory

	An integer indicating the amount of memory (in Mb) connected to the
SoC.

Note

This can differ substantially from the amount of RAM available
to the operating system as the GPU’s memory is shared with the
CPU. When the camera module is activated, at least 128Mb of RAM
is typically reserved for the GPU.

	
storage

	A string indicating the type of bootable storage used with this
revision of Pi, e.g. “SD”, “MicroSD”, or “eMMC” (for the Compute
Module).

	
usb

	An integer indicating how many USB ports are physically present on
this revision of the Pi.

Note

This does not include the micro-USB port used to power the Pi.

	
ethernet

	An integer indicating how many Ethernet ports are physically present
on this revision of the Pi.

	
wifi

	A bool indicating whether this revision of the Pi has wifi built-in.

	
bluetooth

	A bool indicating whether this revision of the Pi has bluetooth
built-in.

	
csi

	An integer indicating the number of CSI (camera) ports available on
this revision of the Pi.

	
dsi

	An integer indicating the number of DSI (display) ports available on
this revision of the Pi.

	
headers

	A dictionary which maps header labels to HeaderInfo tuples.
For example, to obtain information about header P1 you would query
headers['P1']. To obtain information about pin 12 on header J8 you
would query headers['J8'].pins[12].

A rendered version of this data can be obtained by using the
PiBoardInfo object in a format string:

from gpiozero import *
print('{0:headers}'.format(pi_info()))

	
board

	An ASCII art rendition of the board, primarily intended for console
pretty-print usage. A more usefully rendered version of this data can
be obtained by using the PiBoardInfo object in a format
string. For example:

from gpiozero import *
print('{0:board}'.format(pi_info()))

21.3. HeaderInfo

	
class gpiozero.HeaderInfo

	This class is a namedtuple() derivative used to
represent information about a pin header on a board. The object can be used
in a format string with various custom specifications:

from gpiozero import *

print('{0}'.format(pi_info().headers['J8']))
print('{0:full}'.format(pi_info().headers['J8']))
print('{0:col2}'.format(pi_info().headers['P1']))
print('{0:row1}'.format(pi_info().headers['P1']))

“color” and “mono” can be prefixed to format specifications to force the
use of ANSI color codes. If neither is specified, ANSI codes will only
be used if stdout is detected to be a tty:

print('{0:color row2}'.format(pi_info().headers['J8'])) # force use of ANSI codes
print('{0:mono row2}'.format(pi_info().headers['P1'])) # force plain ASCII

The following attributes are defined:

	
pprint(color=None)

	Pretty-print a diagram of the header pins.

If color is None (the default, the diagram will include ANSI
color codes if stdout is a color-capable terminal). Otherwise color
can be set to True or False to force color or
monochrome output.

	
name

	The name of the header, typically as it appears silk-screened on the
board (e.g. “P1” or “J8”).

	
rows

	The number of rows on the header.

	
columns

	The number of columns on the header.

	
pins

	A dictionary mapping physical pin numbers to PinInfo tuples.

21.4. PinInfo

	
class gpiozero.PinInfo

	This class is a namedtuple() derivative used to
represent information about a pin present on a GPIO header. The following
attributes are defined:

	
number

	An integer containing the physical pin number on the header (starting
from 1 in accordance with convention).

	
function

	A string describing the function of the pin. Some common examples
include “GND” (for pins connecting to ground), “3V3” (for pins which
output 3.3 volts), “GPIO9” (for GPIO9 in the Broadcom numbering
scheme), etc.

	
pull_up

	A bool indicating whether the pin has a physical pull-up resistor
permanently attached (this is usually False but GPIO2 and GPIO3
are usually True). This is used internally by gpiozero to
raise errors when pull-down is requested on a pin with a physical
pull-up resistor.

	
row

	An integer indicating on which row the pin is physically located in
the header (1-based)

	
col

	An integer indicating in which column the pin is physically located
in the header (1-based)

22. API - Pins

As of release 1.1, the GPIO Zero library can be roughly divided into two
things: pins and the devices that are connected to them. The majority of the
documentation focuses on devices as pins are below the level that most users
are concerned with. However, some users may wish to take advantage of the
capabilities of alternative GPIO implementations or (in future) use GPIO
extender chips. This is the purpose of the pins portion of the library.

When you construct a device, you pass in a pin specification. This is passed to
a pin Factory which turns it into a Pin implementation. The
default factory can be queried (and changed) with Device.pin_factory.
However, all classes (even internal devices) accept a pin_factory keyword
argument to their constructors permitting the factory to be overridden on a
per-device basis (the reason for allowing per-device factories is made apparent
in the Configuring Remote GPIO chapter).

This is illustrated in the following flow-chart:

[image: _images/device_pin_flowchart.svg]

The default factory is constructed when GPIO Zero is first imported; if no
default factory can be constructed (e.g. because no GPIO implementations are
installed, or all of them fail to load for whatever reason), an
ImportError will be raised.

22.1. Changing the pin factory

The default pin factory can be replaced by specifying a value for the
GPIOZERO_PIN_FACTORY environment variable. For example:

$ GPIOZERO_PIN_FACTORY=native python
Python 3.4.2 (default, Oct 19 2014, 13:31:11)
[GCC 4.9.1] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import gpiozero
>>> gpiozero.Device.pin_factory
<gpiozero.pins.native.NativeFactory object at 0x762c26b0>

To set the GPIOZERO_PIN_FACTORY for the rest of your session you can
export this value:

$ export GPIOZERO_PIN_FACTORY=native
$ python
Python 3.4.2 (default, Oct 19 2014, 13:31:11)
[GCC 4.9.1] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import gpiozero
>>> gpiozero.Device.pin_factory
<gpiozero.pins.native.NativeFactory object at 0x762c26b0>
>>> quit()
$ python
Python 3.4.2 (default, Oct 19 2014, 13:31:11)
[GCC 4.9.1] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import gpiozero
>>> gpiozero.Device.pin_factory
<gpiozero.pins.native.NativeFactory object at 0x76401330>

If you add the export command to your ~/.bashrc file, you’ll
set the default pin factory for all future sessions too.

The following values, and the corresponding Factory and Pin
classes are listed in the table below. Factories are listed in the order that
they are tried by default.

	Name

	Factory class

	Pin class

	rpigpio

	gpiozero.pins.rpigpio.RPiGPIOFactory

	gpiozero.pins.rpigpio.RPiGPIOPin

	rpio

	gpiozero.pins.rpio.RPIOFactory

	gpiozero.pins.rpio.RPIOPin

	pigpio

	gpiozero.pins.pigpio.PiGPIOFactory

	gpiozero.pins.pigpio.PiGPIOPin

	native

	gpiozero.pins.native.NativeFactory

	gpiozero.pins.native.NativePin

If you need to change the default pin factory from within a script, either set
Device.pin_factory to the new factory instance to use:

from gpiozero.pins.native import NativeFactory
from gpiozero import Device, LED

Device.pin_factory = NativeFactory()

These will now implicitly use NativePin instead of
RPiGPIOPin
led1 = LED(16)
led2 = LED(17)

Or use the pin_factory keyword parameter mentioned above:

from gpiozero.pins.native import NativeFactory
from gpiozero import LED

my_factory = NativeFactory()

This will use NativePin instead of RPiGPIOPin for led1
but led2 will continue to use RPiGPIOPin
led1 = LED(16, pin_factory=my_factory)
led2 = LED(17)

Certain factories may take default information from additional sources.
For example, to default to creating pins with
gpiozero.pins.pigpio.PiGPIOPin on a remote pi called “remote-pi”
you can set the PIGPIO_ADDR environment variable when running your
script:

$ GPIOZERO_PIN_FACTORY=pigpio PIGPIO_ADDR=remote-pi python3 my_script.py

Like the GPIOZERO_PIN_FACTORY value, these can be exported from your
~/.bashrc script too.

Warning

The astute and mischievous reader may note that it is possible to mix
factories, e.g. using RPiGPIOFactory for
one pin, and NativeFactory for another. This
is unsupported, and if it results in your script crashing, your components
failing, or your Raspberry Pi turning into an actual raspberry pie, you
have only yourself to blame.

Sensible uses of multiple pin factories are given in Configuring Remote GPIO.

22.2. Mock pins

There’s also a gpiozero.pins.mock.MockFactory which generates entirely
fake pins. This was originally intended for GPIO Zero developers who wish to
write tests for devices without having to have the physical device wired in to
their Pi. However, they have also proven relatively useful in developing GPIO
Zero scripts without having a Pi to hand. This pin factory will never be loaded
by default; it must be explicitly specified. For example:

from gpiozero.pins.mock import MockFactory
from gpiozero import Device, Button, LED
from time import sleep

Set the default pin factory to a mock factory
Device.pin_factory = MockFactory()

Construct a couple of devices attached to mock pins 16 and 17, and link the
devices
led = LED(17)
btn = Button(16)
led.source = btn

Here the button isn't "pushed" so the LED's value should be False
print(led.value)

Get a reference to mock pin 16 (used by the button)
btn_pin = Device.pin_factory.pin(16)

Drive the pin low (this is what would happen electrically when the button is
pushed)
btn_pin.drive_low()
sleep(0.1) # give source some time to re-read the button state
print(led.value)

btn_pin.drive_high()
sleep(0.1)
print(led.value)

Several sub-classes of mock pins exist for emulating various other things
(pins that do/don’t support PWM, pins that are connected together, pins that
drive high after a delay, etc). Interested users are invited to read the GPIO
Zero test suite for further examples of usage.

22.3. Base classes

	
class gpiozero.Factory

	Generates pins and SPI interfaces for devices. This is an abstract
base class for pin factories. Descendents must override the following
methods:

	ticks()

	ticks_diff()

Descendents may override the following methods, if applicable:

	close()

	reserve_pins()

	release_pins()

	release_all()

	pin()

	spi()

	_get_pi_info()

	
close()

	Closes the pin factory. This is expected to clean up all resources
manipulated by the factory. It it typically called at script
termination.

	
pin(spec)

	Creates an instance of a Pin descendent representing the
specified pin.

Warning

Descendents must ensure that pin instances representing the same
hardware are identical; i.e. two separate invocations of
pin() for the same pin specification must return the same
object.

	
release_all(reserver)

	Releases all pin reservations taken out by reserver. See
release_pins() for further information).

	
release_pins(reserver, *pins)

	Releases the reservation of reserver against pins. This is
typically called during close() to clean up
reservations taken during construction. Releasing a reservation that is
not currently held will be silently ignored (to permit clean-up after
failed / partial construction).

	
reserve_pins(requester, *pins)

	Called to indicate that the device reserves the right to use the
specified pins. This should be done during device construction. If
pins are reserved, you must ensure that the reservation is released by
eventually called release_pins().

	
spi(**spi_args)

	Returns an instance of an SPI interface, for the specified SPI
port and device, or for the specified pins (clock_pin,
mosi_pin, miso_pin, and select_pin). Only one of the schemes can
be used; attempting to mix port and device with pin numbers will
raise SPIBadArgs.

	
ticks()

	Return the current ticks, according to the factory. The reference point
is undefined and thus the result of this method is only meaningful when
compared to another value returned by this method.

The format of the time is also arbitrary, as is whether the time wraps
after a certain duration. Ticks should only be compared using the
ticks_diff() method.

	
ticks_diff(later, earlier)

	Return the time in seconds between two ticks() results. The
arguments are specified in the same order as they would be in the
formula later - earlier but the result is guaranteed to be in
seconds, and to be positive even if the ticks “wrapped” between calls
to ticks().

	
pi_info

	Returns a PiBoardInfo instance representing the Pi that
instances generated by this factory will be attached to.

If the pins represented by this class are not directly attached to a
Pi (e.g. the pin is attached to a board attached to the Pi, or the pins
are not on a Pi at all), this may return None.

	
class gpiozero.Pin

	Abstract base class representing a pin attached to some form of controller,
be it GPIO, SPI, ADC, etc.

Descendents should override property getters and setters to accurately
represent the capabilities of pins. Descendents must override the
following methods:

	_get_function()

	_set_function()

	_get_state()

Descendents may additionally override the following methods, if
applicable:

	close()

	output_with_state()

	input_with_pull()

	_set_state()

	_get_frequency()

	_set_frequency()

	_get_pull()

	_set_pull()

	_get_bounce()

	_set_bounce()

	_get_edges()

	_set_edges()

	_get_when_changed()

	_set_when_changed()

	
close()

	Cleans up the resources allocated to the pin. After this method is
called, this Pin instance may no longer be used to query or
control the pin’s state.

	
input_with_pull(pull)

	Sets the pin’s function to “input” and specifies an initial pull-up
for the pin. By default this is equivalent to performing:

pin.function = 'input'
pin.pull = pull

However, descendents may override this order to provide the smallest
possible delay between configuring the pin for input and pulling the
pin up/down (which can be important for avoiding “blips” in some
configurations).

	
output_with_state(state)

	Sets the pin’s function to “output” and specifies an initial state
for the pin. By default this is equivalent to performing:

pin.function = 'output'
pin.state = state

However, descendents may override this in order to provide the smallest
possible delay between configuring the pin for output and specifying an
initial value (which can be important for avoiding “blips” in
active-low configurations).

	
bounce

	The amount of bounce detection (elimination) currently in use by edge
detection, measured in seconds. If bounce detection is not currently in
use, this is None.

For example, if edges is currently “rising”, bounce is
currently 5/1000 (5ms), then the waveform below will only fire
when_changed on two occasions despite there being three rising
edges:

TIME 0...1...2...3...4...5...6...7...8...9...10..11..12 ms

bounce elimination |===================| |==============

HIGH - - - - > ,--. ,--------------. ,--.
 | | | | | |
 | | | | | |
LOW ----------------' `-' `-' `-----------
 : :
 : :
 when_changed when_changed
 fires fires

If the pin does not support edge detection, attempts to set this
property will raise PinEdgeDetectUnsupported. If the pin
supports edge detection, the class must implement bounce detection,
even if only in software.

	
edges

	The edge that will trigger execution of the function or bound method
assigned to when_changed. This can be one of the strings
“both” (the default), “rising”, “falling”, or “none”:

HIGH - - - - > ,--------------.
 | |
 | |
LOW --------------------' `--------------
 : :
 : :
Fires when_changed "both" "both"
when edges is ... "rising" "falling"

If the pin does not support edge detection, attempts to set this
property will raise PinEdgeDetectUnsupported.

	
frequency

	The frequency (in Hz) for the pin’s PWM implementation, or None
if PWM is not currently in use. This value always defaults to
None and may be changed with certain pin types to activate or
deactivate PWM.

If the pin does not support PWM, PinPWMUnsupported will be
raised when attempting to set this to a value other than None.

	
function

	The function of the pin. This property is a string indicating the
current function or purpose of the pin. Typically this is the string
“input” or “output”. However, in some circumstances it can be other
strings indicating non-GPIO related functionality.

With certain pin types (e.g. GPIO pins), this attribute can be changed
to configure the function of a pin. If an invalid function is
specified, for this attribute, PinInvalidFunction will be
raised.

	
pull

	The pull-up state of the pin represented as a string. This is typically
one of the strings “up”, “down”, or “floating” but additional values
may be supported by the underlying hardware.

If the pin does not support changing pull-up state (for example because
of a fixed pull-up resistor), attempts to set this property will raise
PinFixedPull. If the specified value is not supported by the
underlying hardware, PinInvalidPull is raised.

	
state

	The state of the pin. This is 0 for low, and 1 for high. As a low level
view of the pin, no swapping is performed in the case of pull ups (see
pull for more information):

HIGH - - - - > ,----------------------
 |
 |
LOW ----------------'

Descendents which implement analog, or analog-like capabilities can
return values between 0 and 1. For example, pins implementing PWM
(where frequency is not None) return a value between
0.0 and 1.0 representing the current PWM duty cycle.

If a pin is currently configured for input, and an attempt is made to
set this attribute, PinSetInput will be raised. If an invalid
value is specified for this attribute, PinInvalidState will be
raised.

	
when_changed

	A function or bound method to be called when the pin’s state changes
(more specifically when the edge specified by edges is detected
on the pin). The function or bound method must accept two parameters:
the first will report the ticks (from Factory.ticks()) when
the pin’s state changed, and the second will report the pin’s current
state.

Warning

Depending on hardware support, the state is not guaranteed to be
accurate. For instance, many GPIO implementations will provide
an interrupt indicating when a pin’s state changed but not what it
changed to. In this case the pin driver simply reads the pin’s
current state to supply this parameter, but the pin’s state may
have changed since the interrupt. Exercise appropriate caution
when relying upon this parameter.

If the pin does not support edge detection, attempts to set this
property will raise PinEdgeDetectUnsupported.

	
class gpiozero.SPI

	Abstract interface for Serial Peripheral Interface (SPI)
implementations. Descendents must override the following methods:

	transfer()

	_get_clock_mode()

Descendents may override the following methods, if applicable:

	read()

	write()

	_set_clock_mode()

	_get_lsb_first()

	_set_lsb_first()

	_get_select_high()

	_set_select_high()

	_get_bits_per_word()

	_set_bits_per_word()

	
read(n)

	Read n words of data from the SPI interface, returning them as a
sequence of unsigned ints, each no larger than the configured
bits_per_word of the interface.

This method is typically used with read-only devices that feature
half-duplex communication. See transfer() for full duplex
communication.

	
transfer(data)

	Write data to the SPI interface. data must be a sequence of
unsigned integer words each of which will fit within the configured
bits_per_word of the interface. The method returns the sequence
of words read from the interface while writing occurred (full duplex
communication).

The length of the sequence returned dictates the number of words of
data written to the interface. Each word in the returned sequence
will be an unsigned integer no larger than the configured
bits_per_word of the interface.

	
write(data)

	Write data to the SPI interface. data must be a sequence of
unsigned integer words each of which will fit within the configured
bits_per_word of the interface. The method returns the number
of words written to the interface (which may be less than or equal to
the length of data).

This method is typically used with write-only devices that feature
half-duplex communication. See transfer() for full duplex
communication.

	
bits_per_word

	Controls the number of bits that make up a word, and thus where the
word boundaries appear in the data stream, and the maximum value of a
word. Defaults to 8 meaning that words are effectively bytes.

Several implementations do not support non-byte-sized words.

	
clock_mode

	Presents a value representing the clock_polarity and
clock_phase attributes combined according to the following
table:

	mode

	polarity (CPOL)

	phase (CPHA)

	0

	False

	False

	1

	False

	True

	2

	True

	False

	3

	True

	True

Adjusting this value adjusts both the clock_polarity and
clock_phase attributes simultaneously.

	
clock_phase

	The phase of the SPI clock pin. If this is False (the default),
data will be read from the MISO pin when the clock pin activates.
Setting this to True will cause data to be read from the MISO
pin when the clock pin deactivates. On many data sheets this is
documented as the CPHA value. Whether the clock edge is rising or
falling when the clock is considered activated is controlled by the
clock_polarity attribute (corresponding to CPOL).

The following diagram indicates when data is read when
clock_polarity is False, and clock_phase is
False (the default), equivalent to CPHA 0:

 ,---. ,---. ,---. ,---. ,---. ,---. ,---.
CLK | | | | | | | | | | | | | |
 | | | | | | | | | | | | | |
----' `---' `---' `---' `---' `---' `---' `-------
 : : : : : : :
MISO---. ,---. ,---. ,---. ,---. ,---. ,---.
 / \ / \ / \ / \ / \ / \ / \
-{ Bit X Bit X Bit X Bit X Bit X Bit X Bit }------
 \ / \ / \ / \ / \ / \ / \ /
 `---' `---' `---' `---' `---' `---' `---'

The following diagram indicates when data is read when
clock_polarity is False, but clock_phase is
True, equivalent to CPHA 1:

 ,---. ,---. ,---. ,---. ,---. ,---. ,---.
CLK | | | | | | | | | | | | | |
 | | | | | | | | | | | | | |
----' `---' `---' `---' `---' `---' `---' `-------
 : : : : : : :
MISO ,---. ,---. ,---. ,---. ,---. ,---. ,---.
 / \ / \ / \ / \ / \ / \ / \
-----{ Bit X Bit X Bit X Bit X Bit X Bit X Bit }--
 \ / \ / \ / \ / \ / \ / \ /
 `---' `---' `---' `---' `---' `---' `---'

	
clock_polarity

	The polarity of the SPI clock pin. If this is False (the
default), the clock pin will idle low, and pulse high. Setting this to
True will cause the clock pin to idle high, and pulse low. On
many data sheets this is documented as the CPOL value.

The following diagram illustrates the waveform when
clock_polarity is False (the default), equivalent to
CPOL 0:

 on on on on on on on
 ,---. ,---. ,---. ,---. ,---. ,---. ,---.
CLK | | | | | | | | | | | | | |
 | | | | | | | | | | | | | |
------' `---' `---' `---' `---' `---' `---' `------
idle off off off off off off idle

The following diagram illustrates the waveform when
clock_polarity is True, equivalent to CPOL 1:

idle off off off off off off idle
------. ,---. ,---. ,---. ,---. ,---. ,---. ,------
 | | | | | | | | | | | | | |
CLK | | | | | | | | | | | | | |
 `---' `---' `---' `---' `---' `---' `---'
 on on on on on on on

	
lsb_first

	Controls whether words are read and written LSB in (Least Significant
Bit first) order. The default is False indicating that words
are read and written in MSB (Most Significant Bit first) order.
Effectively, this controls the Bit endianness of the connection.

The following diagram shows the a word containing the number 5 (binary
0101) transmitted on MISO with bits_per_word set to 4, and
clock_mode set to 0, when lsb_first is False
(the default):

 ,---. ,---. ,---. ,---.
CLK | | | | | | | |
 | | | | | | | |
----' `---' `---' `---' `-----
 : ,-------. : ,-------.
MISO: | : | : | : |
 : | : | : | : |
----------' : `-------' : `----
 : : : :
 MSB LSB

And now with lsb_first set to True (and all other
parameters the same):

 ,---. ,---. ,---. ,---.
CLK | | | | | | | |
 | | | | | | | |
----' `---' `---' `---' `-----
 ,-------. : ,-------. :
MISO: | : | : | :
 | : | : | : | :
--' : `-------' : `-----------
 : : : :
 LSB MSB

	
select_high

	If False (the default), the chip select line is considered
active when it is pulled low. When set to True, the chip select
line is considered active when it is driven high.

The following diagram shows the waveform of the chip select line, and
the clock when clock_polarity is False, and
select_high is False (the default):

---. ,------
__ | |
CS | chip is selected, and will react to clock | idle
 `---'

 ,---. ,---. ,---. ,---. ,---. ,---. ,---.
CLK | | | | | | | | | | | | | |
 | | | | | | | | | | | | | |
----' `---' `---' `---' `---' `---' `---' `-------

And when select_high is True:

 ,---.
CS | chip is selected, and will react to clock | idle
 | |
---' `------

 ,---. ,---. ,---. ,---. ,---. ,---. ,---.
CLK | | | | | | | | | | | | | |
 | | | | | | | | | | | | | |
----' `---' `---' `---' `---' `---' `---' `-------

	
class gpiozero.pins.pi.PiFactory

	Extends Factory. Abstract base class representing
hardware attached to a Raspberry Pi. This forms the base of
LocalPiFactory.

	
close()

	Closes the pin factory. This is expected to clean up all resources
manipulated by the factory. It it typically called at script
termination.

	
pin(spec)

	Creates an instance of a Pin descendent representing the
specified pin.

Warning

Descendents must ensure that pin instances representing the same
hardware are identical; i.e. two separate invocations of
pin() for the same pin specification must return the same
object.

	
release_pins(reserver, *pins)

	Releases the reservation of reserver against pins. This is
typically called during close() to clean up
reservations taken during construction. Releasing a reservation that is
not currently held will be silently ignored (to permit clean-up after
failed / partial construction).

	
reserve_pins(requester, *pins)

	Called to indicate that the device reserves the right to use the
specified pins. This should be done during device construction. If
pins are reserved, you must ensure that the reservation is released by
eventually called release_pins().

	
spi(**spi_args)

	Returns an SPI interface, for the specified SPI port and device, or
for the specified pins (clock_pin, mosi_pin, miso_pin, and
select_pin). Only one of the schemes can be used; attempting to mix
port and device with pin numbers will raise
SPIBadArgs.

If the pins specified match the hardware SPI pins (clock on GPIO11,
MOSI on GPIO10, MISO on GPIO9, and chip select on GPIO8 or GPIO7), and
the spidev module can be imported, a hardware based interface (using
spidev) will be returned. Otherwise, a software based interface will be
returned which will use simple bit-banging to communicate.

Both interfaces have the same API, support clock polarity and phase
attributes, and can handle half and full duplex communications, but the
hardware interface is significantly faster (though for many things this
doesn’t matter).

	
class gpiozero.pins.pi.PiPin(factory, number)

	Extends Pin. Abstract base class representing a
multi-function GPIO pin attached to a Raspberry Pi. Descendents must
override the following methods:

	_get_function()

	_set_function()

	_get_state()

	_call_when_changed()

	_enable_event_detect()

	_disable_event_detect()

Descendents may additionally override the following methods, if
applicable:

	close()

	output_with_state()

	input_with_pull()

	_set_state()

	_get_frequency()

	_set_frequency()

	_get_pull()

	_set_pull()

	_get_bounce()

	_set_bounce()

	_get_edges()

	_set_edges()

	
class gpiozero.pins.local.LocalPiFactory

	Extends PiFactory. Abstract base class
representing pins attached locally to a Pi. This forms the base class for
local-only pin interfaces (RPiGPIOPin,
RPIOPin, and
NativePin).

	
static ticks()

	Return the current ticks, according to the factory. The reference point
is undefined and thus the result of this method is only meaningful when
compared to another value returned by this method.

The format of the time is also arbitrary, as is whether the time wraps
after a certain duration. Ticks should only be compared using the
ticks_diff() method.

	
static ticks_diff(later, earlier)

	Return the time in seconds between two ticks() results. The
arguments are specified in the same order as they would be in the
formula later - earlier but the result is guaranteed to be in
seconds, and to be positive even if the ticks “wrapped” between calls
to ticks().

	
class gpiozero.pins.local.LocalPiPin(factory, number)

	Extends PiPin. Abstract base class representing
a multi-function GPIO pin attached to the local Raspberry Pi.

22.4. RPi.GPIO

	
class gpiozero.pins.rpigpio.RPiGPIOFactory

	Extends LocalPiFactory. Uses the RPi.GPIO
library to interface to the Pi’s GPIO pins. This is the default pin
implementation if the RPi.GPIO library is installed. Supports all features
including PWM (via software).

Because this is the default pin implementation you can use it simply by
specifying an integer number for the pin in most operations, e.g.:

from gpiozero import LED

led = LED(12)

However, you can also construct RPi.GPIO pins manually if you wish:

from gpiozero.pins.rpigpio import RPiGPIOFactory
from gpiozero import LED

factory = RPiGPIOFactory()
led = LED(12, pin_factory=factory)

	
class gpiozero.pins.rpigpio.RPiGPIOPin(factory, number)

	Extends LocalPiPin. Pin implementation for
the RPi.GPIO library. See RPiGPIOFactory for more information.

22.5. RPIO

	
class gpiozero.pins.rpio.RPIOFactory

	Extends LocalPiFactory. Uses the RPIO
library to interface to the Pi’s GPIO pins. This is the default pin
implementation if the RPi.GPIO library is not installed, but RPIO is.
Supports all features including PWM (hardware via DMA).

Note

Please note that at the time of writing, RPIO is only compatible with
Pi 1’s; the Raspberry Pi 2 Model B is not supported. Also note that
root access is required so scripts must typically be run with sudo.

You can construct RPIO pins manually like so:

from gpiozero.pins.rpio import RPIOFactory
from gpiozero import LED

factory = RPIOFactory()
led = LED(12, pin_factory=factory)

	
class gpiozero.pins.rpio.RPIOPin(factory, number)

	Extends LocalPiPin. Pin implementation for
the RPIO library. See RPIOFactory for more information.

22.6. PiGPIO

	
class gpiozero.pins.pigpio.PiGPIOFactory(host=None, port=None)

	Extends PiFactory. Uses the `pigpio`_ library to
interface to the Pi’s GPIO pins. The pigpio library relies on a daemon
(pigpiod) to be running as root to provide access to the GPIO
pins, and communicates with this daemon over a network socket.

While this does mean only the daemon itself should control the pins, the
architecture does have several advantages:

	Pins can be remote controlled from another machine (the other
machine doesn’t even have to be a Raspberry Pi; it simply needs the
`pigpio`_ client library installed on it)

	The daemon supports hardware PWM via the DMA controller

	Your script itself doesn’t require root privileges; it just needs to
be able to communicate with the daemon

You can construct pigpio pins manually like so:

from gpiozero.pins.pigpio import PiGPIOFactory
from gpiozero import LED

factory = PiGPIOFactory()
led = LED(12, pin_factory=factory)

This is particularly useful for controlling pins on a remote machine. To
accomplish this simply specify the host (and optionally port) when
constructing the pin:

from gpiozero.pins.pigpio import PiGPIOFactory
from gpiozero import LED

factory = PiGPIOFactory(host='192.168.0.2')
led = LED(12, pin_factory=factory)

Note

In some circumstances, especially when playing with PWM, it does appear
to be possible to get the daemon into “unusual” states. We would be
most interested to hear any bug reports relating to this (it may be a
bug in our pin implementation). A workaround for now is simply to
restart the pigpiod daemon.

	
class gpiozero.pins.pigpio.PiGPIOPin(factory, number)

	Extends PiPin. Pin implementation for the
`pigpio`_ library. See PiGPIOFactory for more information.

22.7. Native

	
class gpiozero.pins.native.NativeFactory

	Extends LocalPiFactory. Uses a built-in pure
Python implementation to interface to the Pi’s GPIO pins. This is the
default pin implementation if no third-party libraries are discovered.

Warning

This implementation does not currently support PWM. Attempting to
use any class which requests PWM will raise an exception.

You can construct native pin instances manually like so:

from gpiozero.pins.native import NativeFactory
from gpiozero import LED

factory = NativeFactory()
led = LED(12, pin_factory=factory)

	
class gpiozero.pins.native.NativePin(factory, number)

	Extends LocalPiPin. Native pin
implementation. See NativeFactory for more information.

22.8. Mock

	
class gpiozero.pins.mock.MockFactory(revision=None, pin_class=None)

	Factory for generating mock pins. The revision parameter specifies what
revision of Pi the mock factory pretends to be (this affects the result of
the pi_info attribute as well as where pull-ups
are assumed to be). The pin_class attribute specifies which mock pin
class will be generated by the pin() method by default. This can be
changed after construction by modifying the pin_class attribute.

	
pin_class

	This attribute stores the MockPin class (or descendent) that
will be used when constructing pins with the pin() method (if
no pin_class parameter is used to override it). It defaults on
construction to the value of the pin_class parameter in the
constructor, or MockPin if that is unspecified.

	
pin(spec, pin_class=None, **kwargs)

	The pin method for MockFactory additionally takes a pin_class
attribute which can be used to override the class’ pin_class
attribute. Any additional keyword arguments will be passed along to the
pin constructor (useful with things like MockConnectedPin which
expect to be constructed with another pin).

	
reset()

	Clears the pins and reservations sets. This is primarily useful in
test suites to ensure the pin factory is back in a “clean” state before
the next set of tests are run.

	
class gpiozero.pins.mock.MockPin(factory, number)

	A mock pin used primarily for testing. This class does not support PWM.

	
class gpiozero.pins.mock.MockPWMPin(factory, number)

	This derivative of MockPin adds PWM support.

	
class gpiozero.pins.mock.MockConnectedPin(factory, number, input_pin=None)

	This derivative of MockPin emulates a pin connected to another
mock pin. This is used in the “real pins” portion of the test suite to
check that one pin can influence another.

	
class gpiozero.pins.mock.MockChargingPin(factory, number, charge_time=0.01)

	This derivative of MockPin emulates a pin which, when set to
input, waits a predetermined length of time and then drives itself high
(as if attached to, e.g. a typical circuit using an LDR and a capacitor
to time the charging rate).

	
class gpiozero.pins.mock.MockTriggerPin(factory, number, echo_pin=None, echo_time=0.04)

	This derivative of MockPin is intended to be used with another
MockPin to emulate a distance sensor. Set echo_pin to the
corresponding pin instance. When this pin is driven high it will trigger
the echo pin to drive high for the echo time.

23. API - Exceptions

The following exceptions are defined by GPIO Zero. Please note that multiple
inheritance is heavily used in the exception hierarchy to make testing for
exceptions easier. For example, to capture any exception generated by GPIO
Zero’s code:

from gpiozero import *

led = PWMLED(17)
try:
 led.value = 2
except GPIOZeroError:
 print('A GPIO Zero error occurred')

Since all GPIO Zero’s exceptions descend from GPIOZeroError, this will
work. However, certain specific errors have multiple parents. For example, in
the case that an out of range value is passed to OutputDevice.value you
would expect a ValueError to be raised. In fact, a
OutputDeviceBadValue error will be raised. However, note that this
descends from both GPIOZeroError (indirectly) and from ValueError
so you can still do the obvious:

from gpiozero import *

led = PWMLED(17)
try:
 led.value = 2
except ValueError:
 print('Bad value specified')

23.1. Errors

	
exception gpiozero.GPIOZeroError

	Bases: Exception

Base class for all exceptions in GPIO Zero

	
exception gpiozero.DeviceClosed

	Bases: gpiozero.exc.GPIOZeroError

Error raised when an operation is attempted on a closed device

	
exception gpiozero.BadEventHandler

	Bases: gpiozero.exc.GPIOZeroError, ValueError

Error raised when an event handler with an incompatible prototype is specified

	
exception gpiozero.BadWaitTime

	Bases: gpiozero.exc.GPIOZeroError, ValueError

Error raised when an invalid wait time is specified

	
exception gpiozero.BadQueueLen

	Bases: gpiozero.exc.GPIOZeroError, ValueError

Error raised when non-positive queue length is specified

	
exception gpiozero.BadPinFactory

	Bases: gpiozero.exc.GPIOZeroError, ImportError

Error raised when an unknown pin factory name is specified

	
exception gpiozero.ZombieThread

	Bases: gpiozero.exc.GPIOZeroError, RuntimeError

Error raised when a thread fails to die within a given timeout

	
exception gpiozero.CompositeDeviceError

	Bases: gpiozero.exc.GPIOZeroError

Base class for errors specific to the CompositeDevice hierarchy

	
exception gpiozero.CompositeDeviceBadName

	Bases: gpiozero.exc.CompositeDeviceError, ValueError

Error raised when a composite device is constructed with a reserved name

	
exception gpiozero.CompositeDeviceBadOrder

	Bases: gpiozero.exc.CompositeDeviceError, ValueError

Error raised when a composite device is constructed with an incomplete order

	
exception gpiozero.CompositeDeviceBadDevice

	Bases: gpiozero.exc.CompositeDeviceError, ValueError

Error raised when a composite device is constructed with an object that doesn’t inherit from Device

	
exception gpiozero.EnergenieSocketMissing

	Bases: gpiozero.exc.CompositeDeviceError, ValueError

Error raised when socket number is not specified

	
exception gpiozero.EnergenieBadSocket

	Bases: gpiozero.exc.CompositeDeviceError, ValueError

Error raised when an invalid socket number is passed to Energenie

	
exception gpiozero.SPIError

	Bases: gpiozero.exc.GPIOZeroError

Base class for errors related to the SPI implementation

	
exception gpiozero.SPIBadArgs

	Bases: gpiozero.exc.SPIError, ValueError

Error raised when invalid arguments are given while constructing SPIDevice

	
exception gpiozero.SPIBadChannel

	Bases: gpiozero.exc.SPIError, ValueError

Error raised when an invalid channel is given to an AnalogInputDevice

	
exception gpiozero.SPIFixedClockMode

	Bases: gpiozero.exc.SPIError, AttributeError

Error raised when the SPI clock mode cannot be changed

	
exception gpiozero.SPIInvalidClockMode

	Bases: gpiozero.exc.SPIError, ValueError

Error raised when an invalid clock mode is given to an SPI implementation

	
exception gpiozero.SPIFixedBitOrder

	Bases: gpiozero.exc.SPIError, AttributeError

Error raised when the SPI bit-endianness cannot be changed

	
exception gpiozero.SPIFixedSelect

	Bases: gpiozero.exc.SPIError, AttributeError

Error raised when the SPI select polarity cannot be changed

	
exception gpiozero.SPIFixedWordSize

	Bases: gpiozero.exc.SPIError, AttributeError

Error raised when the number of bits per word cannot be changed

	
exception gpiozero.SPIInvalidWordSize

	Bases: gpiozero.exc.SPIError, ValueError

Error raised when an invalid (out of range) number of bits per word is specified

	
exception gpiozero.GPIODeviceError

	Bases: gpiozero.exc.GPIOZeroError

Base class for errors specific to the GPIODevice hierarchy

	
exception gpiozero.GPIODeviceClosed

	Bases: gpiozero.exc.GPIODeviceError, gpiozero.exc.DeviceClosed

Deprecated descendent of DeviceClosed

	
exception gpiozero.GPIOPinInUse

	Bases: gpiozero.exc.GPIODeviceError

Error raised when attempting to use a pin already in use by another device

	
exception gpiozero.GPIOPinMissing

	Bases: gpiozero.exc.GPIODeviceError, ValueError

Error raised when a pin specification is not given

	
exception gpiozero.InputDeviceError

	Bases: gpiozero.exc.GPIODeviceError

Base class for errors specific to the InputDevice hierarchy

	
exception gpiozero.OutputDeviceError

	Bases: gpiozero.exc.GPIODeviceError

Base class for errors specified to the OutputDevice hierarchy

	
exception gpiozero.OutputDeviceBadValue

	Bases: gpiozero.exc.OutputDeviceError, ValueError

Error raised when value is set to an invalid value

	
exception gpiozero.PinError

	Bases: gpiozero.exc.GPIOZeroError

Base class for errors related to pin implementations

	
exception gpiozero.PinInvalidFunction

	Bases: gpiozero.exc.PinError, ValueError

Error raised when attempting to change the function of a pin to an invalid value

	
exception gpiozero.PinInvalidState

	Bases: gpiozero.exc.PinError, ValueError

Error raised when attempting to assign an invalid state to a pin

	
exception gpiozero.PinInvalidPull

	Bases: gpiozero.exc.PinError, ValueError

Error raised when attempting to assign an invalid pull-up to a pin

	
exception gpiozero.PinInvalidEdges

	Bases: gpiozero.exc.PinError, ValueError

Error raised when attempting to assign an invalid edge detection to a pin

	
exception gpiozero.PinInvalidBounce

	Bases: gpiozero.exc.PinError, ValueError

Error raised when attempting to assign an invalid bounce time to a pin

	
exception gpiozero.PinSetInput

	Bases: gpiozero.exc.PinError, AttributeError

Error raised when attempting to set a read-only pin

	
exception gpiozero.PinFixedPull

	Bases: gpiozero.exc.PinError, AttributeError

Error raised when attempting to set the pull of a pin with fixed pull-up

	
exception gpiozero.PinEdgeDetectUnsupported

	Bases: gpiozero.exc.PinError, AttributeError

Error raised when attempting to use edge detection on unsupported pins

	
exception gpiozero.PinUnsupported

	Bases: gpiozero.exc.PinError, NotImplementedError

Error raised when attempting to obtain a pin interface on unsupported pins

	
exception gpiozero.PinSPIUnsupported

	Bases: gpiozero.exc.PinError, NotImplementedError

Error raised when attempting to obtain an SPI interface on unsupported pins

	
exception gpiozero.PinPWMError

	Bases: gpiozero.exc.PinError

Base class for errors related to PWM implementations

	
exception gpiozero.PinPWMUnsupported

	Bases: gpiozero.exc.PinPWMError, AttributeError

Error raised when attempting to activate PWM on unsupported pins

	
exception gpiozero.PinPWMFixedValue

	Bases: gpiozero.exc.PinPWMError, AttributeError

Error raised when attempting to initialize PWM on an input pin

	
exception gpiozero.PinUnknownPi

	Bases: gpiozero.exc.PinError, RuntimeError

Error raised when gpiozero doesn’t recognize a revision of the Pi

	
exception gpiozero.PinMultiplePins

	Bases: gpiozero.exc.PinError, RuntimeError

Error raised when multiple pins support the requested function

	
exception gpiozero.PinNoPins

	Bases: gpiozero.exc.PinError, RuntimeError

Error raised when no pins support the requested function

	
exception gpiozero.PinInvalidPin

	Bases: gpiozero.exc.PinError, ValueError

Error raised when an invalid pin specification is provided

23.2. Warnings

	
exception gpiozero.GPIOZeroWarning

	Bases: Warning

Base class for all warnings in GPIO Zero

	
exception gpiozero.DistanceSensorNoEcho

	Bases: gpiozero.exc.GPIOZeroWarning

Warning raised when the distance sensor sees no echo at all

	
exception gpiozero.SPIWarning

	Bases: gpiozero.exc.GPIOZeroWarning

Base class for warnings related to the SPI implementation

	
exception gpiozero.SPISoftwareFallback

	Bases: gpiozero.exc.SPIWarning

Warning raised when falling back to the software implementation

	
exception gpiozero.PinWarning

	Bases: gpiozero.exc.GPIOZeroWarning

Base class for warnings related to pin implementations

	
exception gpiozero.PinFactoryFallback

	Bases: gpiozero.exc.PinWarning

Warning raised when a default pin factory fails to load and a fallback is tried

	
exception gpiozero.PinNonPhysical

	Bases: gpiozero.exc.PinWarning

Warning raised when a non-physical pin is specified in a constructor

	
exception gpiozero.ThresholdOutOfRange

	Bases: gpiozero.exc.GPIOZeroWarning

Warning raised when a threshold is out of range specified by min and max values

	
exception gpiozero.CallbackSetToNone

	Bases: gpiozero.exc.GPIOZeroWarning

Warning raised when a callback is set to None when its previous value was None

24. Changelog

24.1. Release 1.5.1 (2019-06-24)

* Added Raspberry Pi 4 data for pi_info() and pinout
* Minor docs updates

24.2. Release 1.5.0 (2019-02-12)

	Introduced pin event timing to increase accuracy of certain devices such as
the HC-SR04 DistanceSensor. (#664, #665)

	Further improvements to DistanceSensor (ignoring missed edges).
(#719)

	Allow source to take a device object as well as
values or other values. See Source/Values. (#640)

	Added internal device classes LoadAverage and DiskUsage
(thanks to Jeevan M R for the latter). (#532, #714)

	Added support for colorzero with RGBLED (this adds a new
dependency). (#655)

	Added TonalBuzzer with Tone API for specifying frequencies
raw or via MIDI or musical notes. (#681, #717)

	Added PiHutXmasTree. (#502)

	Added PumpkinPi and JamHat (thanks to Claire Pollard).
(#680, #681, #717)

	Ensured gpiozero can be imported without a valid pin factory set. (#591,
#713)

	Reduced import time by not computing default pin factory at the point of
import. (#675, #722)

	Added support for various pin numbering mechanisms. (#470)

	Motor instances now use DigitalOutputDevice for non-PWM
pins.

	Allow non-PWM use of Robot. (#481)

	Added optional enable init param to Motor. (#366)

	Added --xyz option to pinout command line tool to open
pinout.xyz in a web browser. (#604)

	Added 3B+, 3A+ and CM3+ to Pi model data. (#627, #704)

	Minor improvements to Energenie, thanks to Steve Amor. (#629,
#634)

	Allow SmoothedInputDevice, LightSensor and
MotionSensor to have pull-up configured. (#652)

	Allow input devices to be pulled up or down externally, thanks to Philippe
Muller. (#593, #658)

	Minor changes to support Python 3.7, thanks to Russel Winder and Rick Ansell.
(#666, #668, #669, #671, #673)

	Added zip_values() source tool.

	Correct row/col numbering logic in PinInfo. (#674)

	Many additional tests, and other improvements to the test suite.

	Many documentation corrections, additions and clarifications.

	Automatic documentation class hierarchy diagram generation.

	Automatic copyright attribution in source files.

24.3. Release 1.4.1 (2018-02-20)

This release is mostly bug-fixes, but a few enhancements have made it in too:

	Added curve_left and curve_right parameters to Robot.forward()
and Robot.backward(). (#306 and #619)

	Fixed DistanceSensor returning incorrect readings after a long
pause, and added a lock to ensure multiple distance sensors can operate
simultaneously in a single project. (#584, #595, #617, #618)

	Added support for phase/enable motor drivers with PhaseEnableMotor,
PhaseEnableRobot, and descendants, thanks to Ian Harcombe!
(#386)

	A variety of other minor enhancements, largely thanks to Andrew Scheller!
(#479, #489, #491, #492)

24.4. Release 1.4.0 (2017-07-26)

	Pin factory is now configurable from device constructors as well as command line. NOTE: this is a backwards
incompatible change for manual pin construction but it’s hoped this is
(currently) a sufficiently rare use case that this won’t affect too many
people and the benefits of the new system warrant such a change, i.e. the
ability to use remote pin factories with HAT classes that don’t accept pin
assignations (#279)

	Major work on SPI, primarily to support remote hardware SPI (#421,
#459, #465, #468, #575)

	Pin reservation now works properly between GPIO and SPI devices (#459,
#468)

	Lots of work on the documentation: source/values chapter, better charts, more recipes, remote GPIO
configuration, mock pins, better PDF output (#484, #469,
#523, #520, #434, #565, #576)

	Support for StatusZero and StatusBoard HATs (#558)

	Added pinout command line tool to provide a simple
reference to the GPIO layout and information about the associated Pi
(#497, #504) thanks to Stewart Adcock for the initial work

	pi_info() made more lenient for new (unknown) Pi models (#529)

	Fixed a variety of packaging issues (#535, #518, #519)

	Improved text in factory fallback warnings (#572)

24.5. Release 1.3.2 (2017-03-03)

	Added new Pi models to stop pi_info() breaking

	Fix issue with pi_info() breaking on unknown Pi models

24.6. Release 1.3.1 (2016-08-31 … later)

	Fixed hardware SPI support which Dave broke in 1.3.0. Sorry!

	Some minor docs changes

24.7. Release 1.3.0 (2016-08-31)

	Added ButtonBoard for reading multiple buttons in a single
class (#340)

	Added Servo and AngularServo classes for controlling
simple servo motors (#248)

	Lots of work on supporting easier use of internal and third-party pin
implementations (#359)

	Robot now has a proper value attribute (#305)

	Added CPUTemperature as another demo of “internal” devices (#294)

	A temporary work-around for an issue with DistanceSensor was
included but a full fix is in the works (#385)

	More work on the documentation (#320, #295, #289, etc.)

Not quite as much as we’d hoped to get done this time, but we’re rushing to
make a Raspbian freeze. As always, thanks to the community - your suggestions
and PRs have been brilliant and even if we don’t take stuff exactly as is, it’s
always great to see your ideas. Onto 1.4!

24.8. Release 1.2.0 (2016-04-10)

	Added Energenie class for controlling Energenie plugs (#69)

	Added LineSensor class for single line-sensors (#109)

	Added DistanceSensor class for HC-SR04 ultra-sonic sensors (#114)

	Added SnowPi class for the Ryanteck Snow-pi board (#130)

	Added when_held (and related properties) to Button
(#115)

	Fixed issues with installing GPIO Zero for python 3 on Raspbian Wheezy
releases (#140)

	Added support for lots of ADC chips (MCP3xxx family) (#162) - many thanks
to pcopa and lurch!

	Added support for pigpiod as a pin implementation with
PiGPIOPin (#180)

	Many refinements to the base classes mean more consistency in composite
devices and several bugs squashed (#164, #175, #182, #189,
#193, #229)

	GPIO Zero is now aware of what sort of Pi it’s running on via pi_info()
and has a fairly extensive database of Pi information which it uses to
determine when users request impossible things (like pull-down on a pin with
a physical pull-up resistor) (#222)

	The source/values system was enhanced to ensure normal usage doesn’t stress
the CPU and lots of utilities were added (#181, #251)

And I’ll just add a note of thanks to the many people in the community who
contributed to this release: we’ve had some great PRs, suggestions, and bug
reports in this version. Of particular note:

	Schelto van Doorn was instrumental in adding support for numerous ADC chips

	Alex Eames generously donated a RasPiO Analog board which was extremely
useful in developing the software SPI interface (and testing the ADC support)

	Andrew Scheller squashed several dozen bugs (usually a day or so after Dave
had introduced them ;)

As always, many thanks to the whole community - we look forward to hearing from
you more in 1.3!

24.9. Release 1.1.0 (2016-02-08)

	Documentation converted to reST and expanded to include generic classes
and several more recipes (#80, #82, #101, #119, #135, #168)

	New CamJamKitRobot class with the pre-defined motor pins for the new
CamJam EduKit

	New LEDBarGraph class (many thanks to Martin O’Hanlon!) (#126,
#176)

	New Pin implementation abstracts out the concept of a GPIO pin
paving the way for alternate library support and IO extenders in future
(#141)

	New LEDBoard.blink() method which works properly even when background
is set to False (#94, #161)

	New RGBLED.blink() method which implements (rudimentary) color fading
too! (#135, #174)

	New initial_value attribute on OutputDevice ensures consistent
behaviour on construction (#118)

	New active_high attribute on PWMOutputDevice and RGBLED
allows use of common anode devices (#143, #154)

	Loads of new ADC chips supported (many thanks to GitHub user pcopa!)
(#150)

24.10. Release 1.0.0 (2015-11-16)

	Debian packaging added (#44)

	PWMLED class added (#58)

	TemperatureSensor removed pending further work (#93)

	Buzzer.beep() alias method added (#75)

	Motor PWM devices exposed, and Robot motor devices exposed
(#107)

24.11. Release 0.9.0 (2015-10-25)

Fourth public beta

	Added source and values properties to all relevant classes (#76)

	Fix names of parameters in Motor constructor (#79)

	Added wrappers for LED groups on add-on boards (#81)

24.12. Release 0.8.0 (2015-10-16)

Third public beta

	Added generic AnalogInputDevice class along with specific classes
for the MCP3008 and MCP3004 (#41)

	Fixed DigitalOutputDevice.blink() (#57)

24.13. Release 0.7.0 (2015-10-09)

Second public beta

24.14. Release 0.6.0 (2015-09-28)

First public beta

24.15. Release 0.5.0 (2015-09-24)

24.16. Release 0.4.0 (2015-09-23)

24.17. Release 0.3.0 (2015-09-22)

24.18. Release 0.2.0 (2015-09-21)

Initial release

25. License

Copyright © 2015-2019 Ben Nuttall <ben@raspberrypi.org> and contributors; see
gpiozero for current list

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

 Python Module Index

 g

 		 	

 		
 g	

 	[image: -]
 	
 gpiozero	

 	
 	
 gpiozero.boards	

 	
 	
 gpiozero.devices	

 	
 	
 gpiozero.exc	

 	
 	
 gpiozero.input_devices	

 	
 	
 gpiozero.internal_devices	

 	
 	
 gpiozero.output_devices	

 	
 	
 gpiozero.pins	

 	
 	
 gpiozero.pins.data	

 	
 	
 gpiozero.pins.local	

 	
 	
 gpiozero.pins.mock	

 	
 	
 gpiozero.pins.native	

 	
 	
 gpiozero.pins.pi	

 	
 	
 gpiozero.pins.pigpio	

 	
 	
 gpiozero.pins.rpigpio	

 	
 	
 gpiozero.pins.rpio	

 	
 	
 gpiozero.spi_devices	

 	
 	
 gpiozero.tones	

 	
 	
 gpiozero.tools	

Index

 Symbols
 | _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Y
 | Z

Symbols

 	
 	
 -c, --color

 	pinout command line option, [1]

 	
 -h, --help

 	pinout command line option, [1]

 	
 -m, --monochrome

 	pinout command line option, [1]

 	
 	
 -r REVISION, --revision REVISION

 	pinout command line option, [1]

 	
 -x, --xyz

 	pinout command line option, [1]

_

 	
 	_shared_key() (gpiozero.SharedMixin class method)

A

 	
 	absoluted() (in module gpiozero.tools)

 	active_high (gpiozero.OutputDevice attribute)

 	active_time (gpiozero.DigitalInputDevice attribute)

 	(gpiozero.EventsMixin attribute)

 	all_values() (in module gpiozero.tools)

 	alternating_values() (in module gpiozero.tools)

 	
 	amber (gpiozero.TrafficLights attribute)

 	AnalogInputDevice (class in gpiozero)

 	angle (gpiozero.AngularServo attribute)

 	AngularServo (class in gpiozero)

 	any_values() (in module gpiozero.tools)

 	arms (gpiozero.SnowPi attribute)

 	averaged() (in module gpiozero.tools)

B

 	
 	backward() (gpiozero.Motor method)

 	(gpiozero.PhaseEnableMotor method)

 	(gpiozero.PhaseEnableRobot method)

 	(gpiozero.Robot method)

 	BadEventHandler

 	BadPinFactory

 	BadQueueLen

 	BadWaitTime

 	beep() (gpiozero.Buzzer method)

 	bits (gpiozero.AnalogInputDevice attribute)

 	bits_per_word (gpiozero.SPI attribute)

 	blink() (gpiozero.DigitalOutputDevice method)

 	(gpiozero.LED method)

 	(gpiozero.LEDBoard method)

 	(gpiozero.PWMLED method)

 	(gpiozero.PWMOutputDevice method)

 	(gpiozero.RGBLED method)

 	
 	blue (gpiozero.RGBLED attribute)

 	bluetooth (gpiozero.PiBoardInfo attribute)

 	board (gpiozero.PiBoardInfo attribute)

 	booleanized() (in module gpiozero.tools)

 	bounce (gpiozero.Pin attribute)

 	Button (class in gpiozero)

 	button (gpiozero.StatusBoard attribute)

 	(gpiozero.TrafficLightsBuzzer attribute)

 	ButtonBoard (class in gpiozero)

 	Buzzer (class in gpiozero)

 	buzzer (gpiozero.JamHat attribute)

 	(gpiozero.TrafficLightsBuzzer attribute)

C

 	
 	CallbackSetToNone

 	CamJamKitRobot (class in gpiozero)

 	channel (gpiozero.MCP3002 attribute)

 	(gpiozero.MCP3004 attribute)

 	(gpiozero.MCP3008 attribute)

 	(gpiozero.MCP3202 attribute)

 	(gpiozero.MCP3204 attribute)

 	(gpiozero.MCP3208 attribute)

 	(gpiozero.MCP3302 attribute)

 	(gpiozero.MCP3304 attribute)

 	clamped() (in module gpiozero.tools)

 	clock_mode (gpiozero.SPI attribute)

 	clock_phase (gpiozero.SPI attribute)

 	clock_polarity (gpiozero.SPI attribute)

 	close() (gpiozero.CompositeDevice method)

 	(gpiozero.Device method)

 	(gpiozero.Factory method)

 	(gpiozero.GPIODevice method)

 	(gpiozero.Pin method)

 	(gpiozero.SPIDevice method)

 	(gpiozero.pins.pi.PiFactory method)

 	
 	closed (gpiozero.CompositeDevice attribute)

 	(gpiozero.Device attribute)

 	(gpiozero.GPIODevice attribute)

 	(gpiozero.SPIDevice attribute)

 	col (gpiozero.PinInfo attribute)

 	color (gpiozero.RGBLED attribute)

 	columns (gpiozero.HeaderInfo attribute)

 	CompositeDevice (class in gpiozero)

 	CompositeDeviceBadDevice

 	CompositeDeviceBadName

 	CompositeDeviceBadOrder

 	CompositeDeviceError

 	CompositeOutputDevice (class in gpiozero)

 	cos_values() (in module gpiozero.tools)

 	CPUTemperature (class in gpiozero)

 	csi (gpiozero.PiBoardInfo attribute)

D

 	
 	detach() (gpiozero.Servo method)

 	Device (class in gpiozero)

 	DeviceClosed

 	differential (gpiozero.MCP3002 attribute)

 	(gpiozero.MCP3004 attribute)

 	(gpiozero.MCP3008 attribute)

 	(gpiozero.MCP3202 attribute)

 	(gpiozero.MCP3204 attribute)

 	(gpiozero.MCP3208 attribute)

 	(gpiozero.MCP3302 attribute)

 	(gpiozero.MCP3304 attribute)

 	
 	DigitalInputDevice (class in gpiozero)

 	DigitalOutputDevice (class in gpiozero)

 	DiskUsage (class in gpiozero)

 	distance (gpiozero.DistanceSensor attribute)

 	DistanceSensor (class in gpiozero)

 	DistanceSensorNoEcho

 	down() (gpiozero.tones.Tone method)

 	dsi (gpiozero.PiBoardInfo attribute)

E

 	
 	echo (gpiozero.DistanceSensor attribute)

 	edges (gpiozero.Pin attribute)

 	end_time (gpiozero.TimeOfDay attribute)

 	Energenie (class in gpiozero)

 	EnergenieBadSocket

 	EnergenieSocketMissing

 	
 environment variable

 	GPIOZERO_PIN_FACTORY, [1], [2], [3], [4], [5], [6], [7]

 	GPIOZERO_TEST_INPUT_PIN

 	GPIOZERO_TEST_PIN

 	PIGPIO_ADDR, [1], [2], [3], [4]

 	PIGPIO_PORT, [1]

 	
 	ethernet (gpiozero.PiBoardInfo attribute)

 	EventsMixin (class in gpiozero)

 	eyes (gpiozero.PumpkinPi attribute)

 	(gpiozero.SnowPi attribute)

F

 	
 	Factory (class in gpiozero)

 	FishDish (class in gpiozero)

 	forward() (gpiozero.Motor method)

 	(gpiozero.PhaseEnableMotor method)

 	(gpiozero.PhaseEnableRobot method)

 	(gpiozero.Robot method)

 	frame_width (gpiozero.Servo attribute)

 	
 	frequency (gpiozero.Pin attribute)

 	(gpiozero.PWMOutputDevice attribute)

 	(gpiozero.tones.Tone attribute)

 	from_frequency() (gpiozero.tones.Tone class method)

 	from_midi() (gpiozero.tones.Tone class method)

 	from_note() (gpiozero.tones.Tone class method)

 	function (gpiozero.Pin attribute)

 	(gpiozero.PinInfo attribute)

G

 	
 	GPIODevice (class in gpiozero)

 	GPIODeviceClosed

 	GPIODeviceError

 	GPIOPinInUse

 	GPIOPinMissing

 	gpiozero (module)

 	gpiozero.boards (module)

 	gpiozero.devices (module)

 	gpiozero.exc (module)

 	gpiozero.input_devices (module)

 	gpiozero.internal_devices (module)

 	gpiozero.output_devices (module)

 	gpiozero.pins (module)

 	gpiozero.pins.data (module)

 	gpiozero.pins.local (module)

 	gpiozero.pins.mock (module)

 	
 	gpiozero.pins.native (module)

 	gpiozero.pins.pi (module)

 	gpiozero.pins.pigpio (module)

 	gpiozero.pins.rpigpio (module)

 	gpiozero.pins.rpio (module)

 	gpiozero.spi_devices (module)

 	gpiozero.tones (module)

 	gpiozero.tools (module)

 	GPIOZERO_PIN_FACTORY, [1], [2], [3], [4], [5]

 	GPIOZERO_TEST_INPUT_PIN

 	GPIOZERO_TEST_PIN

 	GPIOZeroError

 	GPIOZeroWarning

 	green (gpiozero.RGBLED attribute)

 	(gpiozero.StatusBoard attribute)

 	(gpiozero.StatusZero attribute)

 	(gpiozero.TrafficLights attribute)

H

 	
 	HeaderInfo (class in gpiozero)

 	headers (gpiozero.PiBoardInfo attribute)

 	held_time (gpiozero.Button attribute)

 	(gpiozero.HoldMixin attribute)

 	hold_repeat (gpiozero.Button attribute)

 	(gpiozero.HoldMixin attribute)

 	
 	hold_time (gpiozero.Button attribute)

 	(gpiozero.HoldMixin attribute)

 	HoldMixin (class in gpiozero)

 	host (gpiozero.PingServer attribute)

I

 	
 	inactive_time (gpiozero.DigitalInputDevice attribute)

 	(gpiozero.EventsMixin attribute)

 	input_with_pull() (gpiozero.Pin method)

 	InputDevice (class in gpiozero)

 	InputDeviceError

 	InternalDevice (class in gpiozero)

 	inverted() (in module gpiozero.tools)

 	is_active (gpiozero.AngularServo attribute)

 	(gpiozero.Buzzer attribute)

 	(gpiozero.CPUTemperature attribute)

 	(gpiozero.CompositeDevice attribute)

 	(gpiozero.Device attribute)

 	(gpiozero.DiskUsage attribute)

 	(gpiozero.InputDevice attribute)

 	(gpiozero.LoadAverage attribute)

 	(gpiozero.Motor attribute)

 	(gpiozero.PWMOutputDevice attribute)

 	(gpiozero.PhaseEnableMotor attribute)

 	(gpiozero.Servo attribute)

 	(gpiozero.SmoothedInputDevice attribute)

 	(gpiozero.TonalBuzzer attribute)

 	
 	is_held (gpiozero.Button attribute)

 	(gpiozero.HoldMixin attribute)

 	is_lit (gpiozero.LED attribute)

 	(gpiozero.PWMLED attribute)

 	(gpiozero.RGBLED attribute)

 	is_pressed (gpiozero.Button attribute)

 	(gpiozero.ButtonBoard attribute)

J

 	
 	JamHat (class in gpiozero)

L

 	
 	LED (class in gpiozero)

 	LEDBarGraph (class in gpiozero)

 	LEDBoard (class in gpiozero)

 	LedBorg (class in gpiozero)

 	LEDCollection (class in gpiozero)

 	leds (gpiozero.LEDCollection attribute)

 	left() (gpiozero.PhaseEnableRobot method)

 	(gpiozero.Robot method)

 	left_motor (gpiozero.PhaseEnableRobot attribute)

 	(gpiozero.Robot attribute)

 	
 	light_detected (gpiozero.LightSensor attribute)

 	lights (gpiozero.StatusBoard attribute)

 	(gpiozero.TrafficLightsBuzzer attribute)

 	LightSensor (class in gpiozero)

 	LineSensor (class in gpiozero)

 	lit_count (gpiozero.LEDBarGraph attribute)

 	load_average (gpiozero.LoadAverage attribute)

 	LoadAverage (class in gpiozero)

 	LocalPiFactory (class in gpiozero.pins.local)

 	LocalPiPin (class in gpiozero.pins.local)

 	lsb_first (gpiozero.SPI attribute)

M

 	
 	manufacturer (gpiozero.PiBoardInfo attribute)

 	max() (gpiozero.AngularServo method)

 	(gpiozero.Servo method)

 	max_angle (gpiozero.AngularServo attribute)

 	max_distance (gpiozero.DistanceSensor attribute)

 	max_pulse_width (gpiozero.Servo attribute)

 	max_tone (gpiozero.TonalBuzzer attribute)

 	max_voltage (gpiozero.AnalogInputDevice attribute)

 	MCP3001 (class in gpiozero)

 	MCP3002 (class in gpiozero)

 	MCP3004 (class in gpiozero)

 	MCP3008 (class in gpiozero)

 	MCP3201 (class in gpiozero)

 	MCP3202 (class in gpiozero)

 	MCP3204 (class in gpiozero)

 	MCP3208 (class in gpiozero)

 	MCP3301 (class in gpiozero)

 	MCP3302 (class in gpiozero)

 	MCP3304 (class in gpiozero)

 	memory (gpiozero.PiBoardInfo attribute)

 	
 	mid() (gpiozero.AngularServo method)

 	(gpiozero.Servo method)

 	mid_tone (gpiozero.TonalBuzzer attribute)

 	midi (gpiozero.tones.Tone attribute)

 	min() (gpiozero.AngularServo method)

 	(gpiozero.Servo method)

 	min_angle (gpiozero.AngularServo attribute)

 	min_pulse_width (gpiozero.Servo attribute)

 	min_tone (gpiozero.TonalBuzzer attribute)

 	MockChargingPin (class in gpiozero.pins.mock)

 	MockConnectedPin (class in gpiozero.pins.mock)

 	MockFactory (class in gpiozero.pins.mock)

 	MockPin (class in gpiozero.pins.mock)

 	MockPWMPin (class in gpiozero.pins.mock)

 	MockTriggerPin (class in gpiozero.pins.mock)

 	model (gpiozero.PiBoardInfo attribute)

 	motion_detected (gpiozero.MotionSensor attribute)

 	MotionSensor (class in gpiozero)

 	Motor (class in gpiozero)

 	multiplied() (in module gpiozero.tools)

N

 	
 	name (gpiozero.HeaderInfo attribute)

 	namedtuple (gpiozero.CompositeDevice attribute)

 	NativeFactory (class in gpiozero.pins.native)

 	NativePin (class in gpiozero.pins.native)

 	
 	negated() (in module gpiozero.tools)

 	nose (gpiozero.SnowPi attribute)

 	note (gpiozero.tones.Tone attribute)

 	number (gpiozero.PinInfo attribute)

O

 	
 	octaves (gpiozero.TonalBuzzer attribute)

 	off() (gpiozero.Buzzer method)

 	(gpiozero.CompositeOutputDevice method)

 	(gpiozero.DigitalOutputDevice method)

 	(gpiozero.Energenie method)

 	(gpiozero.JamHat method)

 	(gpiozero.LED method)

 	(gpiozero.LEDBoard method)

 	(gpiozero.OutputDevice method)

 	(gpiozero.PWMLED method)

 	(gpiozero.PWMOutputDevice method)

 	(gpiozero.RGBLED method)

 	on() (gpiozero.Buzzer method)

 	(gpiozero.CompositeOutputDevice method)

 	(gpiozero.DigitalOutputDevice method)

 	(gpiozero.Energenie method)

 	(gpiozero.JamHat method)

 	(gpiozero.LED method)

 	(gpiozero.LEDBoard method)

 	(gpiozero.OutputDevice method)

 	(gpiozero.PWMLED method)

 	(gpiozero.PWMOutputDevice method)

 	(gpiozero.RGBLED method)

 	
 	output_with_state() (gpiozero.Pin method)

 	OutputDevice (class in gpiozero)

 	OutputDeviceBadValue

 	OutputDeviceError

P

 	
 	partial (gpiozero.SmoothedInputDevice attribute)

 	pcb_revision (gpiozero.PiBoardInfo attribute)

 	PhaseEnableMotor (class in gpiozero)

 	PhaseEnableRobot (class in gpiozero)

 	physical_pin() (gpiozero.PiBoardInfo method)

 	physical_pins() (gpiozero.PiBoardInfo method)

 	pi_info (gpiozero.Factory attribute)

 	pi_info() (in module gpiozero)

 	PiBoardInfo (class in gpiozero)

 	PiFactory (class in gpiozero.pins.pi)

 	PIGPIO_ADDR, [1], [2]

 	PiGPIOFactory (class in gpiozero.pins.pigpio)

 	PiGPIOPin (class in gpiozero.pins.pigpio)

 	PiHutXmasTree (class in gpiozero)

 	PiLiter (class in gpiozero)

 	PiLiterBarGraph (class in gpiozero)

 	Pin (class in gpiozero)

 	pin (gpiozero.Button attribute)

 	(gpiozero.Buzzer attribute)

 	(gpiozero.GPIODevice attribute)

 	(gpiozero.LED attribute)

 	(gpiozero.LightSensor attribute)

 	(gpiozero.LineSensor attribute)

 	(gpiozero.MotionSensor attribute)

 	(gpiozero.PWMLED attribute)

 	pin() (gpiozero.Factory method)

 	(gpiozero.pins.mock.MockFactory method)

 	(gpiozero.pins.pi.PiFactory method)

 	pin_class (gpiozero.pins.mock.MockFactory attribute)

 	pin_factory (gpiozero.Device attribute)

 	PinEdgeDetectUnsupported

 	PinError

 	PinFactoryFallback

 	PinFixedPull

 	PingServer (class in gpiozero)

 	PinInfo (class in gpiozero)

 	PinInvalidBounce

 	PinInvalidEdges

 	PinInvalidFunction

 	PinInvalidPin

 	PinInvalidPull

 	PinInvalidState

 	
 	PinMultiplePins

 	PinNonPhysical

 	PinNoPins

 	
 pinout command line option

 	-c, --color, [1]

 	-h, --help, [1]

 	-m, --monochrome, [1]

 	-r REVISION, --revision REVISION, [1]

 	-x, --xyz, [1]

 	PinPWMError

 	PinPWMFixedValue

 	PinPWMUnsupported

 	pins (gpiozero.HeaderInfo attribute)

 	PinSetInput

 	PinSPIUnsupported

 	PinUnknownPi

 	PinUnsupported

 	PinWarning

 	PiPin (class in gpiozero.pins.pi)

 	PiStop (class in gpiozero)

 	PiTraffic (class in gpiozero)

 	play() (gpiozero.TonalBuzzer method)

 	PololuDRV8835Robot (class in gpiozero)

 	post_delayed() (in module gpiozero.tools)

 	post_periodic_filtered() (in module gpiozero.tools)

 	pprint() (gpiozero.HeaderInfo method)

 	(gpiozero.PiBoardInfo method)

 	pre_delayed() (in module gpiozero.tools)

 	pre_periodic_filtered() (in module gpiozero.tools)

 	pressed_time (gpiozero.ButtonBoard attribute)

 	pull (gpiozero.Pin attribute)

 	pull_up (gpiozero.Button attribute)

 	(gpiozero.InputDevice attribute)

 	(gpiozero.PinInfo attribute)

 	pulled_up() (gpiozero.PiBoardInfo method)

 	pulse() (gpiozero.LEDBoard method)

 	(gpiozero.PWMLED method)

 	(gpiozero.PWMOutputDevice method)

 	(gpiozero.RGBLED method)

 	pulse_width (gpiozero.Servo attribute)

 	PumpkinPi (class in gpiozero)

 	PWMLED (class in gpiozero)

 	PWMOutputDevice (class in gpiozero)

Q

 	
 	quantized() (in module gpiozero.tools)

 	
 	queue_len (gpiozero.SmoothedInputDevice attribute)

 	queued() (in module gpiozero.tools)

R

 	
 	ramping_values() (in module gpiozero.tools)

 	random_values() (in module gpiozero.tools)

 	raw_value (gpiozero.AnalogInputDevice attribute)

 	read() (gpiozero.SPI method)

 	red (gpiozero.RGBLED attribute)

 	(gpiozero.StatusBoard attribute)

 	(gpiozero.StatusZero attribute)

 	(gpiozero.TrafficLights attribute)

 	release_all() (gpiozero.Factory method)

 	release_pins() (gpiozero.Factory method)

 	(gpiozero.pins.pi.PiFactory method)

 	released (gpiozero.PiBoardInfo attribute)

 	reserve_pins() (gpiozero.Factory method)

 	(gpiozero.pins.pi.PiFactory method)

 	reset() (gpiozero.pins.mock.MockFactory method)

 	reverse() (gpiozero.Motor method)

 	(gpiozero.PhaseEnableMotor method)

 	(gpiozero.PhaseEnableRobot method)

 	(gpiozero.Robot method)

 	
 	revision (gpiozero.PiBoardInfo attribute)

 	RGBLED (class in gpiozero)

 	right() (gpiozero.PhaseEnableRobot method)

 	(gpiozero.Robot method)

 	right_motor (gpiozero.PhaseEnableRobot attribute)

 	(gpiozero.Robot attribute)

 	Robot (class in gpiozero)

 	row (gpiozero.PinInfo attribute)

 	rows (gpiozero.HeaderInfo attribute)

 	RPiGPIOFactory (class in gpiozero.pins.rpigpio)

 	RPiGPIOPin (class in gpiozero.pins.rpigpio)

 	RPIOFactory (class in gpiozero.pins.rpio)

 	RPIOPin (class in gpiozero.pins.rpio)

 	RyanteckRobot (class in gpiozero)

S

 	
 	scaled() (in module gpiozero.tools)

 	select_high (gpiozero.SPI attribute)

 	Servo (class in gpiozero)

 	SharedMixin (class in gpiozero)

 	sides (gpiozero.PumpkinPi attribute)

 	sin_values() (in module gpiozero.tools)

 	smoothed() (in module gpiozero.tools)

 	SmoothedInputDevice (class in gpiozero)

 	SnowPi (class in gpiozero)

 	soc (gpiozero.PiBoardInfo attribute)

 	socket (gpiozero.Energenie attribute)

 	source (gpiozero.LEDBarGraph attribute)

 	(gpiozero.SourceMixin attribute)

 	source_delay (gpiozero.SourceMixin attribute)

 	SourceMixin (class in gpiozero)

 	SPI (class in gpiozero)

 	spi() (gpiozero.Factory method)

 	(gpiozero.pins.pi.PiFactory method)

 	SPIBadArgs

 	SPIBadChannel

 	SPIDevice (class in gpiozero)

 	
 	SPIError

 	SPIFixedBitOrder

 	SPIFixedClockMode

 	SPIFixedSelect

 	SPIFixedWordSize

 	SPIInvalidClockMode

 	SPIInvalidWordSize

 	SPISoftwareFallback

 	SPIWarning

 	star (gpiozero.PiHutXmasTree attribute)

 	start_time (gpiozero.TimeOfDay attribute)

 	state (gpiozero.Pin attribute)

 	StatusBoard (class in gpiozero)

 	StatusZero (class in gpiozero)

 	stop() (gpiozero.Motor method)

 	(gpiozero.PhaseEnableMotor method)

 	(gpiozero.PhaseEnableRobot method)

 	(gpiozero.Robot method)

 	(gpiozero.TonalBuzzer method)

 	storage (gpiozero.PiBoardInfo attribute)

 	summed() (in module gpiozero.tools)

T

 	
 	temperature (gpiozero.CPUTemperature attribute)

 	threshold (gpiozero.SmoothedInputDevice attribute)

 	threshold_distance (gpiozero.DistanceSensor attribute)

 	ThresholdOutOfRange

 	ticks() (gpiozero.Factory method)

 	(gpiozero.pins.local.LocalPiFactory static method)

 	ticks_diff() (gpiozero.Factory method)

 	(gpiozero.pins.local.LocalPiFactory static method)

 	TimeOfDay (class in gpiozero)

 	to_gpio() (gpiozero.PiBoardInfo method)

 	toggle() (gpiozero.Buzzer method)

 	(gpiozero.CompositeOutputDevice method)

 	(gpiozero.LED method)

 	(gpiozero.LEDBoard method)

 	(gpiozero.OutputDevice method)

 	(gpiozero.PWMLED method)

 	(gpiozero.PWMOutputDevice method)

 	(gpiozero.RGBLED method)

 	
 	TonalBuzzer (class in gpiozero)

 	Tone (class in gpiozero.tones)

 	tone (gpiozero.TonalBuzzer attribute)

 	TrafficHat (class in gpiozero)

 	TrafficLights (class in gpiozero)

 	TrafficLightsBuzzer (class in gpiozero)

 	transfer() (gpiozero.SPI method)

 	trigger (gpiozero.DistanceSensor attribute)

U

 	
 	up() (gpiozero.tones.Tone method)

 	usage (gpiozero.DiskUsage attribute)

 	
 	usb (gpiozero.PiBoardInfo attribute)

 	utc (gpiozero.TimeOfDay attribute)

V

 	
 	value (gpiozero.AnalogInputDevice attribute)

 	(gpiozero.AngularServo attribute)

 	(gpiozero.Button attribute)

 	(gpiozero.ButtonBoard attribute)

 	(gpiozero.Buzzer attribute)

 	(gpiozero.CPUTemperature attribute)

 	(gpiozero.CompositeDevice attribute)

 	(gpiozero.CompositeOutputDevice attribute)

 	(gpiozero.Device attribute)

 	(gpiozero.DigitalInputDevice attribute)

 	(gpiozero.DigitalOutputDevice attribute)

 	(gpiozero.DiskUsage attribute)

 	(gpiozero.DistanceSensor attribute)

 	(gpiozero.Energenie attribute)

 	(gpiozero.GPIODevice attribute)

 	(gpiozero.InputDevice attribute)

 	(gpiozero.LED attribute)

 	(gpiozero.LEDBarGraph attribute)

 	(gpiozero.LightSensor attribute)

 	(gpiozero.LineSensor attribute)

 	(gpiozero.LoadAverage attribute)

 	(gpiozero.MCP3001 attribute)

 	(gpiozero.MCP3002 attribute)

 	(gpiozero.MCP3004 attribute)

 	(gpiozero.MCP3008 attribute)

 	(gpiozero.MCP3201 attribute)

 	(gpiozero.MCP3202 attribute)

 	(gpiozero.MCP3204 attribute)

 	(gpiozero.MCP3208 attribute)

 	(gpiozero.MCP3301 attribute)

 	(gpiozero.MCP3302 attribute)

 	(gpiozero.MCP3304 attribute)

 	(gpiozero.MotionSensor attribute)

 	(gpiozero.Motor attribute)

 	(gpiozero.OutputDevice attribute)

 	(gpiozero.PWMLED attribute)

 	(gpiozero.PWMOutputDevice attribute)

 	(gpiozero.PhaseEnableMotor attribute)

 	(gpiozero.PhaseEnableRobot attribute)

 	(gpiozero.PingServer attribute)

 	(gpiozero.RGBLED attribute)

 	(gpiozero.Robot attribute)

 	(gpiozero.Servo attribute)

 	(gpiozero.SmoothedInputDevice attribute)

 	(gpiozero.TimeOfDay attribute)

 	(gpiozero.TonalBuzzer attribute)

 	
 	values (gpiozero.LEDBarGraph attribute)

 	(gpiozero.ValuesMixin attribute)

 	ValuesMixin (class in gpiozero)

 	voltage (gpiozero.AnalogInputDevice attribute)

W

 	
 	wait_for_active() (gpiozero.DigitalInputDevice method)

 	(gpiozero.EventsMixin method)

 	wait_for_dark() (gpiozero.LightSensor method)

 	wait_for_in_range() (gpiozero.DistanceSensor method)

 	wait_for_inactive() (gpiozero.DigitalInputDevice method)

 	(gpiozero.EventsMixin method)

 	wait_for_light() (gpiozero.LightSensor method)

 	wait_for_line() (gpiozero.LineSensor method)

 	wait_for_motion() (gpiozero.MotionSensor method)

 	wait_for_no_line() (gpiozero.LineSensor method)

 	wait_for_no_motion() (gpiozero.MotionSensor method)

 	wait_for_out_of_range() (gpiozero.DistanceSensor method)

 	wait_for_press() (gpiozero.Button method)

 	(gpiozero.ButtonBoard method)

 	wait_for_release() (gpiozero.Button method)

 	(gpiozero.ButtonBoard method)

 	when_activated (gpiozero.DigitalInputDevice attribute)

 	(gpiozero.EventsMixin attribute)

 	
 	when_changed (gpiozero.Pin attribute)

 	when_dark (gpiozero.LightSensor attribute)

 	when_deactivated (gpiozero.DigitalInputDevice attribute)

 	(gpiozero.EventsMixin attribute)

 	when_held (gpiozero.Button attribute)

 	(gpiozero.HoldMixin attribute)

 	when_in_range (gpiozero.DistanceSensor attribute)

 	when_light (gpiozero.LightSensor attribute)

 	when_line (gpiozero.LineSensor attribute)

 	when_motion (gpiozero.MotionSensor attribute)

 	when_no_line (gpiozero.LineSensor attribute)

 	when_no_motion (gpiozero.MotionSensor attribute)

 	when_out_of_range (gpiozero.DistanceSensor attribute)

 	when_pressed (gpiozero.Button attribute)

 	(gpiozero.ButtonBoard attribute)

 	when_released (gpiozero.Button attribute)

 	(gpiozero.ButtonBoard attribute)

 	wifi (gpiozero.PiBoardInfo attribute)

 	write() (gpiozero.SPI method)

Y

 	
 	yellow (gpiozero.TrafficLights attribute)

Z

 	
 	zip_values() (in module gpiozero.tools)

 	
 	ZombieThread

pinout

[image: _images/pinout_pi3.png]

Synopsis

pinout [-h] [-r REVISION] [-c] [-m] [-x]

Description

A utility for querying Raspberry Pi GPIO pin-out information. Running
pinout on its own will output a board diagram, and GPIO header
diagram for the current Raspberry Pi. It is also possible to manually specify a
revision of Pi, or (by Configuring Remote GPIO) to output information about a
remote Pi.

Options

	
-h, --help

	show this help message and exit

	
-r REVISION, --revision REVISION

	RPi revision. Default is to autodetect revision of current device

	
-c, --color

	Force colored output (by default, the output will include ANSI color codes
if run in a color-capable terminal). See also --monochrome

	
-m, --monochrome

	Force monochrome output. See also --color

	
-x, --xyz

	Open pinout.xyz in the default web browser

Examples

To output information about the current Raspberry Pi:

$ pinout

For a Raspberry Pi model 3B, this will output something like the following:

,--------------------------------.
| oooooooooooooooooooo J8 +====
| 1ooooooooooooooooooo | USB
| +====
| Pi Model 3B V1.1 |
| +----+ +====
| |D| |SoC | | USB
| |S| | | +====
| |I| +----+ |
| |C| +======
| |S| | Net
| pwr |HDMI| |I||A| +======
`-| |--------| |----|V|-------'

Revision : a02082
SoC : BCM2837
RAM : 1024Mb
Storage : MicroSD
USB ports : 4 (excluding power)
Ethernet ports : 1
Wi-fi : True
Bluetooth : True
Camera ports (CSI) : 1
Display ports (DSI): 1

J8:
 3V3 (1) (2) 5V
 GPIO2 (3) (4) 5V
 GPIO3 (5) (6) GND
 GPIO4 (7) (8) GPIO14
 GND (9) (10) GPIO15
GPIO17 (11) (12) GPIO18
GPIO27 (13) (14) GND
GPIO22 (15) (16) GPIO23
 3V3 (17) (18) GPIO24
GPIO10 (19) (20) GND
 GPIO9 (21) (22) GPIO25
GPIO11 (23) (24) GPIO8
 GND (25) (26) GPIO7
 GPIO0 (27) (28) GPIO1
 GPIO5 (29) (30) GND
 GPIO6 (31) (32) GPIO12
GPIO13 (33) (34) GND
GPIO19 (35) (36) GPIO16
GPIO26 (37) (38) GPIO20
 GND (39) (40) GPIO21

By default, if stdout is a console that supports color, ANSI codes will be used
to produce color output. Output can be forced to be --monochrome:

$ pinout --monochrome

Or forced to be --color, in case you are redirecting to something
capable of supporting ANSI codes:

$ pinout --color | less -SR

To manually specify the revision of Pi you want to query, use
--revision. The tool understands both old-style revision codes
(such as for the model B):

$ pinout -r 000d

Or new-style revision codes (such as for the Pi Zero W):

$ pinout -r 9000c1

[image: _images/pinout_pizero_w.png]
You can also use the tool with Configuring Remote GPIO to query remote Raspberry
Pi’s:

$ GPIOZERO_PIN_FACTORY=pigpio PIGPIO_ADDR=other_pi pinout

Or run the tool directly on a PC using the mock pin implementation (although in
this case you’ll almost certainly want to specify the Pi revision manually):

$ GPIOZERO_PIN_FACTORY=mock pinout -r a22042

Environment Variables

	
GPIOZERO_PIN_FACTORY

	The library to use when communicating with the GPIO pins. Defaults to
attempting to load RPi.GPIO, then RPIO, then pigpio, and finally uses a
native Python implementation. Valid values include “rpigpio”, “rpio”,
“pigpio”, “native”, and “mock”. The latter is most useful on non-Pi
platforms as it emulates a Raspberry Pi model 3B (by default).

	
PIGPIO_ADDR

	The hostname of the Raspberry Pi the pigpio library should attempt to
connect to (if the pigpio pin factory is being used). Defaults to
localhost.

	
PIGPIO_PORT

	The port number the pigpio library should attempt to connect to (if the
pigpio pin factory is being used). Defaults to 8888.

 _images/gpio-expansion-example.png
IPython: home/pi

N_FACTORY=pigpio
export A sbo
ipython
Python 3.5.3 (default, Jan 19 2017, 14:11:04)
Type 'copyright', 'credits' or 'license’ for more information
TPython 6.2.1 -- An enhanced Interactive Python. Type '?' fo

led = LED(25)

led.pin_factory
<gpiozero.pins.pigpio.PiGPIOFactory at exf4f31foc>

led.pin_factory.host
feg0: : 1%usbo’

led.blink()

_images/gpio-expansion-prompt.png
ARaspberry Pi has been connected
Type: BCM2708

Please select the role you want it to have:

GPIO expansion board

eMMC/SD card reader

E Custom application

] Remember selection

| cancel || ok |

_images/pinout_pizero_w.png
9000ct
BCH2835
5120b
Microsp
1 (excluding power)
0
True
True
Camera ports (CSI) : 1
pisplay ports (DSI): 0

(2) sv
(4) v
(6)
(8)
(10)
(12)
(14)
(16)
(18)
(20)
(22)
(24)
(26)
(28)
(30)
(32)
(34)
(36)
(38)
(40)

information, please refer to https://pinout.xyz/

_images/pinout_pi3.png
BCl2837
1024ib
Microsp
4 (excluding poner)
1
True
True

camera ports (CSI) : 1

pisplay ports (DSI):

J8:
1) (2) sv
(3) (4) sv
(5) (6)

) (8)
(9) (10)
an 12
(13) (14)
(15) (16)
17) (18)
(19) (20)
@21 (22
(23) (24)
(25) (26)
(27) (28)
(29) (30)
31) (32)
(33) (34)
(35) (36)
(37) (38)
(39) (40)

For further information, please refer to https://pinout.xyz/

_images/raspi-config.png
System

Interfaces

Performance | Localisation

Camera:

SSH.

VNC:

SPI.

12C:

Seriall

1-Wire:
Remote GPIO:

© Enabled © Disabled
© Enabled © Disabled
© Enabled © Disabled
© Enabled © Disabled
© Enabled © Disabled
© Enabled © Disabled
© Enabled © Disabled
O Disabled

