
GPIO Zero Documentation
Release 1.6.1

Ben Nuttall

Mar 17, 2021





Contents

1 Installing GPIO Zero 1

2 Basic Recipes 3

3 Advanced Recipes 39

4 Configuring Remote GPIO 49

5 Remote GPIO Recipes 57

6 Pi Zero USB OTG 61

7 Source/Values 65

8 Command-line Tools 75

9 Frequently Asked Questions 81

10 Migrating from RPi.GPIO 89

11 Contributing 97

12 Development 99

13 API - Input Devices 103

14 API - Output Devices 123

15 API - SPI Devices 145

16 API - Boards and Accessories 155

17 API - Internal Devices 189

18 API - Generic Classes 199

19 API - Device Source Tools 205

20 API - Fonts 213

21 API - Tones 217

22 API - Pi Information 219

i



23 API - Pins 225

24 API - Exceptions 245

25 Changelog 251

26 License 259

Python Module Index 261

Index 263

ii



CHAPTER 1

Installing GPIO Zero

GPIO Zero is installed by default in the Raspberry Pi OS1 desktop image, and the Raspberry Pi Desktop2

image for PC/Mac, both available from raspberrypi.org3. Follow these guides to installing on Raspberry
Pi OS Lite and other operating systems, including for PCs using the remote GPIO (page 49) feature.

1.1 Raspberry Pi

GPIO Zero is packaged in the apt repositories of Raspberry Pi OS, Debian4 and Ubuntu5. It is also
available on PyPI6.

1.1.1 apt

First, update your repositories list:

pi@raspberrypi:~$ sudo apt update

Then install the package for Python 3:

pi@raspberrypi:~$ sudo apt install python3-gpiozero

or Python 2:

pi@raspberrypi:~$ sudo apt install python-gpiozero

1.1.2 pip

If you’re using another operating system on your Raspberry Pi, you may need to use pip to install GPIO
Zero instead. Install pip using get-pip7 and then type:

1 https://www.raspberrypi.org/software/operating-systems/
2 https://www.raspberrypi.org/software/raspberry-pi-desktop/
3 https://www.raspberrypi.org/software/
4 https://packages.debian.org/buster/python3-gpiozero
5 https://packages.ubuntu.com/hirsute/python3-gpiozero
6 https://pypi.org/project/gpiozero/
7 https://pip.pypa.io/en/stable/installing/

1

https://www.raspberrypi.org/software/operating-systems/
https://www.raspberrypi.org/software/raspberry-pi-desktop/
https://www.raspberrypi.org/software/
https://packages.debian.org/buster/python3-gpiozero
https://packages.ubuntu.com/hirsute/python3-gpiozero
https://pypi.org/project/gpiozero/
https://pip.pypa.io/en/stable/installing/


GPIO Zero Documentation, Release 1.6.1

pi@raspberrypi:~$ sudo pip3 install gpiozero

or for Python 2:

pi@raspberrypi:~$ sudo pip install gpiozero

To install GPIO Zero in a virtual environment, see the Development (page 99) page.

1.2 PC/Mac

In order to use GPIO Zero’s remote GPIO feature from a PC or Mac, you’ll need to install GPIO Zero
on that computer using pip. See the Configuring Remote GPIO (page 49) page for more information.

1.3 Documentation

This documentation is also available for offline installation like so:

pi@raspberrypi:~$ sudo apt install python-gpiozero-doc

This will install the HTML version of the documentation under the /usr/share/doc/
python-gpiozero-doc/html path. To view the offline documentation you have several options:

You can open the documentation directly by visiting file:///usr/share/doc/python-gpiozero-doc/html/
index.html in your browser. However, be aware that using file:// URLs sometimes breaks certain
elements. To avoid this, you can view the docs from an http:// style URL by starting a trivial HTTP
server with Python, like so:

$ python3 -m http.server -d /usr/share/doc/python-gpiozero-doc/html

Then visit http://localhost:8000/ in your browser.

Alternatively, the package also integrates into Debian’s doc-base8 system, so you can install one of the
doc-base clients (dochelp, dwww, dhelp, doc-central, etc.) and use its interface to locate this document.

If you want to view the documentation offline on a different device, such as an eReader, there are Epub
and PDF versions of the documentation available for download from the ReadTheDocs site9. Simply
click on the “Read the Docs” box at the bottom-left corner of the page (under the table of contents) and
select “PDF” or “Epub” from the “Downloads” section.

8 https://wiki.debian.org/doc-base
9 https://gpiozero.readthedocs.io/

2 Chapter 1. Installing GPIO Zero

file:///usr/share/doc/python-gpiozero-doc/html/index.html
file:///usr/share/doc/python-gpiozero-doc/html/index.html
http://localhost:8000/
https://wiki.debian.org/doc-base
https://gpiozero.readthedocs.io/


CHAPTER 2

Basic Recipes

The following recipes demonstrate some of the capabilities of the GPIO Zero library. Please note that
all recipes are written assuming Python 3. Recipes may work under Python 2, but no guarantees!

2.1 Importing GPIO Zero

In Python, libraries and functions used in a script must be imported by name at the top of the file, with
the exception of the functions built into Python by default.

For example, to use the Button (page 103) interface from GPIO Zero, it should be explicitly imported:

from gpiozero import Button

Now Button (page 103) is available directly in your script:

button = Button(2)

Alternatively, the whole GPIO Zero library can be imported:

import gpiozero

In this case, all references to items within GPIO Zero must be prefixed:

button = gpiozero.Button(2)

2.2 Pin Numbering

This library uses Broadcom (BCM) pin numbering for the GPIO pins, as opposed to physical (BOARD)
numbering. Unlike in the RPi.GPIO10 library, this is not configurable. However, translation from other
schemes can be used by providing prefixes to pin numbers (see below).

Any pin marked “GPIO” in the diagram below can be used as a pin number. For example, if an LED
was attached to “GPIO17” you would specify the pin number as 17 rather than 11:

10 https://pypi.python.org/pypi/RPi.GPIO

3

https://pypi.python.org/pypi/RPi.GPIO


GPIO Zero Documentation, Release 1.6.1

3V3
Power

GPIO2
SDA I²C

GPIO3
SCL I²C

GPIO4

Ground

GPIO17
 

GPIO27
 

GPIO22
 

3V3
Power

GPIO10
SPI MOSI

GPIO9
SPI MISO

GPIO11
SPI SCLK

Ground

ID SD
I²C ID

GPIO5
 

GPIO6
 

GPIO13
 

GPIO19
 

GPIO26
 

Ground

5V
Power

5V
Power

Ground

GPIO14
UART0 TXD

GPIO15
UART0 RXD

GPIO18
 

Ground
 

GPIO23

GPIO24

Ground

GPIO25
 

GPIO8
SPI CE0

GPIO7
SPI CE1

ID SC
I²C ID

Ground

GPIO12
 

Ground
 

GPIO16
 

GPIO20
 

GPIO21
 

All Models

40-pin
models only

11

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

USB Ports

If you wish to use physical (BOARD) numbering you can specify the pin number as “BOARD11”. If you
are familiar with the wiringPi11 pin numbers (another physical layout) you could use “WPI0” instead.
Finally, you can specify pins as “header:number”, e.g. “J8:11” meaning physical pin 11 on header J8
(the GPIO header on modern Pis). Hence, the following lines are all equivalent:

>>> led = LED(17)
>>> led = LED("GPIO17")
>>> led = LED("BCM17")
>>> led = LED("BOARD11")

(continues on next page)

11 https://projects.drogon.net/raspberry-pi/wiringpi/pins/

4 Chapter 2. Basic Recipes

https://projects.drogon.net/raspberry-pi/wiringpi/pins/


GPIO Zero Documentation, Release 1.6.1

(continued from previous page)

>>> led = LED("WPI0")
>>> led = LED("J8:11")

Note that these alternate schemes are merely translations. If you request the state of a device on the
command line, the associated pin number will always be reported in the Broadcom (BCM) scheme:

>>> led = LED("BOARD11")
>>> led
<gpiozero.LED object on pin GPIO17, active_high=True, is_active=False>

Throughout this manual we will use the default integer pin numbers, in the Broadcom (BCM) layout
shown above.

2.3 LED

R
a
sp

b
e
rry

 Pi M
o
d
e
l 2

 v
1

.1
©

 R
a
sp

b
e
rry

 Pi 2
0

1
4

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

Turn an LED (page 123) on and off repeatedly:

from gpiozero import LED
from time import sleep

red = LED(17)

while True:
red.on()
sleep(1)
red.off()
sleep(1)

Alternatively:

from gpiozero import LED
from signal import pause

(continues on next page)

2.3. LED 5



GPIO Zero Documentation, Release 1.6.1

(continued from previous page)

red = LED(17)

red.blink()

pause()

Note: Reaching the end of a Python script will terminate the process and GPIOs may be reset. Keep
your script alive with signal.pause()12. See How do I keep my script running? (page 81) for more
information.

2.4 LED with variable brightness

R
a
sp

b
e
rry

 Pi M
o
d
e
l 2

 v
1

.1
©

 R
a
sp

b
e
rry

 Pi 2
0

1
4

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

Any regular LED can have its brightness value set using PWM (pulse-width-modulation). In GPIO Zero,
this can be achieved using PWMLED (page 125) using values between 0 and 1:

from gpiozero import PWMLED
from time import sleep

led = PWMLED(17)

while True:
led.value = 0 # off
sleep(1)
led.value = 0.5 # half brightness
sleep(1)
led.value = 1 # full brightness
sleep(1)

12 https://docs.python.org/3.7/library/signal.html#signal.pause

6 Chapter 2. Basic Recipes

https://docs.python.org/3.7/library/signal.html#signal.pause


GPIO Zero Documentation, Release 1.6.1

Similarly to blinking on and off continuously, a PWMLED can pulse (fade in and out continuously):

from gpiozero import PWMLED
from signal import pause

led = PWMLED(17)

led.pulse()

pause()

2.5 Button

11

55

1010

1515

2020

2525

3030

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

R
a
sp

b
e
rry

 Pi M
o
d
e
l 2

 v
1

.1
©

 R
a
sp

b
e
rry

 Pi 2
0

1
4

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

Check if a Button (page 103) is pressed:

from gpiozero import Button

button = Button(2)

while True:
if button.is_pressed:

print("Button is pressed")
else:

print("Button is not pressed")

Wait for a button to be pressed before continuing:

from gpiozero import Button

button = Button(2)

button.wait_for_press()
print("Button was pressed")

Run a function every time the button is pressed:

2.5. Button 7



GPIO Zero Documentation, Release 1.6.1

from gpiozero import Button
from signal import pause

def say_hello():
print("Hello!")

button = Button(2)

button.when_pressed = say_hello

pause()

Note: Note that the line button.when_pressed = say_hello does not run the function say_hello,
rather it creates a reference to the function to be called when the button is pressed. Accidental use of
button.when_pressed = say_hello() would set the when_pressed action to None13 (the return value
of this function) which would mean nothing happens when the button is pressed.

Similarly, functions can be attached to button releases:

from gpiozero import Button
from signal import pause

def say_hello():
print("Hello!")

def say_goodbye():
print("Goodbye!")

button = Button(2)

button.when_pressed = say_hello
button.when_released = say_goodbye

pause()

13 https://docs.python.org/3.7/library/constants.html#None

8 Chapter 2. Basic Recipes

https://docs.python.org/3.7/library/constants.html#None


GPIO Zero Documentation, Release 1.6.1

2.6 Button controlled LED

11

55

1010

1515

2020

2525

3030

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

R
a
sp

b
e
rry

 Pi M
o
d
e
l 2

 v
1

.1
©

 R
a
sp

b
e
rry

 Pi 2
0

1
4

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

Turn on an LED (page 123) when a Button (page 103) is pressed:

from gpiozero import LED, Button
from signal import pause

led = LED(17)
button = Button(2)

button.when_pressed = led.on
button.when_released = led.off

pause()

Alternatively:

from gpiozero import LED, Button
from signal import pause

led = LED(17)
button = Button(2)

led.source = button

pause()

2.7 Button controlled camera

Using the button press to trigger PiCamera to take a picture using button.when_pressed = camera.
capture would not work because the capture() method requires an output parameter. However, this
can be achieved using a custom function which requires no parameters:

2.6. Button controlled LED 9



GPIO Zero Documentation, Release 1.6.1

from gpiozero import Button
from picamera import PiCamera
from datetime import datetime
from signal import pause

button = Button(2)
camera = PiCamera()

def capture():
timestamp = datetime.now().isoformat()
camera.capture('/home/pi/%s.jpg' % timestamp)

button.when_pressed = capture

pause()

Another example could use one button to start and stop the camera preview, and another to capture:

from gpiozero import Button
from picamera import PiCamera
from datetime import datetime
from signal import pause

left_button = Button(2)
right_button = Button(3)
camera = PiCamera()

def capture():
timestamp = datetime.now().isoformat()
camera.capture('/home/pi/%s.jpg' % timestamp)

left_button.when_pressed = camera.start_preview
left_button.when_released = camera.stop_preview
right_button.when_pressed = capture

pause()

2.8 Shutdown button

The Button (page 103) class also provides the ability to run a function when the button has been held
for a given length of time. This example will shut down the Raspberry Pi when the button is held for 2
seconds:

from gpiozero import Button
from subprocess import check_call
from signal import pause

def shutdown():
check_call(['sudo', 'poweroff'])

shutdown_btn = Button(17, hold_time=2)
shutdown_btn.when_held = shutdown

pause()

10 Chapter 2. Basic Recipes



GPIO Zero Documentation, Release 1.6.1

2.9 LEDBoard

11

55

1010

1515

2020

2525

3030

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

R
a
sp

b
e
rry

 Pi M
o
d
e
l 2

 v
1

.1
©

 R
a
sp

b
e
rry

 Pi 2
0

1
4

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

A collection of LEDs can be accessed using LEDBoard (page 155):

from gpiozero import LEDBoard
from time import sleep
from signal import pause

leds = LEDBoard(5, 6, 13, 19, 26)

leds.on()
sleep(1)
leds.off()
sleep(1)
leds.value = (1, 0, 1, 0, 1)
sleep(1)
leds.blink()

pause()

Using LEDBoard (page 155) with pwm=True allows each LED’s brightness to be controlled:

from gpiozero import LEDBoard
from signal import pause

leds = LEDBoard(5, 6, 13, 19, 26, pwm=True)

leds.value = (0.2, 0.4, 0.6, 0.8, 1.0)

pause()

See more LEDBoard (page 155) examples in the advanced LEDBoard recipes (page 39).

2.9. LEDBoard 11



GPIO Zero Documentation, Release 1.6.1

2.10 LEDBarGraph

11

55

1010

1515

2020

2525

3030

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

R
a
sp

b
e
rry

 Pi M
o
d
e
l 2

 v
1

.1
©

 R
a
sp

b
e
rry

 Pi 2
0

1
4

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

A collection of LEDs can be treated like a bar graph using LEDBarGraph (page 158):

from gpiozero import LEDBarGraph
from time import sleep
from __future__ import division # required for python 2

graph = LEDBarGraph(5, 6, 13, 19, 26, 20)

graph.value = 1 # (1, 1, 1, 1, 1, 1)
sleep(1)
graph.value = 1/2 # (1, 1, 1, 0, 0, 0)
sleep(1)
graph.value = -1/2 # (0, 0, 0, 1, 1, 1)
sleep(1)
graph.value = 1/4 # (1, 0, 0, 0, 0, 0)
sleep(1)
graph.value = -1 # (1, 1, 1, 1, 1, 1)
sleep(1)

Note values are essentially rounded to account for the fact LEDs can only be on or off when pwm=False
(the default).

However, using LEDBarGraph (page 158) with pwm=True allows more precise values using LED brightness:

from gpiozero import LEDBarGraph
from time import sleep
from __future__ import division # required for python 2

graph = LEDBarGraph(5, 6, 13, 19, 26, pwm=True)

graph.value = 1/10 # (0.5, 0, 0, 0, 0)
sleep(1)
graph.value = 3/10 # (1, 0.5, 0, 0, 0)
sleep(1)

(continues on next page)

12 Chapter 2. Basic Recipes



GPIO Zero Documentation, Release 1.6.1

(continued from previous page)

graph.value = -3/10 # (0, 0, 0, 0.5, 1)
sleep(1)
graph.value = 9/10 # (1, 1, 1, 1, 0.5)
sleep(1)
graph.value = 95/100 # (1, 1, 1, 1, 0.75)
sleep(1)

2.11 LEDCharDisplay

11

55

1010

1515

2020

2525

3030

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

R
a
sp

b
e
rry

 Pi M
o
d
e
l 2

 v
1

.1
©

 R
a
sp

b
e
rry

 Pi 2
0

1
4

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

A common 7-segment display14 can be used to represent a variety of characters using LEDCharDisplay
(page 160) (which actually supports an arbitrary number of segments):

from gpiozero import LEDCharDisplay
from time import sleep

display = LEDCharDisplay(21, 20, 16, 22, 23, 24, 12, dp=25)

for char in '321GO':
display.value = char
sleep(1)

display.off()

Alternatively:

from gpiozero import LEDCharDisplay
from signal import pause

display = LEDCharDisplay(21, 20, 16, 22, 23, 24, 12, dp=25)
display.source_delay = 1
display.source = '321GO '

(continues on next page)

14 https://en.wikipedia.org/wiki/Seven-segment_display

2.11. LEDCharDisplay 13

https://en.wikipedia.org/wiki/Seven-segment_display


GPIO Zero Documentation, Release 1.6.1

(continued from previous page)

pause()

See a multi-character example in the advanced recipes (page 41) chapter.

2.12 Traffic Lights

11

55

1010

1515

2020

2525

3030

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

R
a
sp

b
e
rry

 Pi M
o
d
e
l 2

 v
1

.1
©

 R
a
sp

b
e
rry

 Pi 2
0

1
4

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

A full traffic lights system.

Using a TrafficLights (page 165) kit like Pi-Stop:

from gpiozero import TrafficLights
from time import sleep

lights = TrafficLights(2, 3, 4)

lights.green.on()

while True:
sleep(10)
lights.green.off()
lights.amber.on()
sleep(1)
lights.amber.off()
lights.red.on()
sleep(10)
lights.amber.on()
sleep(1)
lights.green.on()

(continues on next page)

14 Chapter 2. Basic Recipes



GPIO Zero Documentation, Release 1.6.1

(continued from previous page)

lights.amber.off()
lights.red.off()

Alternatively:

from gpiozero import TrafficLights
from time import sleep
from signal import pause

lights = TrafficLights(2, 3, 4)

def traffic_light_sequence():
while True:

yield (0, 0, 1) # green
sleep(10)
yield (0, 1, 0) # amber
sleep(1)
yield (1, 0, 0) # red
sleep(10)
yield (1, 1, 0) # red+amber
sleep(1)

lights.source = traffic_light_sequence()

pause()

Using LED (page 123) components:

from gpiozero import LED
from time import sleep

red = LED(2)
amber = LED(3)
green = LED(4)

green.on()
amber.off()
red.off()

while True:
sleep(10)
green.off()
amber.on()
sleep(1)
amber.off()
red.on()
sleep(10)
amber.on()
sleep(1)
green.on()
amber.off()
red.off()

2.12. Traffic Lights 15



GPIO Zero Documentation, Release 1.6.1

2.13 Push button stop motion

Capture a picture with the camera module every time a button is pressed:

from gpiozero import Button
from picamera import PiCamera

button = Button(2)
camera = PiCamera()

camera.start_preview()
frame = 1
while True:

button.wait_for_press()
camera.capture('/home/pi/frame%03d.jpg' % frame)
frame += 1

See Push Button Stop Motion15 for a full resource.

2.14 Reaction Game

11

55

1010

1515

2020

2525

3030

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

R
a
sp

b
e
rry

 Pi M
o
d
e
l 2

 v
1

.1
©

 R
a
sp

b
e
rry

 Pi 2
0

1
4

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

When you see the light come on, the first person to press their button wins!

from gpiozero import Button, LED
from time import sleep
import random

led = LED(17)

player_1 = Button(2)
player_2 = Button(3)

(continues on next page)

15 https://projects.raspberrypi.org/en/projects/push-button-stop-motion

16 Chapter 2. Basic Recipes

https://projects.raspberrypi.org/en/projects/push-button-stop-motion


GPIO Zero Documentation, Release 1.6.1

(continued from previous page)

time = random.uniform(5, 10)
sleep(time)
led.on()

while True:
if player_1.is_pressed:

print("Player 1 wins!")
break

if player_2.is_pressed:
print("Player 2 wins!")
break

led.off()

See Quick Reaction Game16 for a full resource.

2.15 GPIO Music Box

11

55

1010

1515

2020

2525

3030

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

R
a
sp

b
e
rry

 Pi M
o
d
e
l 2

 v
1

.1
©

 R
a
sp

b
e
rry

 Pi 2
0

1
4

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)
G

P
IO

Each button plays a different sound!

from gpiozero import Button
import pygame.mixer
from pygame.mixer import Sound
from signal import pause

pygame.mixer.init()

button_sounds = {
Button(2): Sound("samples/drum_tom_mid_hard.wav"),
Button(3): Sound("samples/drum_cymbal_open.wav"),

}
(continues on next page)

16 https://projects.raspberrypi.org/en/projects/python-quick-reaction-game

2.15. GPIO Music Box 17

https://projects.raspberrypi.org/en/projects/python-quick-reaction-game


GPIO Zero Documentation, Release 1.6.1

(continued from previous page)

for button, sound in button_sounds.items():
button.when_pressed = sound.play

pause()

See GPIO Music Box17 for a full resource.

2.16 All on when pressed

While the button is pressed down, the buzzer and all the lights come on.

FishDish (page 171):

from gpiozero import FishDish
from signal import pause

fish = FishDish()

fish.button.when_pressed = fish.on
fish.button.when_released = fish.off

pause()

Ryanteck TrafficHat (page 172):

from gpiozero import TrafficHat
from signal import pause

th = TrafficHat()

th.button.when_pressed = th.on
th.button.when_released = th.off

pause()

Using LED (page 123), Buzzer (page 130), and Button (page 103) components:

from gpiozero import LED, Buzzer, Button
from signal import pause

button = Button(2)
buzzer = Buzzer(3)
red = LED(4)
amber = LED(5)
green = LED(6)

things = [red, amber, green, buzzer]

def things_on():
for thing in things:

thing.on()

def things_off():
(continues on next page)

17 https://projects.raspberrypi.org/en/projects/gpio-music-box

18 Chapter 2. Basic Recipes

https://projects.raspberrypi.org/en/projects/gpio-music-box


GPIO Zero Documentation, Release 1.6.1

(continued from previous page)

for thing in things:
thing.off()

button.when_pressed = things_on
button.when_released = things_off

pause()

2.17 Full color LED

11

55

1010

1515

2020

2525

3030

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

R
a
sp

b
e
rry

 Pi M
o
d
e
l 2

 v
1

.1
©

 R
a
sp

b
e
rry

 Pi 2
0

1
4

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

Making colours with an RGBLED (page 127):

from gpiozero import RGBLED
from time import sleep
from __future__ import division # required for python 2

led = RGBLED(red=9, green=10, blue=11)

led.red = 1 # full red
sleep(1)
led.red = 0.5 # half red
sleep(1)

led.color = (0, 1, 0) # full green
sleep(1)
led.color = (1, 0, 1) # magenta
sleep(1)
led.color = (1, 1, 0) # yellow
sleep(1)
led.color = (0, 1, 1) # cyan
sleep(1)
led.color = (1, 1, 1) # white

(continues on next page)

2.17. Full color LED 19



GPIO Zero Documentation, Release 1.6.1

(continued from previous page)

sleep(1)

led.color = (0, 0, 0) # off
sleep(1)

# slowly increase intensity of blue
for n in range(100):

led.blue = n/100
sleep(0.1)

2.18 Motion sensor

11

55

1010

1515

2020

2525

3030

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

R
a
sp

b
e
rry

 Pi M
o
d
e
l 2

 v
1

.1
©

 R
a
sp

b
e
rry

 Pi 2
0

1
4

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

Light an LED (page 123) when a MotionSensor (page 108) detects motion:

from gpiozero import MotionSensor, LED
from signal import pause

(continues on next page)

20 Chapter 2. Basic Recipes



GPIO Zero Documentation, Release 1.6.1

(continued from previous page)

pir = MotionSensor(4)
led = LED(16)

pir.when_motion = led.on
pir.when_no_motion = led.off

pause()

2.19 Light sensor

11

55

1010

1515

2020

2525

3030

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

R
a
sp

b
e
rry

 Pi M
o
d
e
l 2

 v
1

.1
©

 R
a
sp

b
e
rry

 Pi 2
0

1
4

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

Have a LightSensor (page 109) detect light and dark:

from gpiozero import LightSensor

sensor = LightSensor(18)

while True:
sensor.wait_for_light()
print("It's light! :)")
sensor.wait_for_dark()
print("It's dark :(")

Run a function when the light changes:

from gpiozero import LightSensor, LED
from signal import pause

sensor = LightSensor(18)
led = LED(16)

sensor.when_dark = led.on
sensor.when_light = led.off

(continues on next page)

2.19. Light sensor 21



GPIO Zero Documentation, Release 1.6.1

(continued from previous page)

pause()

Or make a PWMLED (page 125) change brightness according to the detected light level:

from gpiozero import LightSensor, PWMLED
from signal import pause

sensor = LightSensor(18)
led = PWMLED(16)

led.source = sensor

pause()

2.20 Distance sensor

11

55

1010

1515

2020

2525

3030

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

R
a
sp

b
e
rry

 Pi M
o
d
e
l 2

 v
1

.1
©

 R
a
sp

b
e
rry

 Pi 2
0

1
4

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

Note: In the diagram above, the wires leading from the sensor to the breadboard can be omitted;
simply plug the sensor directly into the breadboard facing the edge (unfortunately this is difficult to
illustrate in the diagram without the sensor’s diagram obscuring most of the breadboard!)

Have a DistanceSensor (page 111) detect the distance to the nearest object:

from gpiozero import DistanceSensor
from time import sleep

sensor = DistanceSensor(23, 24)

while True:
(continues on next page)

22 Chapter 2. Basic Recipes



GPIO Zero Documentation, Release 1.6.1

(continued from previous page)

print('Distance to nearest object is', sensor.distance, 'm')
sleep(1)

Run a function when something gets near the sensor:

from gpiozero import DistanceSensor, LED
from signal import pause

sensor = DistanceSensor(23, 24, max_distance=1, threshold_distance=0.2)
led = LED(16)

sensor.when_in_range = led.on
sensor.when_out_of_range = led.off

pause()

2.21 Rotary encoder

11

55

1010

1515

2020

2525

3030

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

R
a
sp

b
e
rry

 Pi M
o
d
e
l 2

 v
1

.1
©

 R
a
sp

b
e
rry

 Pi 2
0

1
4

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)
G

P
IO

Note: In this recipe, I’ve used a common anode RGB LED. Often, Pi projects use common cathode
RGB LEDs because they’re slightly easier to think about electrically. However, in this case all three
components can be found in an illuminated rotary encoder which incorporates a common anode RGB
LED, and a momentary push button. This is also the reason for the button being wired active-low,
contrary to most other examples in this documentation.

For the sake of clarity, the diagram shows the three separate components, but this same circuit will work
equally well with this commonly available illuminated rotary encoder18 instead.

Have a rotary encoder, an RGB LED, and button act as a color picker.

18 https://shop.pimoroni.com/products/rotary-encoder-illuminated-rgb

2.21. Rotary encoder 23

https://shop.pimoroni.com/products/rotary-encoder-illuminated-rgb


GPIO Zero Documentation, Release 1.6.1

from threading import Event
from colorzero import Color
from gpiozero import RotaryEncoder, RGBLED, Button

rotor = RotaryEncoder(16, 20, wrap=True, max_steps=180)
rotor.steps = -180
led = RGBLED(22, 23, 24, active_high=False)
btn = Button(21, pull_up=False)
led.color = Color('#f00')
done = Event()

def change_hue():
# Scale the rotor steps (-180..180) to 0..1
hue = (rotor.steps + 180) / 360
led.color = Color(h=hue, s=1, v=1)

def show_color():
print('Hue {led.color.hue.deg:.1f}° = {led.color.html}'.format(led=led))

def stop_script():
print('Exiting')
done.set()

print('Select a color by turning the knob')
rotor.when_rotated = change_hue
print('Push the button to see the HTML code for the color')
btn.when_released = show_color
print('Hold the button to exit')
btn.when_held = stop_script
done.wait()

2.22 Servo

Control a servo between its minimum, mid-point and maximum positions in sequence:

from gpiozero import Servo
from time import sleep

servo = Servo(17)

while True:
servo.min()
sleep(2)
servo.mid()
sleep(2)
servo.max()
sleep(2)

Use a button to control the servo between its minimum and maximum positions:

from gpiozero import Servo, Button

servo = Servo(17)
btn = Button(14)

(continues on next page)

24 Chapter 2. Basic Recipes



GPIO Zero Documentation, Release 1.6.1

(continued from previous page)

while True:
servo.min()
btn.wait_for_press()
servo.max()
btn.wait_for_press()

Automate the servo to continuously slowly sweep:

from gpiozero import Servo
from gpiozero.tools import sin_values
from signal import pause

servo = Servo(17)

servo.source = sin_values()
servo.source_delay = 0.1

pause()

Use AngularServo (page 137) so you can specify an angle:

from gpiozero import AngularServo
from time import sleep

servo = AngularServo(17, min_angle=-90, max_angle=90)

while True:
servo.angle = -90
sleep(2)
servo.angle = -45
sleep(2)
servo.angle = 0
sleep(2)
servo.angle = 45
sleep(2)
servo.angle = 90
sleep(2)

2.22. Servo 25



GPIO Zero Documentation, Release 1.6.1

2.23 Motors

11

55

1010

1515

2020

2525

3030

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

R
a
sp

b
e
rry

 Pi M
o
d
e
l 2

 v
1

.1
©

 R
a
sp

b
e
rry

 Pi 2
0

1
4

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d
io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

Spin a Motor (page 132) around forwards and backwards:

from gpiozero import Motor
from time import sleep

motor = Motor(forward=4, backward=14)

while True:
motor.forward()
sleep(5)
motor.backward()
sleep(5)

26 Chapter 2. Basic Recipes



GPIO Zero Documentation, Release 1.6.1

2.24 Robot

1
1

5
5

1
0

1
0

1
5

1
5

2
0

2
0

2
5

2
5

3
0

3
0

A A

B B

C C

D D

E E

F F

G G

H H

I I

J J

R
a
sp

b
e
rry

 Pi M
o
d
e
l 2

 v
1

.1
©

 R
a
sp

b
e
rry

 Pi 2
0

1
4

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

Make a Robot (page 175) drive around in (roughly) a square:

from gpiozero import Robot
from time import sleep

robot = Robot(left=(4, 14), right=(17, 18))

for i in range(4):
robot.forward()
sleep(10)
robot.right()
sleep(1)

Make a robot with a distance sensor that runs away when things get within 20cm of it:

from gpiozero import Robot, DistanceSensor
from signal import pause

(continues on next page)

2.24. Robot 27



GPIO Zero Documentation, Release 1.6.1

(continued from previous page)

sensor = DistanceSensor(23, 24, max_distance=1, threshold_distance=0.2)
robot = Robot(left=(4, 14), right=(17, 18))

sensor.when_in_range = robot.backward
sensor.when_out_of_range = robot.stop
pause()

2.25 Button controlled robot

1
1

5
5

1
0

1
0

1
5

1
5

2
0

2
0

2
5

2
5

3
0

3
0

A A

B B

C C

D D

E E

F F

G G

H H

I I

J J

R
a
sp

b
e
rry

 Pi M
o
d
e
l 2

 v
1

.1
©

 R
a
sp

b
e
rry

 Pi 2
0

1
4

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

Use four GPIO buttons as forward/back/left/right controls for a robot:

from gpiozero import Robot, Button
from signal import pause

(continues on next page)

28 Chapter 2. Basic Recipes



GPIO Zero Documentation, Release 1.6.1

(continued from previous page)

robot = Robot(left=(4, 14), right=(17, 18))

left = Button(26)
right = Button(16)
fw = Button(21)
bw = Button(20)

fw.when_pressed = robot.forward
fw.when_released = robot.stop

left.when_pressed = robot.left
left.when_released = robot.stop

right.when_pressed = robot.right
right.when_released = robot.stop

bw.when_pressed = robot.backward
bw.when_released = robot.stop

pause()

2.25. Button controlled robot 29



GPIO Zero Documentation, Release 1.6.1

2.26 Keyboard controlled robot

1
1

5
5

1
0

1
0

1
5

1
5

2
0

2
0

2
5

2
5

3
0

3
0

A A

B B

C C

D D

E E

F F

G G

H H

I I

J J

R
a
sp

b
e
rry

 Pi M
o
d
e
l 2

 v
1

.1
©

 R
a
sp

b
e
rry

 Pi 2
0

1
4

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

Use up/down/left/right keys to control a robot:

import curses
from gpiozero import Robot

robot = Robot(left=(4, 14), right=(17, 18))

actions = {
curses.KEY_UP: robot.forward,
curses.KEY_DOWN: robot.backward,
curses.KEY_LEFT: robot.left,
curses.KEY_RIGHT: robot.right,

}

def main(window):
next_key = None

(continues on next page)

30 Chapter 2. Basic Recipes



GPIO Zero Documentation, Release 1.6.1

(continued from previous page)

while True:
curses.halfdelay(1)
if next_key is None:

key = window.getch()
else:

key = next_key
next_key = None

if key != -1:
# KEY PRESSED
curses.halfdelay(3)
action = actions.get(key)
if action is not None:

action()
next_key = key
while next_key == key:

next_key = window.getch()
# KEY RELEASED
robot.stop()

curses.wrapper(main)

Note: This recipe uses the standard curses19 module. This module requires that Python is running
in a terminal in order to work correctly, hence this recipe will not work in environments like IDLE.

If you prefer a version that works under IDLE, the following recipe should suffice:

from gpiozero import Robot
from evdev import InputDevice, list_devices, ecodes

robot = Robot(left=(4, 14), right=(17, 18))

# Get the list of available input devices
devices = [InputDevice(device) for device in list_devices()]
# Filter out everything that's not a keyboard. Keyboards are defined as any
# device which has keys, and which specifically has keys 1..31 (roughly Esc,
# the numeric keys, the first row of QWERTY plus a few more) and which does
# *not* have key 0 (reserved)
must_have = {i for i in range(1, 32)}
must_not_have = {0}
devices = [

dev
for dev in devices
for keys in (set(dev.capabilities().get(ecodes.EV_KEY, [])),)
if must_have.issubset(keys)
and must_not_have.isdisjoint(keys)

]
# Pick the first keyboard
keyboard = devices[0]

keypress_actions = {
ecodes.KEY_UP: robot.forward,
ecodes.KEY_DOWN: robot.backward,
ecodes.KEY_LEFT: robot.left,

(continues on next page)

19 https://docs.python.org/3.7/library/curses.html#module-curses

2.26. Keyboard controlled robot 31

https://docs.python.org/3.7/library/curses.html#module-curses


GPIO Zero Documentation, Release 1.6.1

(continued from previous page)

ecodes.KEY_RIGHT: robot.right,
}

for event in keyboard.read_loop():
if event.type == ecodes.EV_KEY and event.code in keypress_actions:

if event.value == 1: # key pressed
keypress_actions[event.code]()

if event.value == 0: # key released
robot.stop()

Note: This recipe uses the third-party evdev module. Install this library with sudo pip3 install
evdev first. Be aware that evdev will only work with local input devices; this recipe will not work over
SSH.

32 Chapter 2. Basic Recipes



GPIO Zero Documentation, Release 1.6.1

2.27 Motion sensor robot

1
1

5
5

1
0

1
0

1
5

1
5

2
0

2
0

2
5

2
5

3
0

3
0

A A

B B

C C

D D

E E

F F

G G

H H

I I

J J

R
a
sp

b
e
rry

 Pi M
o
d
e
l 2

 v
1

.1
©

 R
a
sp

b
e
rry

 Pi 2
0

1
4

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

Make a robot drive forward when it detects motion:

from gpiozero import Robot, MotionSensor
from signal import pause

robot = Robot(left=(4, 14), right=(17, 18))
pir = MotionSensor(5)

pir.when_motion = robot.forward
pir.when_no_motion = robot.stop

pause()

Alternatively:

2.27. Motion sensor robot 33



GPIO Zero Documentation, Release 1.6.1

from gpiozero import Robot, MotionSensor
from gpiozero.tools import zip_values
from signal import pause

robot = Robot(left=(4, 14), right=(17, 18))
pir = MotionSensor(5)

robot.source = zip_values(pir, pir)

pause()

2.28 Potentiometer

1
1

5
5

1
0

1
0

1
5

1
5

2
0

2
0

2
5

2
5

3
0

3
0

A A

B B

C C

D D

E E

F F

G G

H H

I I

J J

R
a
sp

b
e
rry

 Pi M
o
d
e
l 2

 v
1

.1
©

 R
a
sp

b
e
rry

 Pi 2
0

1
4

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io
USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

MCP3008

Continually print the value of a potentiometer (values between 0 and 1) connected to a MCP3008
(page 147) analog to digital converter:

from gpiozero import MCP3008

pot = MCP3008(channel=0)

while True:
print(pot.value)

Present the value of a potentiometer on an LED bar graph using PWM to represent states that won’t
“fill” an LED:

34 Chapter 2. Basic Recipes



GPIO Zero Documentation, Release 1.6.1

from gpiozero import LEDBarGraph, MCP3008
from signal import pause

graph = LEDBarGraph(5, 6, 13, 19, 26, pwm=True)
pot = MCP3008(channel=0)

graph.source = pot

pause()

2.29 Measure temperature with an ADC

Wire a TMP36 temperature sensor to the first channel of an MCP3008 (page 147) analog to digital
converter:

from gpiozero import MCP3008
from time import sleep

def convert_temp(gen):
for value in gen:

yield (value * 3.3 - 0.5) * 100

adc = MCP3008(channel=0)

for temp in convert_temp(adc.values):
print('The temperature is', temp, 'C')
sleep(1)

2.29. Measure temperature with an ADC 35



GPIO Zero Documentation, Release 1.6.1

2.30 Full color LED controlled by 3 potentiometers

1
1

5
5

1
0

1
0

1
5

1
5

2
0

2
0

2
5

2
5

3
0

3
0

A A

B B

C C

D D

E E

F F

G G

H H

I I

J J

R
a
sp

b
e
rry

 Pi M
o
d
e
l 2

 v
1

.1
©

 R
a
sp

b
e
rry

 Pi 2
0

1
4

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

MCP3008

Wire up three potentiometers (for red, green and blue) and use each of their values to make up the colour
of the LED:

from gpiozero import RGBLED, MCP3008

led = RGBLED(red=2, green=3, blue=4)
red_pot = MCP3008(channel=0)
green_pot = MCP3008(channel=1)
blue_pot = MCP3008(channel=2)

while True:
led.red = red_pot.value
led.green = green_pot.value
led.blue = blue_pot.value

Alternatively, the following example is identical, but uses the source (page 202) property rather than a
while20 loop:

from gpiozero import RGBLED, MCP3008
from gpiozero.tools import zip_values
from signal import pause

led = RGBLED(2, 3, 4)
red_pot = MCP3008(0)
green_pot = MCP3008(1)

(continues on next page)

20 https://docs.python.org/3.7/reference/compound_stmts.html#while

36 Chapter 2. Basic Recipes

https://docs.python.org/3.7/reference/compound_stmts.html#while


GPIO Zero Documentation, Release 1.6.1

(continued from previous page)

blue_pot = MCP3008(2)

led.source = zip_values(red_pot, green_pot, blue_pot)

pause()

2.31 Timed heat lamp

If you have a pet (e.g. a tortoise) which requires a heat lamp to be switched on for a certain amount
of time each day, you can use an Energenie Pi-mote21 to remotely control the lamp, and the TimeOfDay
(page 190) class to control the timing:

from gpiozero import Energenie, TimeOfDay
from datetime import time
from signal import pause

lamp = Energenie(1)
daytime = TimeOfDay(time(8), time(20))

daytime.when_activated = lamp.on
daytime.when_deactivated = lamp.off

pause()

2.32 Internet connection status indicator

You can use a pair of green and red LEDs to indicate whether or not your internet connection is working.
Simply use the PingServer (page 191) class to identify whether a ping to google.com is successful. If
successful, the green LED is lit, and if not, the red LED is lit:

from gpiozero import LED, PingServer
from gpiozero.tools import negated
from signal import pause

green = LED(17)
red = LED(18)

google = PingServer('google.com')

google.when_activated = green.on
google.when_deactivated = green.off
red.source = negated(green)

pause()

2.33 CPU Temperature Bar Graph

You can read the Raspberry Pi’s own CPU temperature using the built-in CPUTemperature (page 192)
class, and display this on a “bar graph” of LEDs:

21 https://energenie4u.co.uk/catalogue/product/ENER002-2PI

2.31. Timed heat lamp 37

https://energenie4u.co.uk/catalogue/product/ENER002-2PI


GPIO Zero Documentation, Release 1.6.1

from gpiozero import LEDBarGraph, CPUTemperature
from signal import pause

cpu = CPUTemperature(min_temp=50, max_temp=90)
leds = LEDBarGraph(2, 3, 4, 5, 6, 7, 8, pwm=True)

leds.source = cpu

pause()

2.34 More recipes

Continue to:

• Advanced Recipes (page 39)

• Remote GPIO Recipes (page 57)

38 Chapter 2. Basic Recipes



CHAPTER 3

Advanced Recipes

The following recipes demonstrate some of the capabilities of the GPIO Zero library. Please note that
all recipes are written assuming Python 3. Recipes may work under Python 2, but no guarantees!

3.1 LEDBoard

You can iterate over the LEDs in a LEDBoard (page 155) object one-by-one:

from gpiozero import LEDBoard
from time import sleep

leds = LEDBoard(5, 6, 13, 19, 26)

for led in leds:
led.on()
sleep(1)
led.off()

LEDBoard (page 155) also supports indexing. This means you can access the individual LED (page 123)
objects using leds[i] where i is an integer from 0 up to (not including) the number of LEDs:

from gpiozero import LEDBoard
from time import sleep

leds = LEDBoard(2, 3, 4, 5, 6, 7, 8, 9)

leds[0].on() # first led on
sleep(1)
leds[7].on() # last led on
sleep(1)
leds[-1].off() # last led off
sleep(1)

This also means you can use slicing to access a subset of the LEDs:

39



GPIO Zero Documentation, Release 1.6.1

from gpiozero import LEDBoard
from time import sleep

leds = LEDBoard(2, 3, 4, 5, 6, 7, 8, 9)

for led in leds[3:]: # leds 3 and onward
led.on()

sleep(1)
leds.off()

for led in leds[:2]: # leds 0 and 1
led.on()

sleep(1)
leds.off()

for led in leds[::2]: # even leds (0, 2, 4...)
led.on()

sleep(1)
leds.off()

for led in leds[1::2]: # odd leds (1, 3, 5...)
led.on()

sleep(1)
leds.off()

LEDBoard (page 155) objects can have their LED objects named upon construction. This means the
individual LEDs can be accessed by their name:

from gpiozero import LEDBoard
from time import sleep

leds = LEDBoard(red=2, green=3, blue=4)

leds.red.on()
sleep(1)
leds.green.on()
sleep(1)
leds.blue.on()
sleep(1)

LEDBoard (page 155) objects can also be nested within other LEDBoard (page 155) objects:

from gpiozero import LEDBoard
from time import sleep

leds = LEDBoard(red=LEDBoard(top=2, bottom=3), green=LEDBoard(top=4, bottom=5))

leds.red.on() ## both reds on
sleep(1)
leds.green.on() # both greens on
sleep(1)
leds.off() # all off
sleep(1)
leds.red.top.on() # top red on
sleep(1)
leds.green.bottom.on() # bottom green on
sleep(1)

40 Chapter 3. Advanced Recipes



GPIO Zero Documentation, Release 1.6.1

3.2 Multi-character 7-segment display

The 7-segment display demonstrated in the previous chapter is often available in multi-character variants
(typically 4 characters long). Such displays are multiplexed meaning that the LED pins are typically
the same as for the single character display but are shared across all characters. Each character in turn
then has its own common line which can be tied to ground (in the case of a common cathode display)
to enable that particular character. By activating each character in turn very quickly, the eye can be
fooled into thinking four different characters are being displayed simultaneously.

In such circuits you should not attempt to sink all the current from a single character (which may have
up to 8 LEDs, in the case of a decimal-point, active) into a single GPIO. Rather, use some appropriate
transistor (or similar component, e.g. an opto-coupler) to tie the digit’s cathode to ground, and control
that component from a GPIO.

1
1

5
5

1
0

1
0

1
5

1
5

2
0

2
0

2
5

2
5

3
0

3
0

3
5

3
5

4
0

4
0

4
5

4
5

5
0

5
0

5
5

5
5

6
0

6
0

A A

B B

C C

D D

E E

F F

G G

H H

I I

J J

R
a
sp

b
e
rry

 Pi M
o
d

e
l 2

 v
1

.1
©

 R
a
sp

b
e
rry

 Pi 2
0

1
4

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

This circuit demonstrates a 4-character 7-segment (actually 8-segment, with decimal-point) display,
controlled by the Pi’s GPIOs with 4 2N-3904 NPN transistors to control the digits.

Warning: You are strongly advised to check the data-sheet for your particular multi-character
7-segment display. The pin-outs of these displays vary significantly and are very likely to be different
to that shown on the breadboard above. For this reason, the schematic for this circuit is provided
below; adapt it to your particular display.

3.2. Multi-character 7-segment display 41



GPIO Zero Documentation, Release 1.6.1

2 1

2 1

21

21

21

21

7
 S

E
G

M
E
N

T
4

D
IG

IT
YO

U
N

G
S
U

N

A

B

C

D

E

F

G

D
P

A

B

C

D

E

F

G

D
P

A

B

C

D

E

F

G

D
P

A

B

C

D

E

F

G

D
P

C
O

L

A
P
O

S

2
DIG2

6
DIG3

8
DIG4

4
COL-A

10
APOS-A

14
A

16
B

13
C

3
D

5
E

11
F

15
G

7
DP

12
COL-C

9
APOS-C

1
DIG1

21

21

1

2
3

1

2
3

1

2
3

1

2
3

2
1

2
1

2
1

2
1

GPIO14 UART0_TXD

GPIO15 UART0_RXD

GPIO18 PCM_CLK

GPIO23

GPIO24

GPIO25

GPIO8 SPI0_CE0_N

GPIO7 SPI0_CE1_N

ID_SC I2C ID EEPROM

GPIO12

GPIO16

GPIO20

GPIO21GPIO2 SDA1 I2C

GPIO3 SCL1 I2C

GPIO4

GPIO17

GPIO27

GPIO22

GIPO10 SPI0_MOSI

GPIO9 SPI0_MISO

GPIO11 SPI0_SCLK

ID_SD I2C ID EEPROM

GPIO5

GPIO5GPIO6

GPIO13

GPIO19

GPIO26

G
N

D

3
V

3

5
V

RaspberryPi

Model 2 v1.1

R1-R8
330Ω

Q
1

-Q
4

2
N

 3
9

0
4

R
9

-R
1

2
3

3
kΩ

The following code can be used to scroll a message across the display:

from itertools import cycle
from collections import deque
from gpiozero import LEDMultiCharDisplay
from signal import pause

display = LEDMultiCharDisplay(
LEDCharDisplay(22, 23, 24, 25, 21, 20, 16, dp=12), 26, 19, 13, 6)

def scroller(message, chars=4):
d = deque(maxlen=chars)
for c in cycle(message):

d.append(c)
if len(d) == chars:

yield ''.join(d)

display.source_delay = 0.2
display.source = scroller('GPIO 2ER0 ')
pause()

3.3 Who’s home indicator

Using a number of green-red LED pairs, you can show the status of who’s home, according to which IP
addresses you can ping successfully. Note that this assumes each person’s mobile phone has a reserved
IP address on the home router.

from gpiozero import PingServer, LEDBoard
from gpiozero.tools import negated
from signal import pause

status = LEDBoard(
mum=LEDBoard(red=14, green=15),
dad=LEDBoard(red=17, green=18),

(continues on next page)

42 Chapter 3. Advanced Recipes



GPIO Zero Documentation, Release 1.6.1

(continued from previous page)

alice=LEDBoard(red=21, green=22)
)

statuses = {
PingServer('192.168.1.5'): status.mum,
PingServer('192.168.1.6'): status.dad,
PingServer('192.168.1.7'): status.alice,

}

for server, leds in statuses.items():
leds.green.source = server
leds.green.source_delay = 60
leds.red.source = negated(leds.green)

pause()

Alternatively, using the STATUS Zero22 board:

from gpiozero import PingServer, StatusZero
from gpiozero.tools import negated
from signal import pause

status = StatusZero('mum', 'dad', 'alice')

statuses = {
PingServer('192.168.1.5'): status.mum,
PingServer('192.168.1.6'): status.dad,
PingServer('192.168.1.7'): status.alice,

}

for server, leds in statuses.items():
leds.green.source = server
leds.green.source_delay = 60
leds.red.source = negated(leds.green)

pause()

3.4 Travis build LED indicator

Use LEDs to indicate the status of a Travis build. A green light means the tests are passing, a red light
means the build is broken:

from travispy import TravisPy
from gpiozero import LED
from gpiozero.tools import negated
from time import sleep
from signal import pause

def build_passed(repo):
t = TravisPy()
r = t.repo(repo)
while True:

yield r.last_build_state == 'passed'
(continues on next page)

22 https://thepihut.com/status

3.4. Travis build LED indicator 43

https://thepihut.com/status


GPIO Zero Documentation, Release 1.6.1

(continued from previous page)

red = LED(12)
green = LED(16)

green.source = build_passed('gpiozero/gpiozero')
green.source_delay = 60 * 5 # check every 5 minutes
red.source = negated(green)

pause()

Note this recipe requires travispy23. Install with sudo pip3 install travispy.

3.5 Button controlled robot

Alternatively to the examples in the simple recipes, you can use four buttons to program the directions
and add a fifth button to process them in turn, like a Bee-Bot or Turtle robot.

from gpiozero import Button, Robot
from time import sleep
from signal import pause

robot = Robot((17, 18), (22, 23))

left = Button(2)
right = Button(3)
forward = Button(4)
backward = Button(5)
go = Button(6)

instructions = []

def add_instruction(btn):
instructions.append({

left: (-1, 1),
right: (1, -1),
forward: (1, 1),
backward: (-1, -1),

}[btn])

def do_instructions():
instructions.append((0, 0))
robot.source_delay = 0.5
robot.source = instructions
sleep(robot.source_delay * len(instructions))
del instructions[:]

go.when_pressed = do_instructions
for button in (left, right, forward, backward):

button.when_pressed = add_instruction

pause()

23 https://travispy.readthedocs.io/

44 Chapter 3. Advanced Recipes

https://travispy.readthedocs.io/


GPIO Zero Documentation, Release 1.6.1

3.6 Robot controlled by 2 potentiometers

Use two potentiometers to control the left and right motor speed of a robot:

from gpiozero import Robot, MCP3008
from gpiozero.tools import zip_values
from signal import pause

robot = Robot(left=(4, 14), right=(17, 18))

left_pot = MCP3008(0)
right_pot = MCP3008(1)

robot.source = zip_values(left_pot, right_pot)

pause()

To include reverse direction, scale the potentiometer values from 0->1 to -1->1:

from gpiozero import Robot, MCP3008
from gpiozero.tools import scaled
from signal import pause

robot = Robot(left=(4, 14), right=(17, 18))

left_pot = MCP3008(0)
right_pot = MCP3008(1)

robot.source = zip(scaled(left_pot, -1, 1), scaled(right_pot, -1, 1))

pause()

Note: Please note the example above requires Python 3. In Python 2, zip()24 doesn’t support lazy
evaluation so the script will simply hang.

3.7 BlueDot LED

BlueDot is a Python library an Android app which allows you to easily add Bluetooth control to your
Raspberry Pi project. A simple example to control a LED using the BlueDot app:

from bluedot import BlueDot
from gpiozero import LED

bd = BlueDot()
led = LED(17)

while True:
bd.wait_for_press()
led.on()
bd.wait_for_release()
led.off()

24 https://docs.python.org/3.7/library/functions.html#zip

3.6. Robot controlled by 2 potentiometers 45

https://docs.python.org/3.7/library/functions.html#zip


GPIO Zero Documentation, Release 1.6.1

Note this recipe requires bluedot and the associated Android app. See the BlueDot documentation25

for installation instructions.

3.8 BlueDot robot

You can create a Bluetooth controlled robot which moves forward when the dot is pressed and stops
when it is released:

from bluedot import BlueDot
from gpiozero import Robot
from signal import pause

bd = BlueDot()
robot = Robot(left=(4, 14), right=(17, 18))

def move(pos):
if pos.top:

robot.forward(pos.distance)
elif pos.bottom:

robot.backward(pos.distance)
elif pos.left:

robot.left(pos.distance)
elif pos.right:

robot.right(pos.distance)

bd.when_pressed = move
bd.when_moved = move
bd.when_released = robot.stop

pause()

Or a more advanced example including controlling the robot’s speed and precise direction:

from gpiozero import Robot
from bluedot import BlueDot
from signal import pause

def pos_to_values(x, y):
left = y if x > 0 else y + x
right = y if x < 0 else y - x
return (clamped(left), clamped(right))

def clamped(v):
return max(-1, min(1, v))

def drive():
while True:

if bd.is_pressed:
x, y = bd.position.x, bd.position.y
yield pos_to_values(x, y)

else:
yield (0, 0)

robot = Robot(left=(4, 14), right=(17, 18))
(continues on next page)

25 https://bluedot.readthedocs.io/en/latest/index.html

46 Chapter 3. Advanced Recipes

https://bluedot.readthedocs.io/en/latest/index.html


GPIO Zero Documentation, Release 1.6.1

(continued from previous page)

bd = BlueDot()

robot.source = drive()

pause()

3.9 Controlling the Pi’s own LEDs

On certain models of Pi (specifically the model A+, B+, and 2B) it’s possible to control the power and
activity LEDs. This can be useful for testing GPIO functionality without the need to wire up your own
LEDs (also useful because the power and activity LEDs are “known good”).

Firstly you need to disable the usual triggers for the built-in LEDs. This can be done from the terminal
with the following commands:

$ echo none | sudo tee /sys/class/leds/led0/trigger
$ echo gpio | sudo tee /sys/class/leds/led1/trigger

Now you can control the LEDs with gpiozero like so:

from gpiozero import LED
from signal import pause

power = LED(35) # /sys/class/leds/led1
activity = LED(47) # /sys/class/leds/led0

activity.blink()
power.blink()
pause()

To revert the LEDs to their usual purpose you can either reboot your Pi or run the following commands:

$ echo mmc0 | sudo tee /sys/class/leds/led0/trigger
$ echo input | sudo tee /sys/class/leds/led1/trigger

Note: On the Pi Zero you can control the activity LED with this recipe, but there’s no separate power
LED to control (it’s also worth noting the activity LED is active low, so set active_high=False when
constructing your LED component).

On the original Pi 1 (model A or B), the activity LED can be controlled with GPIO16 (after disabling
its trigger as above) but the power LED is hard-wired on.

On the Pi 3 the LEDs are controlled by a GPIO expander which is not accessible from gpiozero (yet).

3.9. Controlling the Pi’s own LEDs 47



GPIO Zero Documentation, Release 1.6.1

48 Chapter 3. Advanced Recipes



CHAPTER 4

Configuring Remote GPIO

GPIO Zero supports a number of different pin implementations (low-level pin libraries which deal with
the GPIO pins directly). By default, the RPi.GPIO26 library is used (assuming it is installed on your
system), but you can optionally specify one to use. For more information, see the API - Pins (page 225)
documentation page.

One of the pin libraries supported, pigpio27, provides the ability to control GPIO pins remotely over the
network, which means you can use GPIO Zero to control devices connected to a Raspberry Pi on the
network. You can do this from another Raspberry Pi, or even from a PC.

See the Remote GPIO Recipes (page 57) page for examples on how remote pins can be used.

4.1 Preparing the Raspberry Pi

If you’re using Raspberry Pi OS (desktop - not Lite) then you have everything you need to use the remote
GPIO feature. If you’re using Raspberry Pi OS Lite, or another distribution, you’ll need to install pigpio:

$ sudo apt install pigpio

Alternatively, pigpio is available from abyz.me.uk28.

You’ll need to enable remote connections, and launch the pigpio daemon on the Raspberry Pi.

4.1.1 Enable remote connections

On the Raspberry Pi OS desktop image, you can enable Remote GPIO in the Raspberry Pi configuration
tool:

26 https://pypi.python.org/pypi/RPi.GPIO
27 http://abyz.me.uk/rpi/pigpio/python.html
28 http://abyz.me.uk/rpi/pigpio/download.html

49

https://pypi.python.org/pypi/RPi.GPIO
http://abyz.me.uk/rpi/pigpio/python.html
http://abyz.me.uk/rpi/pigpio/download.html


GPIO Zero Documentation, Release 1.6.1

Alternatively, enter sudo raspi-config on the command line, and enable Remote GPIO. This is func-
tionally equivalent to the desktop method.

This will allow remote connections (until disabled) when the pigpio daemon is launched using systemctl
(see below). It will also launch the pigpio daemon for the current session. Therefore, nothing further is
required for the current session, but after a reboot, a systemctl command will be required.

4.1.2 Command-line: systemctl

To automate running the daemon at boot time, run:

$ sudo systemctl enable pigpiod

To run the daemon once using systemctl, run:

$ sudo systemctl start pigpiod

4.1.3 Command-line: pigpiod

Another option is to launch the pigpio daemon manually:

$ sudo pigpiod

This is for single-session-use and will not persist after a reboot. However, this method can be used to
allow connections from a specific IP address, using the -n flag. For example:

$ sudo pigpiod -n localhost # allow localhost only
$ sudo pigpiod -n 192.168.1.65 # allow 192.168.1.65 only
$ sudo pigpiod -n localhost -n 192.168.1.65 # allow localhost and 192.168.1.65 only

50 Chapter 4. Configuring Remote GPIO



GPIO Zero Documentation, Release 1.6.1

Note: Note that running sudo pigpiod will not honour the Remote GPIO configuration setting (i.e.
without the -n flag it will allow remote connections even if the remote setting is disabled), but sudo
systemctl enable pigpiod or sudo systemctl start pigpiod will not allow remote connections un-
less configured accordingly.

4.2 Preparing the control computer

If the control computer (the computer you’re running your Python code from) is a Raspberry Pi running
Raspberry Pi OS (or a PC running Raspberry Pi Desktop x8629), then you have everything you need.
If you’re using another Linux distribution, Mac OS or Windows then you’ll need to install the pigpio30

Python library on the PC.

4.2.1 Raspberry Pi

First, update your repositories list:

$ sudo apt update

Then install GPIO Zero and the pigpio library for Python 3:

$ sudo apt install python3-gpiozero python3-pigpio

or Python 2:

$ sudo apt install python-gpiozero python-pigpio

Alternatively, install with pip:

$ sudo pip3 install gpiozero pigpio

or for Python 2:

$ sudo pip install gpiozero pigpio

4.2.2 Linux

First, update your distribution’s repositories list. For example:

$ sudo apt update

Then install pip for Python 3:

$ sudo apt install python3-pip

or Python 2:

$ sudo apt install python-pip

(Alternatively, install pip with get-pip31.)

Next, install GPIO Zero and pigpio for Python 3:
29 https://www.raspberrypi.org/downloads/raspberry-pi-desktop/
30 http://abyz.me.uk/rpi/pigpio/python.html
31 https://pip.pypa.io/en/stable/installing/

4.2. Preparing the control computer 51

https://www.raspberrypi.org/downloads/raspberry-pi-desktop/
http://abyz.me.uk/rpi/pigpio/python.html
https://pip.pypa.io/en/stable/installing/


GPIO Zero Documentation, Release 1.6.1

$ sudo pip3 install gpiozero pigpio

or Python 2:

$ sudo pip install gpiozero pigpio

4.2.3 Mac OS

First, install pip. If you installed Python 3 using brew, you will already have pip. If not, install pip with
get-pip32.

Next, install GPIO Zero and pigpio with pip:

$ pip3 install gpiozero pigpio

Or for Python 2:

$ pip install gpiozero pigpio

4.2.4 Windows

Modern Python installers for Windows bundle pip with Python. If pip is not installed, you can follow
this guide33. Next, install GPIO Zero and pigpio with pip:

C:\Users\user1> pip install gpiozero pigpio

4.3 Environment variables

The simplest way to use devices with remote pins is to set the PIGPIO_ADDR (page 80) environment
variable to the IP address of the desired Raspberry Pi. You must run your Python script or launch your
development environment with the environment variable set using the command line. For example, one
of the following:

$ PIGPIO_ADDR=192.168.1.3 python3 hello.py
$ PIGPIO_ADDR=192.168.1.3 python3
$ PIGPIO_ADDR=192.168.1.3 ipython3
$ PIGPIO_ADDR=192.168.1.3 idle3 &

If you are running this from a PC (not a Raspberry Pi) with gpiozero and the pigpio34 Python library
installed, this will work with no further configuration. However, if you are running this from a Rasp-
berry Pi, you will also need to ensure the default pin factory is set to PiGPIOFactory (page 241). If
RPi.GPIO35 is installed, this will be selected as the default pin factory, so either uninstall it, or use the
GPIOZERO_PIN_FACTORY (page 80) environment variable to override it:

$ GPIOZERO_PIN_FACTORY=pigpio PIGPIO_ADDR=192.168.1.3 python3 hello.py

This usage will set the pin factory to PiGPIOFactory (page 241) with a default host of 192.168.1.3.
The pin factory can be changed inline in the code, as seen in the following sections.

With this usage, you can write gpiozero code like you would on a Raspberry Pi, with no modifications
needed. For example:

32 https://pip.pypa.io/en/stable/installing/
33 https://projects.raspberrypi.org/en/projects/using-pip-on-windows
34 http://abyz.me.uk/rpi/pigpio/python.html
35 https://pypi.python.org/pypi/RPi.GPIO

52 Chapter 4. Configuring Remote GPIO

https://pip.pypa.io/en/stable/installing/
https://projects.raspberrypi.org/en/projects/using-pip-on-windows
https://projects.raspberrypi.org/en/projects/using-pip-on-windows
http://abyz.me.uk/rpi/pigpio/python.html
https://pypi.python.org/pypi/RPi.GPIO


GPIO Zero Documentation, Release 1.6.1

from gpiozero import LED
from time import sleep

red = LED(17)

while True:
red.on()
sleep(1)
red.off()
sleep(1)

When run with:

$ PIGPIO_ADDR=192.168.1.3 python3 led.py

will flash the LED connected to pin 17 of the Raspberry Pi with the IP address 192.168.1.3. And:

$ PIGPIO_ADDR=192.168.1.4 python3 led.py

will flash the LED connected to pin 17 of the Raspberry Pi with the IP address 192.168.1.4, without
any code changes, as long as the Raspberry Pi has the pigpio daemon running.

Note: When running code directly on a Raspberry Pi, any pin factory can be used (assuming the
relevant library is installed), but when a device is used remotely, only PiGPIOFactory (page 241) can be
used, as pigpio36 is the only pin library which supports remote GPIO.

4.4 Pin factories

An alternative (or additional) method of configuring gpiozero objects to use remote pins is to create
instances of PiGPIOFactory (page 241) objects, and use them when instantiating device objects. For
example, with no environment variables set:

from gpiozero import LED
from gpiozero.pins.pigpio import PiGPIOFactory
from time import sleep

factory = PiGPIOFactory(host='192.168.1.3')
led = LED(17, pin_factory=factory)

while True:
led.on()
sleep(1)
led.off()
sleep(1)

This allows devices on multiple Raspberry Pis to be used in the same script:

from gpiozero import LED
from gpiozero.pins.pigpio import PiGPIOFactory
from time import sleep

factory3 = PiGPIOFactory(host='192.168.1.3')
factory4 = PiGPIOFactory(host='192.168.1.4')

(continues on next page)

36 http://abyz.me.uk/rpi/pigpio/python.html

4.4. Pin factories 53

http://abyz.me.uk/rpi/pigpio/python.html


GPIO Zero Documentation, Release 1.6.1

(continued from previous page)

led_1 = LED(17, pin_factory=factory3)
led_2 = LED(17, pin_factory=factory4)

while True:
led_1.on()
led_2.off()
sleep(1)
led_1.off()
led_2.on()
sleep(1)

You can, of course, continue to create gpiozero device objects as normal, and create others using remote
pins. For example, if run on a Raspberry Pi, the following script will flash an LED on the controller Pi,
and also on another Pi on the network:

from gpiozero import LED
from gpiozero.pins.pigpio import PiGPIOFactory
from time import sleep

remote_factory = PiGPIOFactory(host='192.168.1.3')
led_1 = LED(17) # local pin
led_2 = LED(17, pin_factory=remote_factory) # remote pin

while True:
led_1.on()
led_2.off()
sleep(1)
led_1.off()
led_2.on()
sleep(1)

Alternatively, when run with the environment variables GPIOZERO_PIN_FACTORY=pigpio
PIGPIO_ADDR=192.168.1.3 set, the following script will behave exactly the same as the previous
one:

from gpiozero import LED
from gpiozero.pins.rpigpio import RPiGPIOFactory
from time import sleep

local_factory = RPiGPIOFactory()
led_1 = LED(17, pin_factory=local_factory) # local pin
led_2 = LED(17) # remote pin

while True:
led_1.on()
led_2.off()
sleep(1)
led_1.off()
led_2.on()
sleep(1)

Of course, multiple IP addresses can be used:

from gpiozero import LED
from gpiozero.pins.pigpio import PiGPIOFactory
from time import sleep

(continues on next page)

54 Chapter 4. Configuring Remote GPIO



GPIO Zero Documentation, Release 1.6.1

(continued from previous page)

factory3 = PiGPIOFactory(host='192.168.1.3')
factory4 = PiGPIOFactory(host='192.168.1.4')

led_1 = LED(17) # local pin
led_2 = LED(17, pin_factory=factory3) # remote pin on one pi
led_3 = LED(17, pin_factory=factory4) # remote pin on another pi

while True:
led_1.on()
led_2.off()
led_3.on()
sleep(1)
led_1.off()
led_2.on()
led_3.off()
sleep(1)

Note that these examples use the LED (page 123) class, which takes a pin argument to initialise. Some
classes, particularly those representing HATs and other add-on boards, do not require their pin numbers
to be specified. However, it is still possible to use remote pins with these devices, either using environment
variables, or the pin_factory keyword argument:

import gpiozero
from gpiozero import TrafficHat
from gpiozero.pins.pigpio import PiGPIOFactory
from time import sleep

gpiozero.Device.pin_factory = PiGPIOFactory(host='192.168.1.3')
th = TrafficHat() # traffic hat on 192.168.1.3 using remote pins

This also allows you to swap between two IP addresses and create instances of multiple HATs connected
to different Pis:

import gpiozero
from gpiozero import TrafficHat
from gpiozero.pins.pigpio import PiGPIOFactory
from time import sleep

remote_factory = PiGPIOFactory(host='192.168.1.3')

th_1 = TrafficHat() # traffic hat using local pins
th_2 = TrafficHat(pin_factory=remote_factory) # traffic hat on 192.168.1.3 using␣
↪→remote pins

You could even use a HAT which is not supported by GPIO Zero (such as the Sense HAT37) on one Pi,
and use remote pins to control another over the network:

from gpiozero import MotionSensor
from gpiozero.pins.pigpio import PiGPIOFactory
from sense_hat import SenseHat

remote_factory = PiGPIOFactory(host='192.198.1.4')
pir = MotionSensor(4, pin_factory=remote_factory) # remote motion sensor
sense = SenseHat() # local sense hat

(continues on next page)

37 https://www.raspberrypi.org/products/sense-hat/

4.4. Pin factories 55

https://www.raspberrypi.org/products/sense-hat/


GPIO Zero Documentation, Release 1.6.1

(continued from previous page)

while True:
pir.wait_for_motion()
sense.show_message(sense.temperature)

Note that in this case, the Sense HAT code must be run locally, and the GPIO remotely.

4.5 Remote GPIO usage

Continue to:

• Remote GPIO Recipes (page 57)

• Pi Zero USB OTG (page 61)

56 Chapter 4. Configuring Remote GPIO



CHAPTER 5

Remote GPIO Recipes

The following recipes demonstrate some of the capabilities of the remote GPIO feature of the GPIO Zero
library. Before you start following these examples, please read up on preparing your Pi and your host
PC to work with Configuring Remote GPIO (page 49).

Please note that all recipes are written assuming Python 3. Recipes may work under Python 2, but no
guarantees!

5.1 LED + Button

Let a Button (page 103) on one Raspberry Pi control the LED (page 123) of another:

from gpiozero import Button, LED
from gpiozero.pins.pigpio import PiGPIOFactory
from signal import pause

factory = PiGPIOFactory(host='192.168.1.3')

button = Button(2)
led = LED(17, pin_factory=factory)

led.source = button

pause()

5.2 LED + 2 Buttons

The LED (page 123) will come on when both buttons are pressed:

from gpiozero import Button, LED
from gpiozero.pins.pigpio import PiGPIOFactory
from gpiozero.tools import all_values
from signal import pause

(continues on next page)

57



GPIO Zero Documentation, Release 1.6.1

(continued from previous page)

factory3 = PiGPIOFactory(host='192.168.1.3')
factory4 = PiGPIOFactory(host='192.168.1.4')

led = LED(17)
button_1 = Button(17, pin_factory=factory3)
button_2 = Button(17, pin_factory=factory4)

led.source = all_values(button_1, button_2)

pause()

5.3 Multi-room motion alert

Install a Raspberry Pi with a MotionSensor (page 108) in each room of your house, and have an
class:LED indicator showing when there’s motion in each room:

from gpiozero import LEDBoard, MotionSensor
from gpiozero.pins.pigpio import PiGPIOFactory
from gpiozero.tools import zip_values
from signal import pause

ips = ['192.168.1.3', '192.168.1.4', '192.168.1.5', '192.168.1.6']
remotes = [PiGPIOFactory(host=ip) for ip in ips]

leds = LEDBoard(2, 3, 4, 5) # leds on this pi
sensors = [MotionSensor(17, pin_factory=r) for r in remotes] # remote sensors

leds.source = zip_values(*sensors)

pause()

5.4 Multi-room doorbell

Install a Raspberry Pi with a Buzzer (page 130) attached in each room you want to hear the doorbell,
and use a push Button (page 103) as the doorbell:

from gpiozero import LEDBoard, MotionSensor
from gpiozero.pins.pigpio import PiGPIOFactory
from signal import pause

ips = ['192.168.1.3', '192.168.1.4', '192.168.1.5', '192.168.1.6']
remotes = [PiGPIOFactory(host=ip) for ip in ips]

button = Button(17) # button on this pi
buzzers = [Buzzer(pin, pin_factory=r) for r in remotes] # buzzers on remote pins

for buzzer in buzzers:
buzzer.source = button

pause()

This could also be used as an internal doorbell (tell people it’s time for dinner from the kitchen).

58 Chapter 5. Remote GPIO Recipes



GPIO Zero Documentation, Release 1.6.1

5.5 Remote button robot

Similarly to the simple recipe for the button controlled Robot (page 175), this example uses four buttons
to control the direction of a robot. However, using remote pins for the robot means the control buttons
can be separate from the robot:

from gpiozero import Button, Robot
from gpiozero.pins.pigpio import PiGPIOFactory
from signal import pause

factory = PiGPIOFactory(host='192.168.1.17')
robot = Robot(left=(4, 14), right=(17, 18), pin_factory=factory) # remote pins

# local buttons
left = Button(26)
right = Button(16)
fw = Button(21)
bw = Button(20)

fw.when_pressed = robot.forward
fw.when_released = robot.stop

left.when_pressed = robot.left
left.when_released = robot.stop

right.when_pressed = robot.right
right.when_released = robot.stop

bw.when_pressed = robot.backward
bw.when_released = robot.stop

pause()

5.6 Light sensor + Sense HAT

The Sense HAT38 (not supported by GPIO Zero) includes temperature, humidity and pressure sensors,
but no light sensor. Remote GPIO allows an external LightSensor (page 109) to be used as well. The
Sense HAT LED display can be used to show different colours according to the light levels:

from gpiozero import LightSensor
from gpiozero.pins.pigpio import PiGPIOFactory
from sense_hat import SenseHat

remote_factory = PiGPIOFactory(host='192.168.1.4')
light = LightSensor(4, pin_factory=remote_factory) # remote motion sensor
sense = SenseHat() # local sense hat

blue = (0, 0, 255)
yellow = (255, 255, 0)

while True:
if light.value > 0.5:

sense.clear(yellow)
(continues on next page)

38 https://www.raspberrypi.org/products/sense-hat/

5.5. Remote button robot 59

https://www.raspberrypi.org/products/sense-hat/


GPIO Zero Documentation, Release 1.6.1

(continued from previous page)

else:
sense.clear(blue)

Note that in this case, the Sense HAT code must be run locally, and the GPIO remotely.

60 Chapter 5. Remote GPIO Recipes



CHAPTER 6

Pi Zero USB OTG

The Raspberry Pi Zero39 and Pi Zero W40 feature a USB OTG port, allowing users to configure the
device as (amongst other things) an Ethernet device. In this mode, it is possible to control the Pi Zero’s
GPIO pins over USB from another computer using the remote GPIO (page 49) feature.

6.1 GPIO expander method - no SD card required

The GPIO expander method allows you to boot the Pi Zero over USB from the PC, without an SD
card. Your PC sends the required boot firmware to the Pi over the USB cable, launching a mini version
of Raspberry Pi OS and booting it in RAM. The OS then starts the pigpio daemon, allowing “remote”
access over the USB cable.

At the time of writing, this is only possible using either the Raspberry Pi Desktop x86 OS, or Ubuntu
(or a derivative), or from another Raspberry Pi. Usage from Windows and Mac OS is not supported at
present.

6.1.1 Raspberry Pi Desktop x86 setup

1. Download an ISO of the Raspberry Pi Desktop OS41 from raspberrypi.org

2. Write the image to a USB stick or burn to a DVD.

3. Live boot your PC or Mac into the OS (select “Run with persistence” and your computer will be
back to normal afterwards).

6.1.2 Raspberry Pi setup (using Raspberry Pi OS)

1. Update your package list and install the usbbootgui package:

$ sudo apt update
$ sudo apt install usbbootgui

39 https://www.raspberrypi.org/products/raspberry-pi-zero/
40 https://www.raspberrypi.org/products/raspberry-pi-zero-w/
41 https://www.raspberrypi.org/downloads/raspberry-pi-desktop/

61

https://www.raspberrypi.org/products/raspberry-pi-zero/
https://www.raspberrypi.org/products/raspberry-pi-zero-w/
https://www.raspberrypi.org/downloads/raspberry-pi-desktop/


GPIO Zero Documentation, Release 1.6.1

6.1.3 Ubuntu setup

1. Add the Raspberry Pi PPA to your system:

$ sudo add-apt-repository ppa:rpi-distro/ppa

2. If you have previously installed gpiozero or pigpio with pip, uninstall these first:

$ sudo pip3 uninstall gpiozero pigpio

3. Install the required packages from the PPA:

$ sudo apt install usbbootgui pigpio python3-gpiozero python3-pigpio

6.1.4 Access the GPIOs

Once your PC or Pi has the USB Boot GUI tool installed, connecting a Pi Zero will automatically launch
a prompt to select a role for the device. Select “GPIO expansion board” and continue:

It will take 30 seconds or so to flash it, then the dialogue will disappear.

Raspberry Pi OS will name your Pi Zero connection usb0. On Ubuntu, this will likely be something
else. You can ping it using the address fe80::1% followed by the connection string. You can look this
up using ifconfig.

Set the GPIOZERO_PIN_FACTORY (page 80) and PIGPIO_ADDR (page 80) environment variables on your
PC so GPIO Zero connects to the “remote” Pi Zero:

$ export GPIOZERO_PIN_FACTORY=pigpio
$ export PIGPIO_ADDR=fe80::1%usb0

62 Chapter 6. Pi Zero USB OTG



GPIO Zero Documentation, Release 1.6.1

Now any GPIO Zero code you run on the PC will use the GPIOs of the attached Pi Zero:

Alternatively, you can set the pin factory in-line, as explained in Configuring Remote GPIO (page 49).

Read more on the GPIO expander in blog posts on raspberrypi.org42 and bennuttall.com43.

6.2 Legacy method - SD card required

The legacy method requires the Pi Zero to have an SD card with Raspberry Pi OS inserted.

Start by creating a Raspberry Pi OS (desktop or lite) SD card, and then configure the boot partition
like so:

1. Edit config.txt and add dtoverlay=dwc2 on a new line, then save the file.

2. Create an empty file called ssh (no file extension) and save it in the boot partition.

3. Edit cmdline.txt` and insert modules-load=dwc2,g_ether after rootwait.

(See guides on blog.gbaman.info44 and learn.adafruit.com45 for more detailed instructions)

Then connect the Pi Zero to your computer using a micro USB cable (connecting it to the USB port,
not the power port). You’ll see the indicator LED flashing as the Pi Zero boots. When it’s ready, you
will be able to ping and SSH into it using the hostname raspberrypi.local. SSH into the Pi Zero,
install pigpio and run the pigpio daemon.

Then, drop out of the SSH session and you can run Python code on your computer to control devices
attached to the Pi Zero, referencing it by its hostname (or IP address if you know it), for example:

42 https://www.raspberrypi.org/blog/gpio-expander/
43 http://bennuttall.com/raspberry-pi-zero-gpio-expander/
44 http://blog.gbaman.info/?p=791
45 https://learn.adafruit.com/turning-your-raspberry-pi-zero-into-a-usb-gadget/ethernet-gadget

6.2. Legacy method - SD card required 63

https://www.raspberrypi.org/blog/gpio-expander/
http://bennuttall.com/raspberry-pi-zero-gpio-expander/
http://blog.gbaman.info/?p=791
https://learn.adafruit.com/turning-your-raspberry-pi-zero-into-a-usb-gadget/ethernet-gadget


GPIO Zero Documentation, Release 1.6.1

$ GPIOZERO_PIN_FACTORY=pigpio PIGPIO_ADDR=raspberrypi.local python3 led.py

64 Chapter 6. Pi Zero USB OTG



CHAPTER 7

Source/Values

GPIO Zero provides a method of using the declarative programming paradigm to connect devices to-
gether: feeding the values of one device into another, for example the values of a button into an LED:

ButtonLED

from gpiozero import LED, Button
from signal import pause

led = LED(17)
button = Button(2)

led.source = button

pause()

which is equivalent to:

from gpiozero import LED, Button
from time import sleep

led = LED(17)
button = Button(2)

while True:
led.value = button.value
sleep(0.01)

except that the former is updated in a background thread, which enables you to do other things at the
same time.

Every device has a value (page 201) property (the device’s current value). Input devices (like buttons)
can only have their values read, but output devices (like LEDs) can also have their value set to alter the
state of the device:

65



GPIO Zero Documentation, Release 1.6.1

>>> led = PWMLED(17)
>>> led.value # LED is initially off
0.0
>>> led.on() # LED is now on
>>> led.value
1.0
>>> led.value = 0 # LED is now off

Every device also has a values (page 202) property (a generator46 continuously yielding the device’s
current value). All output devices have a source (page 202) property which can be set to any iterator47.
The device will iterate over the values of the device provided, setting the device’s value to each element
at a rate specified in the source_delay (page 202) property (the default is 0.01 seconds).

Input deviceOutput device

The most common use case for this is to set the source of an output device to match the values of an
input device, like the example above. A more interesting example would be a potentiometer controlling
the brightness of an LED:

PWM LED Potentiometer

from gpiozero import PWMLED, MCP3008
from signal import pause

led = PWMLED(17)
pot = MCP3008()

led.source = pot

pause()

The way this works is that the input device’s values (page 202) property is used to feed values into
the output device. Prior to v1.5, the source (page 202) had to be set directly to a device’s values
(page 202) property:

from gpiozero import PWMLED, MCP3008
from signal import pause

led = PWMLED(17)
pot = MCP3008()

led.source = pot.values

pause()

Note: Although this method is still supported, the recommended way is now to set the source
(page 202) to a device object.

It is also possible to set an output device’s source (page 202) to another output device, to keep them
matching. In this example, the red LED is set to match the button, and the green LED is set to match

46 https://wiki.python.org/moin/Generators
47 https://wiki.python.org/moin/Iterator

66 Chapter 7. Source/Values

https://wiki.python.org/moin/Generators
https://wiki.python.org/moin/Iterator


GPIO Zero Documentation, Release 1.6.1

the red LED, so both LEDs will be on when the button is pressed:

Red LEDGreen LED Button

from gpiozero import LED, Button
from signal import pause

red = LED(14)
green = LED(15)
button = Button(17)

red.source = button
green.source = red

pause()

7.1 Processing values

The device’s values can also be processed before they are passed to the source (page 202):

Output device Input devicecustom generator

For example, writing a generator function to pass the opposite of the Button value into the LED:

LED Buttonopposite

from gpiozero import Button, LED
from signal import pause

def opposite(device):
for value in device.values:

yield not value

led = LED(4)
btn = Button(17)

led.source = opposite(btn)

pause()

Alternatively, a custom generator can be used to provide values from an artificial source:

Output device custom generator

For example, writing a generator function to randomly yield 0 or 1:

7.1. Processing values 67



GPIO Zero Documentation, Release 1.6.1

LED rand

from gpiozero import LED
from random import randint
from signal import pause

def rand():
while True:

yield randint(0, 1)

led = LED(17)
led.source = rand()

pause()

If the iterator is infinite (i.e. an infinite generator), the elements will be processed until the source
(page 202) is changed or set to None48.

If the iterator is finite (e.g. a list), this will terminate once all elements are processed (leaving the device’s
value at the final element):

from gpiozero import LED
from signal import pause

led = LED(17)
led.source_delay = 1
led.source = [1, 0, 1, 1, 1, 0, 0, 1, 0, 1]

pause()

7.2 Source Tools

GPIO Zero provides a set of ready-made functions for dealing with source/values, called source tools.
These are available by importing from gpiozero.tools (page 205).

Some of these source tools are artificial sources which require no input:

Output device source tool

In this example, random values between 0 and 1 are passed to the LED, giving it a flickering candle
effect:

PWM LED random_values

from gpiozero import PWMLED
from gpiozero.tools import random_values
from signal import pause

(continues on next page)

48 https://docs.python.org/3.7/library/constants.html#None

68 Chapter 7. Source/Values

https://docs.python.org/3.7/library/constants.html#None


GPIO Zero Documentation, Release 1.6.1

(continued from previous page)

led = PWMLED(4)
led.source = random_values()
led.source_delay = 0.1

pause()

Note that in the above example, source_delay (page 202) is used to make the LED iterate over the
random values slightly slower. source_delay (page 202) can be set to a larger number (e.g. 1 for a one
second delay) or set to 0 to disable any delay.

Some tools take a single source and process its values:

Output device Input devicesource tool

In this example, the LED is lit only when the button is not pressed:

LED Buttonnegated

from gpiozero import Button, LED
from gpiozero.tools import negated
from signal import pause

led = LED(4)
btn = Button(17)

led.source = negated(btn)

pause()

Note: Note that source tools which take one or more value parameters support passing either
ValuesMixin (page 202) derivatives, or iterators, including a device’s values (page 202) property.

Some tools combine the values of multiple sources:

Output device

Input device 1

source tool

Input device 2

In this example, the LED is lit only if both buttons are pressed (like an AND49 gate):
49 https://en.wikipedia.org/wiki/AND_gate

7.2. Source Tools 69

https://en.wikipedia.org/wiki/AND_gate


GPIO Zero Documentation, Release 1.6.1

LED

Button A

all_values

Button B

from gpiozero import Button, LED
from gpiozero.tools import all_values
from signal import pause

button_a = Button(2)
button_b = Button(3)
led = LED(17)

led.source = all_values(button_a, button_b)

pause()

Similarly, any_values() (page 209) with two buttons would simulate an OR50 gate.

While most devices have a value (page 201) range between 0 and 1, some have a range between -1 and
1 (e.g. Motor (page 132), Servo (page 135) and TonalBuzzer (page 131)). Some source tools output
values between -1 and 1, which are ideal for these devices, for example passing sin_values() (page 212)
in:

Motor

Servo

Tonal buzzer

sin_values

from gpiozero import Motor, Servo, TonalBuzzer
from gpiozero.tools import sin_values
from signal import pause

motor = Motor(2, 3)
servo = Servo(4)
buzzer = TonalBuzzer(5)

motor.source = sin_values()
servo.source = motor
buzzer.source = motor

pause()

In this example, all three devices are following the sine wave51. The motor value ramps up from 0
(stopped) to 1 (full speed forwards), then back down to 0 and on to -1 (full speed backwards) in a cycle.
Similarly, the servo moves from its mid point to the right, then towards the left; and the buzzer starts
with its mid tone, gradually raises its frequency, to its highest tone, then down towards its lowest tone.
Note that setting source_delay (page 202) will alter the speed at which the device iterates through the

50 https://en.wikipedia.org/wiki/OR_gate
51 https://en.wikipedia.org/wiki/Sine_wave

70 Chapter 7. Source/Values

https://en.wikipedia.org/wiki/OR_gate
https://en.wikipedia.org/wiki/Sine_wave


GPIO Zero Documentation, Release 1.6.1

values. Alternatively, the tool cos_values() (page 211) could be used to start from -1 and go up to 1,
and so on.

7.3 Internal devices

GPIO Zero also provides several internal devices (page 189) which represent facilities provided by the
operating system itself. These can be used to react to things like the time of day, or whether a server is
available on the network. These classes include a values (page 202) property which can be used to feed
values into a device’s source (page 202). For example, a lamp connected to an Energenie (page 179)
socket can be controlled by a TimeOfDay (page 190) object so that it is on between the hours of 8am and
8pm:

Lamp Daytime

from gpiozero import Energenie, TimeOfDay
from datetime import time
from signal import pause

lamp = Energenie(1)
daytime = TimeOfDay(time(8), time(20))

daytime.when_activated = lamp.on
daytime.when_deactivated = lamp.off

pause()

Using the DiskUsage (page 195) class with LEDBarGraph (page 158) can show your Pi’s disk usage
percentage on a bar graph:

Disk usageLED bar graph

from gpiozero import DiskUsage, LEDBarGraph
from signal import pause

disk = DiskUsage()
graph = LEDBarGraph(2, 3, 4, 5, 6, 7, 8)

graph.source = disk

pause()

Demonstrating a garden light system whereby the light comes on if it’s dark and there’s motion is simple
enough, but it requires using the booleanized() (page 205) source tool to convert the light sensor from
a float value into a boolean:

7.3. Internal devices 71



GPIO Zero Documentation, Release 1.6.1

Garden light

Light sensorbooleanized

Motion sensor

all_values

from gpiozero import LED, MotionSensor, LightSensor
from gpiozero.tools import booleanized, all_values
from signal import pause

garden = LED(2)
motion = MotionSensor(4)
light = LightSensor(5)

garden.source = all_values(booleanized(light, 0, 0.1), motion)

pause()

7.4 Composite devices

The value (page 201) of a composite device made up of the nested values of its devices. For example,
the value of a Robot (page 175) object is a 2-tuple containing its left and right motor values:

>>> from gpiozero import Robot
>>> robot = Robot(left=(14, 15), right=(17, 18))
>>> robot.value
RobotValue(left_motor=0.0, right_motor=0.0)
>>> tuple(robot.value)
(0.0, 0.0)
>>> robot.forward()
>>> tuple(robot.value)
(1.0, 1.0)
>>> robot.backward()
>>> tuple(robot.value)
(-1.0, -1.0)
>>> robot.value = (1, 1) # robot is now driven forwards

Use two potentiometers to control the left and right motor speed of a robot:

Robot

Left potentiometer

zip_values

Right potentiometer

from gpiozero import Robot, MCP3008
from gpiozero.tools import zip_values
from signal import pause

(continues on next page)

72 Chapter 7. Source/Values



GPIO Zero Documentation, Release 1.6.1

(continued from previous page)

robot = Robot(left=(4, 14), right=(17, 18))

left_pot = MCP3008(0)
right_pot = MCP3008(1)

robot.source = zip_values(left_pot, right_pot)

pause()

To include reverse direction, scale the potentiometer values from 0->1 to -1->1:

Robot

Left potentiometerscaled

Right potentiometerscaled

zip

from gpiozero import Robot, MCP3008
from gpiozero.tools import scaled
from signal import pause

robot = Robot(left=(4, 14), right=(17, 18))

left_pot = MCP3008(0)
right_pot = MCP3008(1)

robot.source = zip(scaled(left_pot, -1, 1), scaled(right_pot, -1, 1))

pause()

Note that this example uses the built-in zip()52 rather than the tool zip_values() (page 210) as the
scaled() (page 208) tool yields values which do not need converting, just zipping. Also note that this
use of zip()53 will not work in Python 2, instead use izip54.

52 https://docs.python.org/3.7/library/functions.html#zip
53 https://docs.python.org/3.7/library/functions.html#zip
54 https://docs.python.org/2/library/itertools.html#itertools.izip

7.4. Composite devices 73

https://docs.python.org/3.7/library/functions.html#zip
https://docs.python.org/3.7/library/functions.html#zip
https://docs.python.org/2/library/itertools.html#itertools.izip


GPIO Zero Documentation, Release 1.6.1

74 Chapter 7. Source/Values



CHAPTER 8

Command-line Tools

The gpiozero package contains a database of information about the various revisions of Raspberry Pi.
This is queried by the pinout command-line tool to output details of the GPIO pins available.

Note: Note that only the Python 3 version of the Debian package includes the pinout command line tool,
so as not to create a conflict if both versions are installed. If you only installed the python-gpiozero apt
package, the pinout tool will not be available. Instead, you can additionally install the python3-gpiozero
package, or alternatively install gpiozero using pip.

75



GPIO Zero Documentation, Release 1.6.1

8.1 pinout

76 Chapter 8. Command-line Tools



GPIO Zero Documentation, Release 1.6.1

8.1.1 Synopsis

pinout [-h] [-r REVISION] [-c] [-m] [-x]

8.1.2 Description

A utility for querying Raspberry Pi GPIO pin-out information. Running pinout on its own will output a
board diagram, and GPIO header diagram for the current Raspberry Pi. It is also possible to manually
specify a revision of Pi, or (by Configuring Remote GPIO (page 49)) to output information about a
remote Pi.

8.1.3 Options

-h, --help
show this help message and exit

-r REVISION, --revision REVISION
RPi revision. Default is to autodetect revision of current device

-c, --color
Force colored output (by default, the output will include ANSI color codes if run in a color-capable
terminal). See also --monochrome (page 77)

-m, --monochrome
Force monochrome output. See also --color (page 77)

-x, --xyz
Open pinout.xyz55 in the default web browser

8.1.4 Examples

To output information about the current Raspberry Pi:

$ pinout

For a Raspberry Pi model 3B, this will output something like the following:

,--------------------------------.
| oooooooooooooooooooo J8 +====
| 1ooooooooooooooooooo | USB
| +====
| Pi Model 3B V1.1 |
| +----+ +====
| |D| |SoC | | USB
| |S| | | +====
| |I| +----+ |
| |C| +======
| |S| | Net
| pwr |HDMI| |I||A| +======
`-| |--------| |----|V|-------'

Revision : a02082
SoC : BCM2837
RAM : 1024Mb
Storage : MicroSD

(continues on next page)

55 https://pinout.xyz/

8.1. pinout 77

https://pinout.xyz/


GPIO Zero Documentation, Release 1.6.1

(continued from previous page)

USB ports : 4 (excluding power)
Ethernet ports : 1
Wi-fi : True
Bluetooth : True
Camera ports (CSI) : 1
Display ports (DSI): 1

J8:
3V3 (1) (2) 5V

GPIO2 (3) (4) 5V
GPIO3 (5) (6) GND
GPIO4 (7) (8) GPIO14

GND (9) (10) GPIO15
GPIO17 (11) (12) GPIO18
GPIO27 (13) (14) GND
GPIO22 (15) (16) GPIO23

3V3 (17) (18) GPIO24
GPIO10 (19) (20) GND
GPIO9 (21) (22) GPIO25
GPIO11 (23) (24) GPIO8

GND (25) (26) GPIO7
GPIO0 (27) (28) GPIO1
GPIO5 (29) (30) GND
GPIO6 (31) (32) GPIO12
GPIO13 (33) (34) GND
GPIO19 (35) (36) GPIO16
GPIO26 (37) (38) GPIO20

GND (39) (40) GPIO21

By default, if stdout is a console that supports color, ANSI codes will be used to produce color output.
Output can be forced to be --monochrome (page 77):

$ pinout --monochrome

Or forced to be --color (page 77), in case you are redirecting to something capable of supporting ANSI
codes:

$ pinout --color | less -SR

To manually specify the revision of Pi you want to query, use --revision (page 77). The tool understands
both old-style revision codes56 (such as for the model B):

$ pinout -r 000d

Or new-style revision codes57 (such as for the Pi Zero W):

$ pinout -r 9000c1

56 https://www.raspberrypi.org/documentation/hardware/raspberrypi/revision-codes/README.md
57 https://www.raspberrypi.org/documentation/hardware/raspberrypi/revision-codes/README.md

78 Chapter 8. Command-line Tools

https://www.raspberrypi.org/documentation/hardware/raspberrypi/revision-codes/README.md
https://www.raspberrypi.org/documentation/hardware/raspberrypi/revision-codes/README.md


GPIO Zero Documentation, Release 1.6.1

You can also use the tool with Configuring Remote GPIO (page 49) to query remote Raspberry Pi’s:

$ GPIOZERO_PIN_FACTORY=pigpio PIGPIO_ADDR=other_pi pinout

Or run the tool directly on a PC using the mock pin implementation (although in this case you’ll almost
certainly want to specify the Pi revision manually):

8.1. pinout 79



GPIO Zero Documentation, Release 1.6.1

$ GPIOZERO_PIN_FACTORY=mock pinout -r a22042

8.1.5 Environment Variables

GPIOZERO_PIN_FACTORY
The library to use when communicating with the GPIO pins. Defaults to attempting to load
RPi.GPIO, then RPIO, then pigpio, and finally uses a native Python implementation. Valid values
include “rpigpio”, “rpio”, “pigpio”, “native”, and “mock”. The latter is most useful on non-Pi
platforms as it emulates a Raspberry Pi model 3B (by default).

PIGPIO_ADDR
The hostname of the Raspberry Pi the pigpio library should attempt to connect to (if the pigpio
pin factory is being used). Defaults to localhost.

PIGPIO_PORT
The port number the pigpio library should attempt to connect to (if the pigpio pin factory is being
used). Defaults to 8888.

80 Chapter 8. Command-line Tools



CHAPTER 9

Frequently Asked Questions

9.1 How do I keep my script running?

The following script looks like it should turn an LED (page 123) on:

from gpiozero import LED

led = LED(17)
led.on()

And it does, if you’re using the Python or IPython shell, or the IDLE, Thonny or Mu editors. However,
if you saved this script as a Python file and ran it, it would flash on briefly, then the script would end
and it would turn off.

The following file includes an intentional pause()58 to keep the script alive:

from gpiozero import LED
from signal import pause

led = LED(17)
led.on()

pause()

Now the script will stay running, leaving the LED on, until it is terminated manually (e.g. by pressing
Ctrl+C). Similarly, when setting up callbacks on button presses or other input devices, the script needs
to be running for the events to be detected:

from gpiozero import Button
from signal import pause

def hello():
print("Hello")

button = Button(2)
(continues on next page)

58 https://docs.python.org/3.7/library/signal.html#signal.pause

81

https://docs.python.org/3.7/library/signal.html#signal.pause


GPIO Zero Documentation, Release 1.6.1

(continued from previous page)

button.when_pressed = hello

pause()

9.2 What’s the difference between when_pressed, is_pressed and
wait_for_press?

gpiozero provides a range of different approaches to reading input devices. Sometimes you want to ask
if a button’s pressed, sometimes you want to do something until it’s pressed, and sometimes you want
something to happen when it’s been pressed, regardless of what else is going on.

In a simple example where the button is the only device in play, all of the options would be equally
effective. But as soon as you introduce an extra element, like another GPIO device, you might need to
choose the right approach depending on your use case.

• is_pressed (page 105) is an attribute which reveals whether the button is currently pressed by
returning True or False:

while True:
if btn.is_pressed:

print("Pressed")
else:

print("Not pressed")

• wait_for_press() (page 104) as a method which blocks the code from continuing until the button
is pressed. Also see wait_for_release() (page 104):

while True:
print("Released. Waiting for press..")
btn.wait_for_press()
print("Pressed. Waiting for release...")
btn.wait_for_release()

• when_pressed (page 105) is an attribute which assigns a callback function to the event of the
button being pressed. Every time the button is pressed, the callback function is executed in a
separate thread. Also see when_released (page 105):

def pressed():
print("Pressed")

def released():
print("Released")

btn.when_pressed = pressed
btn.when_released = released

This pattern of options is common among many devices. All input devices (page 103) and inter-
nal devices (page 189) have is_active, when_activated, when_deactivated, wait_for_active and
wait_for_inactive, and many provide aliases (such as “pressed” for “activated”).

Also see a more advanced approach in the Source/Values (page 65) page.

9.3 My event handler isn’t being called

When assigning event handlers, don’t call the function you’re assigning. For example:

82 Chapter 9. Frequently Asked Questions



GPIO Zero Documentation, Release 1.6.1

from gpiozero import Button

def pushed():
print("Don't push the button!")

b = Button(17)
b.when_pressed = pushed()

In the case above, when assigning to when_pressed (page 105), the thing that is assigned is the result
of calling the pushed function. Because pushed doesn’t explicitly return anything, the result is None59.
Hence this is equivalent to doing:

b.when_pressed = None

This doesn’t raise an error because it’s perfectly valid: it’s what you assign when you don’t want the
event handler to do anything. Instead, you want to do the following:

b.when_pressed = pushed

This will assign the function to the event handler without calling it. This is the crucial difference between
my_function (a reference to a function) and my_function() (the result of calling a function).

Note: Note that as of v1.5, setting a callback to None60 when it was previously None61 will raise a
CallbackSetToNone (page 250) warning, with the intention of alerting users when callbacks are set to
None62 accidentally. However, if this is intentional, the warning can be suppressed. See the warnings63

module for reference.

9.4 Why do I get PinFactoryFallback warnings when I import gpi-
ozero?

You are most likely working in a virtual Python environment and have forgotten to install a pin driver
library like RPi.GPIO. GPIO Zero relies upon lower level pin drivers to handle interfacing to the GPIO
pins on the Raspberry Pi, so you can eliminate the warning simply by installing GPIO Zero’s first
preference:

$ pip install rpi.gpio

When GPIO Zero is imported it attempts to find a pin driver by importing them in a preferred order
(detailed in API - Pins (page 225)). If it fails to load its first preference (RPi.GPIO) it notifies you with
a warning, then falls back to trying its second preference and so on. Eventually it will fall back all the
way to the native implementation. This is a pure Python implementation built into GPIO Zero itself.
While this will work for most things it’s almost certainly not what you want (it doesn’t support PWM,
and it’s quite slow at certain things).

If you want to use a pin driver other than the default, and you want to suppress the warnings you’ve got
a couple of options:

1. Explicitly specify what pin driver you want via the GPIOZERO_PIN_FACTORY (page 80) environment
variable. For example:

59 https://docs.python.org/3.7/library/constants.html#None
60 https://docs.python.org/3.7/library/constants.html#None
61 https://docs.python.org/3.7/library/constants.html#None
62 https://docs.python.org/3.7/library/constants.html#None
63 https://docs.python.org/3.7/library/warnings.html#module-warnings

9.4. Why do I get PinFactoryFallback warnings when I import gpiozero? 83

https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/warnings.html#module-warnings


GPIO Zero Documentation, Release 1.6.1

$ GPIOZERO_PIN_FACTORY=pigpio python3

In this case no warning is issued because there’s no fallback; either the specified factory loads or it
fails in which case an ImportError64 will be raised.

2. Suppress the warnings and let the fallback mechanism work:

>>> import warnings
>>> warnings.simplefilter('ignore')
>>> import gpiozero

Refer to the warnings65 module documentation for more refined ways to filter out specific warning
classes.

9.5 How can I tell what version of gpiozero I have installed?

The gpiozero library relies on the setuptools package for installation services. You can use the setuptools
pkg_resources API to query which version of gpiozero is available in your Python environment like so:

>>> from pkg_resources import require
>>> require('gpiozero')
[gpiozero 1.6.0 (/usr/lib/python3/dist-packages)]
>>> require('gpiozero')[0].version
'1.6.0'

If you have multiple versions installed (e.g. from pip and apt) they will not show up in the list returned
by the pkg_resources.require() method. However, the first entry in the list will be the version that
import gpiozero will import.

If you receive the error “No module named pkg_resources”, you need to install pip. This can be done
with the following command in Raspberry Pi OS:

$ sudo apt install python3-pip

Alternatively, install pip with get-pip66.

9.6 Why do I get “command not found” when running pinout?

The gpiozero library is available as a Debian package for Python 2 and Python 3, but the cli_pinout
tool cannot be made available by both packages, so it’s only included with the Python 3 version of
the package. To make sure the cli_pinout tool is available, the “python3-gpiozero” package must be
installed:

$ sudo apt install python3-gpiozero

Alternatively, installing gpiozero using pip will install the command line tool, regardless of Python
version:

$ sudo pip3 install gpiozero

or:

64 https://docs.python.org/3.7/library/exceptions.html#ImportError
65 https://docs.python.org/3.7/library/warnings.html#module-warnings
66 https://pip.pypa.io/en/stable/installing/

84 Chapter 9. Frequently Asked Questions

https://docs.python.org/3.7/library/exceptions.html#ImportError
https://docs.python.org/3.7/library/warnings.html#module-warnings
https://pip.pypa.io/en/stable/installing/


GPIO Zero Documentation, Release 1.6.1

$ sudo pip install gpiozero

9.7 The pinout command line tool incorrectly identifies my Raspberry
Pi model

If your Raspberry Pi model is new, it’s possible it wasn’t known about at the time of the gpiozero release
you are using. Ensure you have the latest version installed (remember, the cli_pinout tool usually comes
from the Python 3 version of the package as noted in the previous FAQ).

If the Pi model you are using isn’t known to gpiozero, it may have been added since the last release.
You can check the GitHub issues67 to see if it’s been reported before, or check the commits68 on GitHub
since the last release to see if it’s been added. The model determination can be found in gpiozero/
pins/data.py.

9.8 What’s the gpiozero equivalent of GPIO.cleanup()?

Many people ask how to do the equivalent of the cleanup function from RPi.GPIO. In gpiozero, at the
end of your script, cleanup is run automatically, restoring your GPIO pins to the state they were found.

To explicitly close a connection to a pin, you can manually call the close() (page 201) method on a
device object:

>>> led = LED(2)
>>> led.on()
>>> led
<gpiozero.LED object on pin GPIO2, active_high=True, is_active=True>
>>> led.close()
>>> led
<gpiozero.LED object closed>

This means that you can reuse the pin for another device, and that despite turning the LED on (and
hence, the pin high), after calling close() (page 201) it is restored to its previous state (LED off, pin
low).

Read more about Migrating from RPi.GPIO (page 89).

9.9 How do I use button.when_pressed and button.when_held to-
gether?

The Button (page 103) class provides a when_held (page 105) property which is used to set a callback
for when the button is held down for a set amount of time (as determined by the hold_time (page 105)
property). If you want to set when_held (page 105) as well as when_pressed (page 105), you’ll notice that
both callbacks will fire. Sometimes, this is acceptable, but often you’ll want to only fire the when_pressed
(page 105) callback when the button has not been held, only pressed.

The way to achieve this is to not set a callback on when_pressed (page 105), and instead use
when_released (page 105) to work out whether it had been held or just pressed:

67 https://github.com/gpiozero/gpiozero/issues
68 https://github.com/gpiozero/gpiozero/commits/master

9.7. The pinout command line tool incorrectly identifies my Raspberry Pi model 85

https://github.com/gpiozero/gpiozero/issues
https://github.com/gpiozero/gpiozero/commits/master


GPIO Zero Documentation, Release 1.6.1

from gpiozero import Button

Button.was_held = False

def held(btn):
btn.was_held = True
print("button was held not just pressed")

def released(btn):
if not btn.was_held:

pressed()
btn.was_held = False

def pressed():
print("button was pressed not held")

btn = Button(2)

btn.when_held = held
btn.when_released = released

9.10 Why do I get “ImportError: cannot import name” when trying
to import from gpiozero?

It’s common to see people name their first gpiozero script gpiozero.py. Unfortunately, this will cause
your script to try to import itself, rather than the gpiozero library from the libraries path. You’ll see an
error like this:

Traceback (most recent call last):
File "gpiozero.py", line 1, in <module>
from gpiozero import LED

File "/home/pi/gpiozero.py", line 1, in <module>
from gpiozero import LED

ImportError: cannot import name 'LED'

Simply rename your script to something else, and run it again. Be sure not to name any of your scripts
the same name as a Python module you may be importing, such as picamera.py.

9.11 Why do I get an AttributeError trying to set attributes on a
device object?

If you try to add an attribute to a gpiozero device object after its initialization, you’ll find you can’t:

>>> from gpiozero import Button
>>> btn = Button(2)
>>> btn.label = 'alarm'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/lib/python3/dist-packages/gpiozero/devices.py", line 118, in __setattr__
self.__class__.__name__, name))

AttributeError: 'Button' object has no attribute 'label'

86 Chapter 9. Frequently Asked Questions



GPIO Zero Documentation, Release 1.6.1

This is in order to prevent users accidentally setting new attributes by mistake. Because gpiozero provides
functionality through setting attributes via properties, such as callbacks on buttons (and often there is
no immediate feedback when setting a property), this could lead to bugs very difficult to find. Consider
the following example:

from gpiozero import Button

def hello():
print("hello")

btn = Button(2)

btn.pressed = hello

This is perfectly valid Python code, and no errors would occur, but the program would not behave
as expected: pressing the button would do nothing, because the property for setting a callback is
when_pressed not pressed. But without gpiozero preventing this non-existent attribute from being
set, the user would likely struggle to see the mistake.

If you really want to set a new attribute on a device object, you need to create it in the class before
initializing your object:

>>> from gpiozero import Button
>>> Button.label = ''
>>> btn = Button(2)
>>> btn.label = 'alarm'
>>> def press(btn):
...: print(btn.label, "was pressed")
>>> btn.when_pressed = press

9.12 Why is it called GPIO Zero? Does it only work on Pi Zero?

gpiozero works on all Raspberry Pi models, not just the Pi Zero.

The “zero” is part of a naming convention for “zero-boilerplate” education friendly libraries, which started
with Pygame Zero69, and has been followed by NetworkZero70, guizero71 and more.

These libraries aim to remove barrier to entry and provide a smooth learning curve for beginners by
making it easy to get started and easy to build up to more advanced projects.

69 https://pygame-zero.readthedocs.io/en/stable/
70 https://networkzero.readthedocs.io/en/latest/
71 https://lawsie.github.io/guizero/

9.12. Why is it called GPIO Zero? Does it only work on Pi Zero? 87

https://pygame-zero.readthedocs.io/en/stable/
https://networkzero.readthedocs.io/en/latest/
https://lawsie.github.io/guizero/


GPIO Zero Documentation, Release 1.6.1

88 Chapter 9. Frequently Asked Questions



CHAPTER 10

Migrating from RPi.GPIO

If you are familiar with the RPi.GPIO72 library, you will be used to writing code which deals with pins
and the state of pins. You will see from the examples in this documentation that we generally refer to
things like LEDs and Buttons rather than input pins and output pins.

GPIO Zero provides classes which represent devices, so instead of having a pin number and telling it to
go high, you have an LED and you tell it to turn on, and instead of having a pin number and asking if
it’s high or low, you have a button and ask if it’s pressed. There is also no boilerplate code to get started
— you just import the parts you need.

GPIO Zero provides many device classes, each with specific methods and properties bespoke to
that device. For example, the functionality for an HC-SR04 Distance Sensor can be found in the
DistanceSensor (page 111) class.

As well as specific device classes, we provide base classes InputDevice (page 120) and OutputDevice
(page 142). One main difference between these and the equivalents in RPi.GPIO is that they are classes,
not functions, which means that you initialize one to begin, and provide its pin number, but then you
never need to use the pin number again, as it’s stored by the object.

GPIO Zero was originally just a layer on top of RPi.GPIO, but we later added support for various other
underlying pin libraries. RPi.GPIO is currently the default pin library used. Read more about this in
Changing the pin factory (page 227).

10.1 Output devices

Turning an LED on in RPi.GPIO73:

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)

GPIO.setup(2, GPIO.OUT)

GPIO.output(2, GPIO.HIGH)

72 https://pypi.org/project/RPi.GPIO/
73 https://pypi.org/project/RPi.GPIO/

89

https://pypi.org/project/RPi.GPIO/
https://pypi.org/project/RPi.GPIO/


GPIO Zero Documentation, Release 1.6.1

Turning an LED on in GPIO Zero:

from gpiozero import LED

led = LED(2)

led.on()

The LED (page 123) class also supports threaded blinking through the blink() (page 124) method.

OutputDevice (page 142) is the base class for output devices, and can be used in a similar way to output
devices in RPi.GPIO.

See a full list of supported output devices (page 123). Other output devices have similar property and
method names. There is commonality in naming at base level, such as OutputDevice.is_active, which
is aliased in a device class, such as LED.is_lit (page 124).

10.2 Input devices

Reading a button press in RPi.GPIO74:

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)

GPIO.setup(4, GPIO.IN, GPIO.PUD_UP)

if not GPIO.input(4):
print("button is pressed")

Reading a button press in GPIO Zero:

from gpiozero import Button

btn = Button(4)

if btn.is_pressed:
print("button is pressed")

Note that in the RPi.GPIO example, the button is set up with the option GPIO.PUD_UP which means
“pull-up”, and therefore when the button is not pressed, the pin is high. When the button is pressed, the
pin goes low, so the condition requires negation (if not). If the button was configured as pull-down,
the logic is reversed and the condition would become if GPIO.input(4):

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)

GPIO.setup(4, GPIO.IN, GPIO.PUD_DOWN)

if GPIO.input(4):
print("button is pressed")

In GPIO Zero, the default configuration for a button is pull-up, but this can be configured at initialization,
and the rest of the code stays the same:

74 https://pypi.org/project/RPi.GPIO/

90 Chapter 10. Migrating from RPi.GPIO

https://pypi.org/project/RPi.GPIO/


GPIO Zero Documentation, Release 1.6.1

from gpiozero import Button

btn = Button(4, pull_up=False)

if btn.is_pressed:
print("button is pressed")

RPi.GPIO also supports blocking edge detection.

Wait for a pull-up button to be pressed in RPi.GPIO:

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)

GPIO.setup(4, GPIO.IN, GPIO.PUD_UP)

GPIO.wait_for_edge(4, GPIO.FALLING):
print("button was pressed")

The equivalent in GPIO Zero:

from gpiozero import Buttons

btn = Button(4)

btn.wait_for_press()
print("button was pressed")

Again, if the button is pulled down, the logic is reversed. Instead of waiting for a falling edge, we’re
waiting for a rising edge:

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)

GPIO.setup(4, GPIO.IN, GPIO.PUD_UP)

GPIO.wait_for_edge(4, GPIO.FALLING):
print("button was pressed")

Again, in GPIO Zero, the only difference is in the initialization:

from gpiozero import Buttons

btn = Button(4, pull_up=False)

btn.wait_for_press()
print("button was pressed")

RPi.GPIO has threaded callbacks. You create a function (which must take one argument), and pass it
in to add_event_detect, along with the pin number and the edge direction:

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BCM)
(continues on next page)

10.2. Input devices 91



GPIO Zero Documentation, Release 1.6.1

(continued from previous page)

GPIO.setwarnings(False)

def pressed(pin):
print("button was pressed")

def released(pin):
print("button was released")

GPIO.setup(4, GPIO.IN, GPIO.PUD_UP)

GPIO.add_event_detect(4, GPIO.FALLING, pressed)
GPIO.add_event_detect(4, GPIO.RISING, released)

In GPIO Zero, you assign the when_pressed (page 105) and when_released (page 105) properties to
set up callbacks on those actions:

from gpiozero import Buttons

def pressed():
print("button was pressed")

def released():
print("button was released")

btn = Button(4)

btn.when_pressed = pressed
btn.when_released = released

when_held (page 105) is also provided, where the length of time considered a “hold” is configurable.

The callback functions don’t have to take any arguments, but if they take one, the button object is
passed in, allowing you to determine which button called the function.

InputDevice (page 120) is the base class for input devices, and can be used in a similar way to input
devices in RPi.GPIO.

See a full list of input devices (page 103). Other input devices have similar property and method names.
There is commonality in naming at base level, such as InputDevice.is_active (page 121), which is
aliased in a device class, such as Button.is_pressed (page 105) and LightSensor.light_detected
(page 111).

10.3 Composite devices, boards and accessories

Some devices require connections to multiple pins, for example a distance sensor, a combination of LEDs
or a HAT. Some GPIO Zero devices comprise multiple device connections within one object, such as
RGBLED (page 127), LEDBoard (page 155), DistanceSensor (page 111), Motor (page 132) and Robot
(page 175).

With RPi.GPIO, you would have one output pin for the trigger, and one input pin for the echo. You
would time the echo and calculate the distance. With GPIO Zero, you create a single DistanceSensor
(page 111) object, specifying the trigger and echo pins, and you would read the DistanceSensor.
distance (page 113) property which automatically calculates the distance within the implementation of
the class.

The Motor (page 132) class controls two output pins to drive the motor forwards or backwards. The
Robot (page 175) class controls four output pins (two motors) in the right combination to drive a robot
forwards or backwards, and turn left and right.

92 Chapter 10. Migrating from RPi.GPIO



GPIO Zero Documentation, Release 1.6.1

The LEDBoard (page 155) class takes an arbitrary number of pins, each controlling a single LED. The
resulting LEDBoard (page 155) object can be used to control all LEDs together (all on / all off), or
individually by index. Also the object can be iterated over to turn LEDs on in order. See examples of
this (including slicing) in the advanced recipes (page 39).

10.4 PWM (Pulse-width modulation)

Both libraries support software PWM control on any pin. Depending on the pin library used, GPIO
Zero can also support hardware PWM (using RPIOPin or PiGPIOPin).

A simple example of using PWM is to control the brightness of an LED.

In RPi.GPIO75:

import RPi.GPIO as GPIO
from time import sleep

GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)

GPIO.setup(2, GPIO.OUT)
pwm = GPIO.PWM(2, 100)
pwm.start(0)

for dc in range(101):
pwm.changeDutyCycle(dc)
sleep(0.01)

In GPIO Zero:

from gpiozero import PWMLED
from time import sleep

led = PWMLED(2)

for b in range(101):
led.value = b / 100.0
sleep(0.01)

PWMLED (page 125) has a blink() (page 125) method which can be used the same was as LED (page 123)’s
blink() (page 124) method, but its PWM capabilities allow for fade_in and fade_out options to be
provided. There is also the pulse() (page 126) method which provides a neat way to have an LED fade
in and out repeatedly.

Other devices can make use of PWM, such as motors (for variable speed) and servos. See the Motor
(page 132), Servo (page 135) and AngularServo (page 137) classes for information on those. Motor
(page 132) and Robot (page 175) default to using PWM, but it can be disabled with pwm=False at
initialization. Servos cannot be used without PWM. Devices containing LEDs default to not using
PWM, but pwm=True can be specified and any LED objects within the device will be initialized as
PWMLED (page 125) objects.

10.5 Cleanup

Pin state cleanup is explicit in RPi.GPIO, and is done manually with GPIO.cleanup() but in GPIO
Zero, cleanup is automatically performed on every pin used, at the end of the script. Manual cleanup is

75 https://pypi.org/project/RPi.GPIO/

10.4. PWM (Pulse-width modulation) 93

https://pypi.org/project/RPi.GPIO/


GPIO Zero Documentation, Release 1.6.1

possible by use of the close() (page 201) method on the device.

Note that cleanup only occurs at the point of normal termination of the script. If the script exits due to
a program error, cleanup will not be performed. To ensure that cleanup is performed after an exception
is raised, the exception must be handled, for example:

from gpiozero import Button

btn = Button(4)

while True:
try:

if btn.is_pressed:
print("Pressed")

except KeyboardInterrupt:
print("Ending program")

Read more in the relevant FAQ: What’s the gpiozero equivalent of GPIO.cleanup()? (page 85)

10.6 Pi Information

RPi.GPIO provides information about the Pi you’re using. The equivalent in GPIO Zero is the function
pi_info() (page 219):

>>> from gpiozero import pi_info
>>> pi = pi_info()
>>> pi
PiBoardInfo(revision='a02082', model='3B', pcb_revision='1.2', released='2016Q1', soc=
↪→'BCM2837', manufacturer='Sony', memory=1024, storage='MicroSD', usb=4, ethernet=1,␣
↪→wifi=True, bluetooth=True, csi=1, dsi=1, headers=..., board=...)
>>> pi.soc
'BCM2837'
>>> pi.wifi
True

Read more about what PiBoardInfo (page 219) provides.

10.7 More

GPIO Zero provides more than just GPIO device support, it includes some support for SPI devices
(page 145) including a range of analog to digital converters.

Device classes which are compatible with other GPIO devices, but have no relation to GPIO pins,
such as CPUTemperature (page 192), TimeOfDay (page 190), PingServer (page 191) and LoadAverage
(page 194) are also provided.

GPIO Zero features support for multiple pin libraries. The default is to use RPi.GPIO to control the pins,
but you can choose to use another library, such as pigpio, which supports network controlled GPIO.
See Changing the pin factory (page 227) and Configuring Remote GPIO (page 49) for more information.

It is possible to run GPIO Zero on your PC, both for remote GPIO and for testing purposes, using Mock
pins (page 229).

Another feature of this library is configuring devices to be connected together in a logical way, for example
in one line you can say that an LED and button are “paired”, i.e. the button being pressed turns the
LED on. Read about this in Source/Values (page 65).

94 Chapter 10. Migrating from RPi.GPIO



GPIO Zero Documentation, Release 1.6.1

10.8 FAQs

Note the following FAQs which may catch out users too familiar with RPi.GPIO:

• How do I keep my script running? (page 81)

• Why do I get PinFactoryFallback warnings when I import gpiozero? (page 83)

• What’s the gpiozero equivalent of GPIO.cleanup()? (page 85)

10.8. FAQs 95



GPIO Zero Documentation, Release 1.6.1

96 Chapter 10. Migrating from RPi.GPIO



CHAPTER 11

Contributing

Contributions to the library are welcome! Here are some guidelines to follow.

11.1 Suggestions

Please make suggestions for additional components or enhancements to the codebase by opening an
issue76 explaining your reasoning clearly.

11.2 Bugs

Please submit bug reports by opening an issue77 explaining the problem clearly using code examples.

11.3 Documentation

The documentation source lives in the docs78 folder. Contributions to the documentation are welcome
but should be easy to read and understand.

11.4 Commit messages and pull requests

Commit messages should be concise but descriptive, and in the form of a patch description, i.e. instruc-
tional not past tense (“Add LED example” not “Added LED example”).

Commits which close (or intend to close) an issue should include the phrase “fix #123” or “close #123”
where #123 is the issue number, as well as include a short description, for example: “Add LED example,
close #123”, and pull requests should aim to match or closely match the corresponding issue title.

Copyrights on submissions are owned by their authors (we don’t bother with copyright assignments), and
we assume that authors are happy for their code to be released under the project’s license (page 259).

76 https://github.com/gpiozero/gpiozero/issues/new
77 https://github.com/gpiozero/gpiozero/issues/new
78 https://github.com/gpiozero/gpiozero/tree/master/docs

97

https://github.com/gpiozero/gpiozero/issues/new
https://github.com/gpiozero/gpiozero/issues/new
https://github.com/gpiozero/gpiozero/tree/master/docs


GPIO Zero Documentation, Release 1.6.1

Do feel free to add your name to the list of contributors in README.rst at the top level of the project in
your pull request! Don’t worry about adding your name to the copyright headers in whatever files you
touch; these are updated automatically from the git metadata before each release.

11.5 Backwards compatibility

Since this library reached v1.0 we aim to maintain backwards-compatibility thereafter. Changes which
break backwards-compatibility will not be accepted.

11.6 Python 2/3

The library is 100% compatible with both Python 2.7 and Python 3 from version 3.2 onwards. Since
Python 2 is now past its end-of-life79, the 1.6.0 release (2021-03-14) is the last to support Python 2.

79 http://legacy.python.org/dev/peps/pep-0373/

98 Chapter 11. Contributing

http://legacy.python.org/dev/peps/pep-0373/


CHAPTER 12

Development

The main GitHub repository for the project can be found at:

https://github.com/gpiozero/gpiozero

For anybody wishing to hack on the project, we recommend starting off by getting to grips with
some simple device classes. Pick something like LED (page 123) and follow its heritage backward to
DigitalOutputDevice (page 139). Follow that back to OutputDevice (page 142) and you should have
a good understanding of simple output devices along with a grasp of how GPIO Zero relies fairly heavily
upon inheritance to refine the functionality of devices. The same can be done for input devices, and
eventually more complex devices (composites and SPI based).

12.1 Development installation

If you wish to develop GPIO Zero itself, we recommend obtaining the source by cloning the GitHub
repository and then use the “develop” target of the Makefile which will install the package as a link to
the cloned repository allowing in-place development (it also builds a tags file for use with vim/emacs with
Exuberant’s ctags utility). The following example demonstrates this method within a virtual Python
environment:

$ sudo apt install lsb-release build-essential git exuberant-ctags \
virtualenvwrapper python-virtualenv python3-virtualenv \
python-dev python3-dev

After installing virtualenvwrapper you’ll need to restart your shell before commands like mkvirtualenv
will operate correctly. Once you’ve restarted your shell, continue:

$ cd
$ mkvirtualenv -p /usr/bin/python3 gpiozero
$ workon gpiozero
(gpiozero) $ git clone https://github.com/gpiozero/gpiozero.git
(gpiozero) $ cd gpiozero
(gpiozero) $ make develop

You will likely wish to install one or more pin implementations within the virtual environment (if you
don’t, GPIO Zero will use the “native” pin implementation which is usable at this stage, but doesn’t
support facilities like PWM):

99

https://github.com/gpiozero/gpiozero


GPIO Zero Documentation, Release 1.6.1

(gpiozero) $ pip install rpi.gpio pigpio

If you are working on SPI devices you may also wish to install the spidev package to provide hardware
SPI capabilities (again, GPIO Zero will work without this, but a big-banging software SPI implementation
will be used instead which limits bandwidth):

(gpiozero) $ pip install spidev

To pull the latest changes from git into your clone and update your installation:

$ workon gpiozero
(gpiozero) $ cd ~/gpiozero
(gpiozero) $ git pull
(gpiozero) $ make develop

To remove your installation, destroy the sandbox and the clone:

(gpiozero) $ deactivate
$ rmvirtualenv gpiozero
$ rm -rf ~/gpiozero

12.2 Building the docs

If you wish to build the docs, you’ll need a few more dependencies. Inkscape is used for conversion
of SVGs to other formats, Graphviz is used for rendering certain charts, and TeX Live is required for
building PDF output. The following command should install all required dependencies:

$ sudo apt install texlive-latex-recommended texlive-latex-extra \
texlive-fonts-recommended texlive-xetex graphviz inkscape \
python3-sphinx python3-sphinx-rtd-theme latexmk xindy

Once these are installed, you can use the “doc” target to build the documentation:

$ workon gpiozero
(gpiozero) $ cd ~/gpiozero
(gpiozero) $ make doc

The HTML output is written to build/html while the PDF output goes to build/latex.

12.3 Test suite

If you wish to run the GPIO Zero test suite, follow the instructions in Development installation (page 99)
above and then make the “test” target within the sandbox. You’ll also need to install some pip packages:

$ workon gpiozero
(gpiozero) $ pip install coverage mock pytest
(gpiozero) $ cd ~/gpiozero
(gpiozero) $ make test

The test suite expects pins 22 and 27 (by default) to be wired together in order to run the “real” pin tests.
The pins used by the test suite can be overridden with the environment variables GPIOZERO_TEST_PIN
(defaults to 22) and GPIOZERO_TEST_INPUT_PIN (defaults to 27).

100 Chapter 12. Development



GPIO Zero Documentation, Release 1.6.1

Warning: When wiring GPIOs together, ensure a load (like a 1KΩ resistor) is placed between
them. Failure to do so may lead to blown GPIO pins (your humble author has a fried GPIO27 as a
result of such laziness, although it did take many runs of the test suite before this occurred!).

The test suite is also setup for usage with the tox utility, in which case it will attempt to execute the
test suite with all supported versions of Python. If you are developing under Ubuntu you may wish to
look into the Dead Snakes PPA80 in order to install old/new versions of Python; the tox setup should
work with the version of tox shipped with Ubuntu Xenial, but more features (like parallel test execution)
are available with later versions.

On the subject of parallel test execution, this is also supported in the tox setup, including the “real” pin
tests (a file-system level lock is used to ensure different interpreters don’t try to access the physical pins
simultaneously).

For example, to execute the test suite under tox, skipping interpreter versions which are not installed:

$ tox -s

To execute the test suite under all installed interpreter versions in parallel, using as many parallel tasks
as there are CPUs, then displaying a combined report of coverage from all environments:

$ tox -p auto -s
$ coverage combine --rcfile coverage.cfg
$ coverage report --rcfile coverage.cfg

12.4 Mock pins

The test suite largely depends on the existence of the mock pin factory MockFactory (page 242), which
is also useful for manual testing, for example in the Python shell or another REPL. See the section on
Mock pins (page 229) in the API - Pins (page 225) chapter for more information.

80 https://launchpad.net/~deadsnakes/%2Barchive/ubuntu/ppa

12.4. Mock pins 101

https://launchpad.net/~deadsnakes/%2Barchive/ubuntu/ppa


GPIO Zero Documentation, Release 1.6.1

102 Chapter 12. Development



CHAPTER 13

API - Input Devices

These input device component interfaces have been provided for simple use of everyday components.
Components must be wired up correctly before use in code.

Note: All GPIO pin numbers use Broadcom (BCM) numbering by default. See the Pin Numbering
(page 3) section for more information.

13.1 Regular Classes

The following classes are intended for general use with the devices they represent. All classes in this
section are concrete (not abstract).

13.1.1 Button

class gpiozero.Button(pin, *, pull_up=True, active_state=None, bounce_time=None,
hold_time=1, hold_repeat=False, pin_factory=None)

Extends DigitalInputDevice (page 117) and represents a simple push button or switch.

Connect one side of the button to a ground pin, and the other to any GPIO pin. Alternatively,
connect one side of the button to the 3V3 pin, and the other to any GPIO pin, then set pull_up
to False81 in the Button (page 103) constructor.

The following example will print a line of text when the button is pushed:

from gpiozero import Button

button = Button(4)
button.wait_for_press()
print("The button was pressed!")

Parameters
81 https://docs.python.org/3.7/library/constants.html#False

103

https://docs.python.org/3.7/library/constants.html#False


GPIO Zero Documentation, Release 1.6.1

• pin (int82 or str83) – The GPIO pin which the button is connected to. See Pin
Numbering (page 3) for valid pin numbers. If this is None84 a GPIODeviceError
(page 247) will be raised.

• pull_up (bool85 or None86) – If True87 (the default), the GPIO pin will be
pulled high by default. In this case, connect the other side of the button to
ground. If False88, the GPIO pin will be pulled low by default. In this case,
connect the other side of the button to 3V3. If None89, the pin will be floating,
so it must be externally pulled up or down and the active_state parameter
must be set accordingly.

• active_state (bool90 or None91) – See description under InputDevice
(page 120) for more information.

• bounce_time (float92 or None93) – If None94 (the default), no software bounce
compensation will be performed. Otherwise, this is the length of time (in sec-
onds) that the component will ignore changes in state after an initial change.

• hold_time (float95) – The length of time (in seconds) to wait after the button
is pushed, until executing the when_held (page 105) handler. Defaults to 1.

• hold_repeat (bool96) – If True97, the when_held (page 105) handler will be
repeatedly executed as long as the device remains active, every hold_time sec-
onds. If False98 (the default) the when_held (page 105) handler will be only be
executed once per hold.

• pin_factory (Factory (page 230) or None99) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

wait_for_press(timeout=None)
Pause the script until the device is activated, or the timeout is reached.

Parameters timeout (float100 or None101) – Number of seconds to wait before
proceeding. If this is None102 (the default), then wait indefinitely until the device
is active.

wait_for_release(timeout=None)
Pause the script until the device is deactivated, or the timeout is reached.

Parameters timeout (float103 or None104) – Number of seconds to wait before
proceeding. If this is None105 (the default), then wait indefinitely until the device
is inactive.

82 https://docs.python.org/3.7/library/functions.html#int
83 https://docs.python.org/3.7/library/stdtypes.html#str
84 https://docs.python.org/3.7/library/constants.html#None
85 https://docs.python.org/3.7/library/functions.html#bool
86 https://docs.python.org/3.7/library/constants.html#None
87 https://docs.python.org/3.7/library/constants.html#True
88 https://docs.python.org/3.7/library/constants.html#False
89 https://docs.python.org/3.7/library/constants.html#None
90 https://docs.python.org/3.7/library/functions.html#bool
91 https://docs.python.org/3.7/library/constants.html#None
92 https://docs.python.org/3.7/library/functions.html#float
93 https://docs.python.org/3.7/library/constants.html#None
94 https://docs.python.org/3.7/library/constants.html#None
95 https://docs.python.org/3.7/library/functions.html#float
96 https://docs.python.org/3.7/library/functions.html#bool
97 https://docs.python.org/3.7/library/constants.html#True
98 https://docs.python.org/3.7/library/constants.html#False
99 https://docs.python.org/3.7/library/constants.html#None

100 https://docs.python.org/3.7/library/functions.html#float
101 https://docs.python.org/3.7/library/constants.html#None
102 https://docs.python.org/3.7/library/constants.html#None
103 https://docs.python.org/3.7/library/functions.html#float
104 https://docs.python.org/3.7/library/constants.html#None
105 https://docs.python.org/3.7/library/constants.html#None

104 Chapter 13. API - Input Devices

https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None


GPIO Zero Documentation, Release 1.6.1

held_time
The length of time (in seconds) that the device has been held for. This is counted from the
first execution of the when_held (page 105) event rather than when the device activated, in
contrast to active_time (page 203). If the device is not currently held, this is None106.

hold_repeat
If True107, when_held (page 105) will be executed repeatedly with hold_time (page 105)
seconds between each invocation.

hold_time
The length of time (in seconds) to wait after the device is activated, until executing the
when_held (page 105) handler. If hold_repeat (page 105) is True, this is also the length of
time between invocations of when_held (page 105).

is_held
When True108, the device has been active for at least hold_time (page 105) seconds.

is_pressed
Returns True109 if the device is currently active and False110 otherwise. This property is
usually derived from value (page 105). Unlike value (page 105), this is always a boolean.

pin
The Pin (page 231) that the device is connected to. This will be None111 if the device has
been closed (see the close() (page 201) method). When dealing with GPIO pins, query
pin.number to discover the GPIO pin (in BCM numbering) that the device is connected to.

pull_up
If True112, the device uses a pull-up resistor to set the GPIO pin “high” by default.

value
Returns 1 if the button is currently pressed, and 0 if it is not.

when_held
The function to run when the device has remained active for hold_time (page 105) seconds.

This can be set to a function which accepts no (mandatory) parameters, or a Python function
which accepts a single mandatory parameter (with as many optional parameters as you like).
If the function accepts a single mandatory parameter, the device that activated will be passed
as that parameter.

Set this property to None113 (the default) to disable the event.

when_pressed
The function to run when the device changes state from inactive to active.

This can be set to a function which accepts no (mandatory) parameters, or a Python function
which accepts a single mandatory parameter (with as many optional parameters as you like).
If the function accepts a single mandatory parameter, the device that activated it will be
passed as that parameter.

Set this property to None114 (the default) to disable the event.

when_released
The function to run when the device changes state from active to inactive.

This can be set to a function which accepts no (mandatory) parameters, or a Python function
which accepts a single mandatory parameter (with as many optional parameters as you like).

106 https://docs.python.org/3.7/library/constants.html#None
107 https://docs.python.org/3.7/library/constants.html#True
108 https://docs.python.org/3.7/library/constants.html#True
109 https://docs.python.org/3.7/library/constants.html#True
110 https://docs.python.org/3.7/library/constants.html#False
111 https://docs.python.org/3.7/library/constants.html#None
112 https://docs.python.org/3.7/library/constants.html#True
113 https://docs.python.org/3.7/library/constants.html#None
114 https://docs.python.org/3.7/library/constants.html#None

13.1. Regular Classes 105

https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None


GPIO Zero Documentation, Release 1.6.1

If the function accepts a single mandatory parameter, the device that deactivated it will be
passed as that parameter.

Set this property to None115 (the default) to disable the event.

13.1.2 LineSensor (TRCT5000)

class gpiozero.LineSensor(pin, *, queue_len=5, sample_rate=100, threshold=0.5, par-
tial=False, pin_factory=None)

Extends SmoothedInputDevice (page 119) and represents a single pin line sensor like the
TCRT5000 infra-red proximity sensor found in the CamJam #3 EduKit116.

A typical line sensor has a small circuit board with three pins: VCC, GND, and OUT. VCC should
be connected to a 3V3 pin, GND to one of the ground pins, and finally OUT to the GPIO specified
as the value of the pin parameter in the constructor.

The following code will print a line of text indicating when the sensor detects a line, or stops
detecting a line:

from gpiozero import LineSensor
from signal import pause

sensor = LineSensor(4)
sensor.when_line = lambda: print('Line detected')
sensor.when_no_line = lambda: print('No line detected')
pause()

Parameters

• pin (int117 or str118) – The GPIO pin which the sensor is connected to.
See Pin Numbering (page 3) for valid pin numbers. If this is None119 a
GPIODeviceError (page 247) will be raised.

• pull_up (bool120 or None121) – See description under InputDevice (page 120)
for more information.

• active_state (bool122 or None123) – See description under InputDevice
(page 120) for more information.

• queue_len (int124) – The length of the queue used to store values read from
the sensor. This defaults to 5.

• sample_rate (float125) – The number of values to read from the device (and
append to the internal queue) per second. Defaults to 100.

• threshold (float126) – Defaults to 0.5. When the average of all values in the
internal queue rises above this value, the sensor will be considered “active” by
the is_active (page 120) property, and all appropriate events will be fired.

115 https://docs.python.org/3.7/library/constants.html#None
116 http://camjam.me/?page_id=1035
117 https://docs.python.org/3.7/library/functions.html#int
118 https://docs.python.org/3.7/library/stdtypes.html#str
119 https://docs.python.org/3.7/library/constants.html#None
120 https://docs.python.org/3.7/library/functions.html#bool
121 https://docs.python.org/3.7/library/constants.html#None
122 https://docs.python.org/3.7/library/functions.html#bool
123 https://docs.python.org/3.7/library/constants.html#None
124 https://docs.python.org/3.7/library/functions.html#int
125 https://docs.python.org/3.7/library/functions.html#float
126 https://docs.python.org/3.7/library/functions.html#float

106 Chapter 13. API - Input Devices

https://docs.python.org/3.7/library/constants.html#None
http://camjam.me/?page_id=1035
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float


GPIO Zero Documentation, Release 1.6.1

• partial (bool127) – When False128 (the default), the object will not return a
value for is_active (page 120) until the internal queue has filled with values.
Only set this to True129 if you require values immediately after object construc-
tion.

• pin_factory (Factory (page 230) or None130) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

wait_for_line(timeout=None)
Pause the script until the device is deactivated, or the timeout is reached.

Parameters timeout (float131 or None132) – Number of seconds to wait before
proceeding. If this is None133 (the default), then wait indefinitely until the device
is inactive.

wait_for_no_line(timeout=None)
Pause the script until the device is activated, or the timeout is reached.

Parameters timeout (float134 or None135) – Number of seconds to wait before
proceeding. If this is None136 (the default), then wait indefinitely until the device
is active.

pin
The Pin (page 231) that the device is connected to. This will be None137 if the device has
been closed (see the close() (page 201) method). When dealing with GPIO pins, query
pin.number to discover the GPIO pin (in BCM numbering) that the device is connected to.

value
Returns a value representing the average of the queued values. This is nearer 0 for black under
the sensor, and nearer 1 for white under the sensor.

when_line
The function to run when the device changes state from active to inactive.

This can be set to a function which accepts no (mandatory) parameters, or a Python function
which accepts a single mandatory parameter (with as many optional parameters as you like).
If the function accepts a single mandatory parameter, the device that deactivated it will be
passed as that parameter.

Set this property to None138 (the default) to disable the event.

when_no_line
The function to run when the device changes state from inactive to active.

This can be set to a function which accepts no (mandatory) parameters, or a Python function
which accepts a single mandatory parameter (with as many optional parameters as you like).
If the function accepts a single mandatory parameter, the device that activated it will be
passed as that parameter.

Set this property to None139 (the default) to disable the event.
127 https://docs.python.org/3.7/library/functions.html#bool
128 https://docs.python.org/3.7/library/constants.html#False
129 https://docs.python.org/3.7/library/constants.html#True
130 https://docs.python.org/3.7/library/constants.html#None
131 https://docs.python.org/3.7/library/functions.html#float
132 https://docs.python.org/3.7/library/constants.html#None
133 https://docs.python.org/3.7/library/constants.html#None
134 https://docs.python.org/3.7/library/functions.html#float
135 https://docs.python.org/3.7/library/constants.html#None
136 https://docs.python.org/3.7/library/constants.html#None
137 https://docs.python.org/3.7/library/constants.html#None
138 https://docs.python.org/3.7/library/constants.html#None
139 https://docs.python.org/3.7/library/constants.html#None

13.1. Regular Classes 107

https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None


GPIO Zero Documentation, Release 1.6.1

13.1.3 MotionSensor (D-SUN PIR)

class gpiozero.MotionSensor(pin, *, queue_len=1, sample_rate=10, threshold=0.5, par-
tial=False, pin_factory=None)

Extends SmoothedInputDevice (page 119) and represents a passive infra-red (PIR) motion sensor
like the sort found in the CamJam #2 EduKit140.

A typical PIR device has a small circuit board with three pins: VCC, OUT, and GND. VCC should
be connected to a 5V pin, GND to one of the ground pins, and finally OUT to the GPIO specified
as the value of the pin parameter in the constructor.

The following code will print a line of text when motion is detected:

from gpiozero import MotionSensor

pir = MotionSensor(4)
pir.wait_for_motion()
print("Motion detected!")

Parameters

• pin (int141 or str142) – The GPIO pin which the sensor is connected to.
See Pin Numbering (page 3) for valid pin numbers. If this is None143 a
GPIODeviceError (page 247) will be raised.

• pull_up (bool144 or None145) – See description under InputDevice (page 120)
for more information.

• active_state (bool146 or None147) – See description under InputDevice
(page 120) for more information.

• queue_len (int148) – The length of the queue used to store values read from the
sensor. This defaults to 1 which effectively disables the queue. If your motion
sensor is particularly “twitchy” you may wish to increase this value.

• sample_rate (float149) – The number of values to read from the device (and
append to the internal queue) per second. Defaults to 10.

• threshold (float150) – Defaults to 0.5. When the average of all values in the
internal queue rises above this value, the sensor will be considered “active” by
the is_active (page 120) property, and all appropriate events will be fired.

• partial (bool151) – When False152 (the default), the object will not return a
value for is_active (page 120) until the internal queue has filled with values.
Only set this to True153 if you require values immediately after object construc-
tion.

• pin_factory (Factory (page 230) or None154) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

140 http://camjam.me/?page_id=623
141 https://docs.python.org/3.7/library/functions.html#int
142 https://docs.python.org/3.7/library/stdtypes.html#str
143 https://docs.python.org/3.7/library/constants.html#None
144 https://docs.python.org/3.7/library/functions.html#bool
145 https://docs.python.org/3.7/library/constants.html#None
146 https://docs.python.org/3.7/library/functions.html#bool
147 https://docs.python.org/3.7/library/constants.html#None
148 https://docs.python.org/3.7/library/functions.html#int
149 https://docs.python.org/3.7/library/functions.html#float
150 https://docs.python.org/3.7/library/functions.html#float
151 https://docs.python.org/3.7/library/functions.html#bool
152 https://docs.python.org/3.7/library/constants.html#False
153 https://docs.python.org/3.7/library/constants.html#True
154 https://docs.python.org/3.7/library/constants.html#None

108 Chapter 13. API - Input Devices

http://camjam.me/?page_id=623
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#None


GPIO Zero Documentation, Release 1.6.1

wait_for_motion(timeout=None)
Pause the script until the device is activated, or the timeout is reached.

Parameters timeout (float155 or None156) – Number of seconds to wait before
proceeding. If this is None157 (the default), then wait indefinitely until the device
is active.

wait_for_no_motion(timeout=None)
Pause the script until the device is deactivated, or the timeout is reached.

Parameters timeout (float158 or None159) – Number of seconds to wait before
proceeding. If this is None160 (the default), then wait indefinitely until the device
is inactive.

motion_detected
Returns True161 if the value (page 120) currently exceeds threshold (page 120) and False162

otherwise.

pin
The Pin (page 231) that the device is connected to. This will be None163 if the device has
been closed (see the close() (page 201) method). When dealing with GPIO pins, query
pin.number to discover the GPIO pin (in BCM numbering) that the device is connected to.

value
With the default queue_len of 1, this is effectively boolean where 0 means no motion detected
and 1 means motion detected. If you specify a queue_len greater than 1, this will be an
averaged value where values closer to 1 imply motion detection.

when_motion
The function to run when the device changes state from inactive to active.

This can be set to a function which accepts no (mandatory) parameters, or a Python function
which accepts a single mandatory parameter (with as many optional parameters as you like).
If the function accepts a single mandatory parameter, the device that activated it will be
passed as that parameter.

Set this property to None164 (the default) to disable the event.

when_no_motion
The function to run when the device changes state from active to inactive.

This can be set to a function which accepts no (mandatory) parameters, or a Python function
which accepts a single mandatory parameter (with as many optional parameters as you like).
If the function accepts a single mandatory parameter, the device that deactivated it will be
passed as that parameter.

Set this property to None165 (the default) to disable the event.

13.1.4 LightSensor (LDR)

class gpiozero.LightSensor(pin, *, queue_len=5, charge_time_limit=0.01, threshold=0.1,
partial=False, pin_factory=None)

Extends SmoothedInputDevice (page 119) and represents a light dependent resistor (LDR).
155 https://docs.python.org/3.7/library/functions.html#float
156 https://docs.python.org/3.7/library/constants.html#None
157 https://docs.python.org/3.7/library/constants.html#None
158 https://docs.python.org/3.7/library/functions.html#float
159 https://docs.python.org/3.7/library/constants.html#None
160 https://docs.python.org/3.7/library/constants.html#None
161 https://docs.python.org/3.7/library/constants.html#True
162 https://docs.python.org/3.7/library/constants.html#False
163 https://docs.python.org/3.7/library/constants.html#None
164 https://docs.python.org/3.7/library/constants.html#None
165 https://docs.python.org/3.7/library/constants.html#None

13.1. Regular Classes 109

https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None


GPIO Zero Documentation, Release 1.6.1

Connect one leg of the LDR to the 3V3 pin; connect one leg of a 1µF capacitor to a ground pin;
connect the other leg of the LDR and the other leg of the capacitor to the same GPIO pin. This
class repeatedly discharges the capacitor, then times the duration it takes to charge (which will
vary according to the light falling on the LDR).

The following code will print a line of text when light is detected:

from gpiozero import LightSensor

ldr = LightSensor(18)
ldr.wait_for_light()
print("Light detected!")

Parameters

• pin (int166 or str167) – The GPIO pin which the sensor is attached to. See Pin
Numbering (page 3) for valid pin numbers. If this is None168 a GPIODeviceError
(page 247) will be raised.

• queue_len (int169) – The length of the queue used to store values read from
the circuit. This defaults to 5.

• charge_time_limit (float170) – If the capacitor in the circuit takes longer than
this length of time to charge, it is assumed to be dark. The default (0.01 seconds)
is appropriate for a 1µF capacitor coupled with the LDR from the CamJam #2
EduKit171. You may need to adjust this value for different valued capacitors or
LDRs.

• threshold (float172) – Defaults to 0.1. When the average of all values in the
internal queue rises above this value, the area will be considered “light”, and all
appropriate events will be fired.

• partial (bool173) – When False174 (the default), the object will not return a
value for is_active (page 120) until the internal queue has filled with values.
Only set this to True175 if you require values immediately after object construc-
tion.

• pin_factory (Factory (page 230) or None176) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

wait_for_dark(timeout=None)
Pause the script until the device is deactivated, or the timeout is reached.

Parameters timeout (float177 or None178) – Number of seconds to wait before
proceeding. If this is None179 (the default), then wait indefinitely until the device
is inactive.

wait_for_light(timeout=None)
Pause the script until the device is activated, or the timeout is reached.

166 https://docs.python.org/3.7/library/functions.html#int
167 https://docs.python.org/3.7/library/stdtypes.html#str
168 https://docs.python.org/3.7/library/constants.html#None
169 https://docs.python.org/3.7/library/functions.html#int
170 https://docs.python.org/3.7/library/functions.html#float
171 http://camjam.me/?page_id=623
172 https://docs.python.org/3.7/library/functions.html#float
173 https://docs.python.org/3.7/library/functions.html#bool
174 https://docs.python.org/3.7/library/constants.html#False
175 https://docs.python.org/3.7/library/constants.html#True
176 https://docs.python.org/3.7/library/constants.html#None
177 https://docs.python.org/3.7/library/functions.html#float
178 https://docs.python.org/3.7/library/constants.html#None
179 https://docs.python.org/3.7/library/constants.html#None

110 Chapter 13. API - Input Devices

https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#float
http://camjam.me/?page_id=623
http://camjam.me/?page_id=623
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None


GPIO Zero Documentation, Release 1.6.1

Parameters timeout (float180 or None181) – Number of seconds to wait before
proceeding. If this is None182 (the default), then wait indefinitely until the device
is active.

light_detected
Returns True183 if the value (page 120) currently exceeds threshold (page 120) and False184

otherwise.

pin
The Pin (page 231) that the device is connected to. This will be None185 if the device has
been closed (see the close() (page 201) method). When dealing with GPIO pins, query
pin.number to discover the GPIO pin (in BCM numbering) that the device is connected to.

value
Returns a value between 0 (dark) and 1 (light).

when_dark
The function to run when the device changes state from active to inactive.

This can be set to a function which accepts no (mandatory) parameters, or a Python function
which accepts a single mandatory parameter (with as many optional parameters as you like).
If the function accepts a single mandatory parameter, the device that deactivated it will be
passed as that parameter.

Set this property to None186 (the default) to disable the event.

when_light
The function to run when the device changes state from inactive to active.

This can be set to a function which accepts no (mandatory) parameters, or a Python function
which accepts a single mandatory parameter (with as many optional parameters as you like).
If the function accepts a single mandatory parameter, the device that activated it will be
passed as that parameter.

Set this property to None187 (the default) to disable the event.

13.1.5 DistanceSensor (HC-SR04)

class gpiozero.DistanceSensor(echo, trigger, *, queue_len=30, max_distance=1, thresh-
old_distance=0.3, partial=False, pin_factory=None)

Extends SmoothedInputDevice (page 119) and represents an HC-SR04 ultrasonic distance sensor,
as found in the CamJam #3 EduKit188.

The distance sensor requires two GPIO pins: one for the trigger (marked TRIG on the sensor)
and another for the echo (marked ECHO on the sensor). However, a voltage divider is required
to ensure the 5V from the ECHO pin doesn’t damage the Pi. Wire your sensor according to the
following instructions:

1. Connect the GND pin of the sensor to a ground pin on the Pi.

2. Connect the TRIG pin of the sensor a GPIO pin.

3. Connect one end of a 330Ω resistor to the ECHO pin of the sensor.

4. Connect one end of a 470Ω resistor to the GND pin of the sensor.
180 https://docs.python.org/3.7/library/functions.html#float
181 https://docs.python.org/3.7/library/constants.html#None
182 https://docs.python.org/3.7/library/constants.html#None
183 https://docs.python.org/3.7/library/constants.html#True
184 https://docs.python.org/3.7/library/constants.html#False
185 https://docs.python.org/3.7/library/constants.html#None
186 https://docs.python.org/3.7/library/constants.html#None
187 https://docs.python.org/3.7/library/constants.html#None
188 http://camjam.me/?page_id=1035

13.1. Regular Classes 111

https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
http://camjam.me/?page_id=1035


GPIO Zero Documentation, Release 1.6.1

5. Connect the free ends of both resistors to another GPIO pin. This forms the required voltage
divider189.

6. Finally, connect the VCC pin of the sensor to a 5V pin on the Pi.

Alternatively, the 3V3 tolerant HC-SR04P sensor (which does not require a voltage divider) will
work with this class.

Note: If you do not have the precise values of resistor specified above, don’t worry! What matters
is the ratio of the resistors to each other.

You also don’t need to be absolutely precise; the voltage divider190 given above will actually
output ~3V (rather than 3.3V). A simple 2:3 ratio will give 3.333V which implies you can take
three resistors of equal value, use one of them instead of the 330Ω resistor, and two of them in
series instead of the 470Ω resistor.

The following code will periodically report the distance measured by the sensor in cm assuming
the TRIG pin is connected to GPIO17, and the ECHO pin to GPIO18:

from gpiozero import DistanceSensor
from time import sleep

sensor = DistanceSensor(echo=18, trigger=17)
while True:

print('Distance: ', sensor.distance * 100)
sleep(1)

Note: For improved accuracy, use the pigpio pin driver rather than the default RPi.GPIO driver
(pigpio uses DMA sampling for much more precise edge timing). This is particularly relevant if
you’re using Pi 1 or Pi Zero. See Changing the pin factory (page 227) for further information.

Parameters

• echo (int191 or str192) – The GPIO pin which the ECHO pin is connected
to. See Pin Numbering (page 3) for valid pin numbers. If this is None193 a
GPIODeviceError (page 247) will be raised.

• trigger (int194 or str195) – The GPIO pin which the TRIG pin is connected
to. See Pin Numbering (page 3) for valid pin numbers. If this is None196 a
GPIODeviceError (page 247) will be raised.

• queue_len (int197) – The length of the queue used to store values read from
the sensor. This defaults to 9.

• max_distance (float198) – The value (page 113) attribute reports a normal-
ized value between 0 (too close to measure) and 1 (maximum distance). This
parameter specifies the maximum distance expected in meters. This defaults to
1.

189 https://en.wikipedia.org/wiki/Voltage_divider
190 https://en.wikipedia.org/wiki/Voltage_divider
191 https://docs.python.org/3.7/library/functions.html#int
192 https://docs.python.org/3.7/library/stdtypes.html#str
193 https://docs.python.org/3.7/library/constants.html#None
194 https://docs.python.org/3.7/library/functions.html#int
195 https://docs.python.org/3.7/library/stdtypes.html#str
196 https://docs.python.org/3.7/library/constants.html#None
197 https://docs.python.org/3.7/library/functions.html#int
198 https://docs.python.org/3.7/library/functions.html#float

112 Chapter 13. API - Input Devices

https://en.wikipedia.org/wiki/Voltage_divider
https://en.wikipedia.org/wiki/Voltage_divider
https://en.wikipedia.org/wiki/Voltage_divider
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#float


GPIO Zero Documentation, Release 1.6.1

• threshold_distance (float199) – Defaults to 0.3. This is the distance (in
meters) that will trigger the in_range and out_of_range events when crossed.

• partial (bool200) – When False201 (the default), the object will not return a
value for is_active (page 120) until the internal queue has filled with values.
Only set this to True202 if you require values immediately after object construc-
tion.

• pin_factory (Factory (page 230) or None203) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

wait_for_in_range(timeout=None)
Pause the script until the device is deactivated, or the timeout is reached.

Parameters timeout (float204 or None205) – Number of seconds to wait before
proceeding. If this is None206 (the default), then wait indefinitely until the device
is inactive.

wait_for_out_of_range(timeout=None)
Pause the script until the device is activated, or the timeout is reached.

Parameters timeout (float207 or None208) – Number of seconds to wait before
proceeding. If this is None209 (the default), then wait indefinitely until the device
is active.

distance
Returns the current distance measured by the sensor in meters. Note that this property will
have a value between 0 and max_distance (page 113).

echo
Returns the Pin (page 231) that the sensor’s echo is connected to. This is simply an alias for
the usual pin (page 122) attribute.

max_distance
The maximum distance that the sensor will measure in meters. This value is specified in
the constructor and is used to provide the scaling for the value (page 120) attribute. When
distance (page 113) is equal to max_distance (page 113), value (page 120) will be 1.

threshold_distance
The distance, measured in meters, that will trigger the when_in_range (page 113) and
when_out_of_range (page 114) events when crossed. This is simply a meter-scaled variant of
the usual threshold (page 120) attribute.

trigger
Returns the Pin (page 231) that the sensor’s trigger is connected to.

value
Returns a value between 0, indicating the reflector is either touching the sensor or is sufficiently
near that the sensor can’t tell the difference, and 1, indicating the reflector is at or beyond
the specified max_distance.

when_in_range
The function to run when the device changes state from active to inactive.

199 https://docs.python.org/3.7/library/functions.html#float
200 https://docs.python.org/3.7/library/functions.html#bool
201 https://docs.python.org/3.7/library/constants.html#False
202 https://docs.python.org/3.7/library/constants.html#True
203 https://docs.python.org/3.7/library/constants.html#None
204 https://docs.python.org/3.7/library/functions.html#float
205 https://docs.python.org/3.7/library/constants.html#None
206 https://docs.python.org/3.7/library/constants.html#None
207 https://docs.python.org/3.7/library/functions.html#float
208 https://docs.python.org/3.7/library/constants.html#None
209 https://docs.python.org/3.7/library/constants.html#None

13.1. Regular Classes 113

https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None


GPIO Zero Documentation, Release 1.6.1

This can be set to a function which accepts no (mandatory) parameters, or a Python function
which accepts a single mandatory parameter (with as many optional parameters as you like).
If the function accepts a single mandatory parameter, the device that deactivated it will be
passed as that parameter.

Set this property to None210 (the default) to disable the event.

when_out_of_range
The function to run when the device changes state from inactive to active.

This can be set to a function which accepts no (mandatory) parameters, or a Python function
which accepts a single mandatory parameter (with as many optional parameters as you like).
If the function accepts a single mandatory parameter, the device that activated it will be
passed as that parameter.

Set this property to None211 (the default) to disable the event.

13.1.6 RotaryEncoder

class gpiozero.RotaryEncoder(a, b, *, bounce_time=None, max_steps=16, thresh-
old_steps=(0, 0), wrap=False, pin_factory=None)

Represents a simple two-pin incremental rotary encoder212 device.

These devices typically have three pins labelled “A”, “B”, and “C”. Connect A and B directly to
two GPIO pins, and C (“common”) to one of the ground pins on your Pi. Then simply specify the
A and B pins as the arguments when constructing this classs.

For example, if your encoder’s A pin is connected to GPIO 21, and the B pin to GPIO 20 (and
presumably the C pin to a suitable GND pin), while an LED (with a suitable 300Ω resistor) is
connected to GPIO 5, the following session will result in the brightness of the LED being controlled
by dialling the rotary encoder back and forth:

>>> from gpiozero import RotaryEncoder
>>> from gpiozero.tools import scaled_half
>>> rotor = RotaryEncoder(21, 20)
>>> led = PWMLED(5)
>>> led.source = scaled_half(rotor.values)

Parameters

• a (int213 or str214) – The GPIO pin connected to the “A” output of the rotary
encoder.

• b (int215 or str216) – The GPIO pin connected to the “B” output of the rotary
encoder.

• bounce_time (float217 or None218) – If None219 (the default), no software
bounce compensation will be performed. Otherwise, this is the length of time (in
seconds) that the component will ignore changes in state after an initial change.

• max_steps (int220) – The number of steps clockwise the encoder takes to change
the value (page 116) from 0 to 1, or counter-clockwise from 0 to -1. If this is 0,

210 https://docs.python.org/3.7/library/constants.html#None
211 https://docs.python.org/3.7/library/constants.html#None
212 https://en.wikipedia.org/wiki/Rotary_encoder
213 https://docs.python.org/3.7/library/functions.html#int
214 https://docs.python.org/3.7/library/stdtypes.html#str
215 https://docs.python.org/3.7/library/functions.html#int
216 https://docs.python.org/3.7/library/stdtypes.html#str
217 https://docs.python.org/3.7/library/functions.html#float
218 https://docs.python.org/3.7/library/constants.html#None
219 https://docs.python.org/3.7/library/constants.html#None
220 https://docs.python.org/3.7/library/functions.html#int

114 Chapter 13. API - Input Devices

https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://en.wikipedia.org/wiki/Rotary_encoder
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#int


GPIO Zero Documentation, Release 1.6.1

then the encoder’s value (page 116) never changes, but you can still read steps
(page 115) to determine the integer number of steps the encoder has moved
clockwise or counter clockwise.

• threshold_steps (tuple of int) – A (min, max) tuple of steps between which
the device will be considered “active”, inclusive. In other words, when steps
(page 115) is greater than or equal to the min value, and less than or equal
the max value, the active property will be True221 and the appropriate events
(when_activated, when_deactivated) will be fired. Defaults to (0, 0).

• wrap (bool222) – If True223 and max_steps is non-zero, when the steps
(page 115) reaches positive or negative max_steps it wraps around by negation.
Defaults to False224.

• pin_factory (Factory (page 230) or None225) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

wait_for_rotate(timeout=None)
Pause the script until the encoder is rotated at least one step in either direction, or the timeout
is reached.

Parameters timeout (float226 or None227) – Number of seconds to wait before
proceeding. If this is None228 (the default), then wait indefinitely until the encoder
is rotated.

wait_for_rotate_clockwise(timeout=None)
Pause the script until the encoder is rotated at least one step clockwise, or the timeout is
reached.

Parameters timeout (float229 or None230) – Number of seconds to wait before
proceeding. If this is None231 (the default), then wait indefinitely until the encoder
is rotated clockwise.

wait_for_rotate_counter_clockwise(timeout=None)
Pause the script until the encoder is rotated at least one step counter-clockwise, or the timeout
is reached.

Parameters timeout (float232 or None233) – Number of seconds to wait before
proceeding. If this is None234 (the default), then wait indefinitely until the encoder
is rotated counter-clockwise.

max_steps
The number of discrete steps the rotary encoder takes to move value (page 116) from 0 to
1 clockwise, or 0 to -1 counter-clockwise. In another sense, this is also the total number of
discrete states this input can represent.

steps
The “steps” value of the encoder starts at 0. It increments by one for every step the encoder
is rotated clockwise, and decrements by one for every step it is rotated counter-clockwise.
The steps value is limited by max_steps (page 115). It will not advance beyond positive or

221 https://docs.python.org/3.7/library/constants.html#True
222 https://docs.python.org/3.7/library/functions.html#bool
223 https://docs.python.org/3.7/library/constants.html#True
224 https://docs.python.org/3.7/library/constants.html#False
225 https://docs.python.org/3.7/library/constants.html#None
226 https://docs.python.org/3.7/library/functions.html#float
227 https://docs.python.org/3.7/library/constants.html#None
228 https://docs.python.org/3.7/library/constants.html#None
229 https://docs.python.org/3.7/library/functions.html#float
230 https://docs.python.org/3.7/library/constants.html#None
231 https://docs.python.org/3.7/library/constants.html#None
232 https://docs.python.org/3.7/library/functions.html#float
233 https://docs.python.org/3.7/library/constants.html#None
234 https://docs.python.org/3.7/library/constants.html#None

13.1. Regular Classes 115

https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None


GPIO Zero Documentation, Release 1.6.1

negative max_steps (page 115), unless wrap (page 116) is True235 in which case it will roll
around by negation. If max_steps (page 115) is zero then steps are not limited at all, and
will increase infinitely in either direction, but value (page 116) will return a constant zero.

Note that, in contrast to most other input devices, because the rotary encoder has no absolute
position the steps (page 115) attribute (and value (page 116) by corollary) is writable.

threshold_steps
The mininum and maximum number of steps between which is_active will return True236.
Defaults to (0, 0).

value
Represents the value of the rotary encoder as a value between -1 and 1. The value is calculated
by dividing the value of steps (page 115) into the range from negative max_steps (page 115)
to positive max_steps (page 115).

Note that, in contrast to most other input devices, because the rotary encoder has no absolute
position the value (page 116) attribute is writable.

when_rotated
The function to be run when the encoder is rotated in either direction.

This can be set to a function which accepts no (mandatory) parameters, or a Python function
which accepts a single mandatory parameter (with as many optional parameters as you like).
If the function accepts a single mandatory parameter, the device that activated will be passed
as that parameter.

Set this property to None237 (the default) to disable the event.

when_rotated_clockwise
The function to be run when the encoder is rotated clockwise.

This can be set to a function which accepts no (mandatory) parameters, or a Python function
which accepts a single mandatory parameter (with as many optional parameters as you like).
If the function accepts a single mandatory parameter, the device that activated will be passed
as that parameter.

Set this property to None238 (the default) to disable the event.

when_rotated_counter_clockwise
The function to be run when the encoder is rotated counter-clockwise.

This can be set to a function which accepts no (mandatory) parameters, or a Python function
which accepts a single mandatory parameter (with as many optional parameters as you like).
If the function accepts a single mandatory parameter, the device that activated will be passed
as that parameter.

Set this property to None239 (the default) to disable the event.

wrap
If True240, when value (page 116) reaches its limit (-1 or 1), it “wraps around” to the opposite
limit. When False241, the value (and the corresponding steps (page 115) attribute) simply
don’t advance beyond their limits.

235 https://docs.python.org/3.7/library/constants.html#True
236 https://docs.python.org/3.7/library/constants.html#True
237 https://docs.python.org/3.7/library/constants.html#None
238 https://docs.python.org/3.7/library/constants.html#None
239 https://docs.python.org/3.7/library/constants.html#None
240 https://docs.python.org/3.7/library/constants.html#True
241 https://docs.python.org/3.7/library/constants.html#False

116 Chapter 13. API - Input Devices

https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False


GPIO Zero Documentation, Release 1.6.1

13.2 Base Classes

The classes in the sections above are derived from a series of base classes, some of which are effectively
abstract. The classes form the (partial) hierarchy displayed in the graph below (abstract classes are
shaded lighter than concrete classes):

GPIODevice

SmoothedInputDevice

InputDevice

Button

DigitalInputDevice

DistanceSensor

LightSensor

LineSensor

MotionSensor

The following sections document these base classes for advanced users that wish to construct classes for
their own devices.

13.2.1 DigitalInputDevice

class gpiozero.DigitalInputDevice(pin, *, pull_up=False, active_state=None,
bounce_time=None, pin_factory=None)

Represents a generic input device with typical on/off behaviour.

This class extends InputDevice (page 120) with machinery to fire the active and inactive events for
devices that operate in a typical digital manner: straight forward on / off states with (reasonably)
clean transitions between the two.

Parameters

• pin (int242 or str243) – The GPIO pin that the device is connected to. See Pin
Numbering (page 3) for valid pin numbers. If this is None244 a GPIODeviceError
(page 247) will be raised.

• pull_up (bool245 or None246) – See description under InputDevice (page 120)
for more information.

• active_state (bool247 or None248) – See description under InputDevice
(page 120) for more information.

242 https://docs.python.org/3.7/library/functions.html#int
243 https://docs.python.org/3.7/library/stdtypes.html#str
244 https://docs.python.org/3.7/library/constants.html#None
245 https://docs.python.org/3.7/library/functions.html#bool
246 https://docs.python.org/3.7/library/constants.html#None
247 https://docs.python.org/3.7/library/functions.html#bool
248 https://docs.python.org/3.7/library/constants.html#None

13.2. Base Classes 117

https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#None


GPIO Zero Documentation, Release 1.6.1

• bounce_time (float249 or None250) – Specifies the length of time (in seconds)
that the component will ignore changes in state after an initial change. This
defaults to None251 which indicates that no bounce compensation will be per-
formed.

• pin_factory (Factory (page 230) or None252) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

wait_for_active(timeout=None)
Pause the script until the device is activated, or the timeout is reached.

Parameters timeout (float253 or None254) – Number of seconds to wait before
proceeding. If this is None255 (the default), then wait indefinitely until the device
is active.

wait_for_inactive(timeout=None)
Pause the script until the device is deactivated, or the timeout is reached.

Parameters timeout (float256 or None257) – Number of seconds to wait before
proceeding. If this is None258 (the default), then wait indefinitely until the device
is inactive.

active_time
The length of time (in seconds) that the device has been active for. When the device is
inactive, this is None259.

inactive_time
The length of time (in seconds) that the device has been inactive for. When the device is
active, this is None260.

value
Returns a value representing the device’s state. Frequently, this is a boolean value, or a
number between 0 and 1 but some devices use larger ranges (e.g. -1 to +1) and composite
devices usually use tuples to return the states of all their subordinate components.

when_activated
The function to run when the device changes state from inactive to active.

This can be set to a function which accepts no (mandatory) parameters, or a Python function
which accepts a single mandatory parameter (with as many optional parameters as you like).
If the function accepts a single mandatory parameter, the device that activated it will be
passed as that parameter.

Set this property to None261 (the default) to disable the event.

when_deactivated
The function to run when the device changes state from active to inactive.

This can be set to a function which accepts no (mandatory) parameters, or a Python function
which accepts a single mandatory parameter (with as many optional parameters as you like).
If the function accepts a single mandatory parameter, the device that deactivated it will be
passed as that parameter.

249 https://docs.python.org/3.7/library/functions.html#float
250 https://docs.python.org/3.7/library/constants.html#None
251 https://docs.python.org/3.7/library/constants.html#None
252 https://docs.python.org/3.7/library/constants.html#None
253 https://docs.python.org/3.7/library/functions.html#float
254 https://docs.python.org/3.7/library/constants.html#None
255 https://docs.python.org/3.7/library/constants.html#None
256 https://docs.python.org/3.7/library/functions.html#float
257 https://docs.python.org/3.7/library/constants.html#None
258 https://docs.python.org/3.7/library/constants.html#None
259 https://docs.python.org/3.7/library/constants.html#None
260 https://docs.python.org/3.7/library/constants.html#None
261 https://docs.python.org/3.7/library/constants.html#None

118 Chapter 13. API - Input Devices

https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None


GPIO Zero Documentation, Release 1.6.1

Set this property to None262 (the default) to disable the event.

13.2.2 SmoothedInputDevice

class gpiozero.SmoothedInputDevice(pin, *, pull_up=False, active_state=None, thresh-
old=0.5, queue_len=5, sample_wait=0.0, partial=False,
pin_factory=None)

Represents a generic input device which takes its value from the average of a queue of historical
values.

This class extends InputDevice (page 120) with a queue which is filled by a background thread
which continually polls the state of the underlying device. The average (a configurable function)
of the values in the queue is compared to a threshold which is used to determine the state of the
is_active (page 120) property.

Note: The background queue is not automatically started upon construction. This is to allow
descendents to set up additional components before the queue starts reading values. Effectively
this is an abstract base class.

This class is intended for use with devices which either exhibit analog behaviour (such as the
charging time of a capacitor with an LDR), or those which exhibit “twitchy” behaviour (such as
certain motion sensors).

Parameters

• pin (int263 or str264) – The GPIO pin that the device is connected to. See Pin
Numbering (page 3) for valid pin numbers. If this is None265 a GPIODeviceError
(page 247) will be raised.

• pull_up (bool266 or None267) – See description under InputDevice (page 120)
for more information.

• active_state (bool268 or None269) – See description under InputDevice
(page 120) for more information.

• threshold (float270) – The value above which the device will be considered
“on”.

• queue_len (int271) – The length of the internal queue which is filled by the
background thread.

• sample_wait (float272) – The length of time to wait between retrieving the state
of the underlying device. Defaults to 0.0 indicating that values are retrieved as
fast as possible.

• partial (bool273) – If False274 (the default), attempts to read the state of the
device (from the is_active (page 120) property) will block until the queue has
filled. If True275, a value will be returned immediately, but be aware that this
value is likely to fluctuate excessively.

262 https://docs.python.org/3.7/library/constants.html#None
263 https://docs.python.org/3.7/library/functions.html#int
264 https://docs.python.org/3.7/library/stdtypes.html#str
265 https://docs.python.org/3.7/library/constants.html#None
266 https://docs.python.org/3.7/library/functions.html#bool
267 https://docs.python.org/3.7/library/constants.html#None
268 https://docs.python.org/3.7/library/functions.html#bool
269 https://docs.python.org/3.7/library/constants.html#None
270 https://docs.python.org/3.7/library/functions.html#float
271 https://docs.python.org/3.7/library/functions.html#int
272 https://docs.python.org/3.7/library/functions.html#float
273 https://docs.python.org/3.7/library/functions.html#bool
274 https://docs.python.org/3.7/library/constants.html#False
275 https://docs.python.org/3.7/library/constants.html#True

13.2. Base Classes 119

https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#True


GPIO Zero Documentation, Release 1.6.1

• average – The function used to average the values in the internal queue. This
defaults to statistics.median()276 which is a good selection for discarding
outliers from jittery sensors. The function specified must accept a sequence of
numbers and return a single number.

• ignore (frozenset277 or None278) – The set of values which the queue should
ignore, if returned from querying the device’s value.

• pin_factory (Factory (page 230) or None279) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

is_active
Returns True280 if the value (page 120) currently exceeds threshold (page 120) and False281

otherwise.

partial
If False282 (the default), attempts to read the value (page 120) or is_active (page 120)
properties will block until the queue has filled.

queue_len
The length of the internal queue of values which is averaged to determine the overall state of
the device. This defaults to 5.

threshold
If value (page 120) exceeds this amount, then is_active (page 120) will return True283.

value
Returns the average of the values in the internal queue. This is compared to threshold
(page 120) to determine whether is_active (page 120) is True284.

13.2.3 InputDevice

class gpiozero.InputDevice(pin, *, pull_up=False, active_state=None, pin_factory=None)
Represents a generic GPIO input device.

This class extends GPIODevice (page 121) to add facilities common to GPIO input devices. The
constructor adds the optional pull_up parameter to specify how the pin should be pulled by the
internal resistors. The is_active (page 121) property is adjusted accordingly so that True285 still
means active regardless of the pull_up setting.

Parameters

• pin (int286 or str287) – The GPIO pin that the device is connected to. See Pin
Numbering (page 3) for valid pin numbers. If this is None288 a GPIODeviceError
(page 247) will be raised.

• pull_up (bool289 or None290) – If True291, the pin will be pulled high with an
internal resistor. If False292 (the default), the pin will be pulled low. If None293,

276 https://docs.python.org/3.7/library/statistics.html#statistics.median
277 https://docs.python.org/3.7/library/stdtypes.html#frozenset
278 https://docs.python.org/3.7/library/constants.html#None
279 https://docs.python.org/3.7/library/constants.html#None
280 https://docs.python.org/3.7/library/constants.html#True
281 https://docs.python.org/3.7/library/constants.html#False
282 https://docs.python.org/3.7/library/constants.html#False
283 https://docs.python.org/3.7/library/constants.html#True
284 https://docs.python.org/3.7/library/constants.html#True
285 https://docs.python.org/3.7/library/constants.html#True
286 https://docs.python.org/3.7/library/functions.html#int
287 https://docs.python.org/3.7/library/stdtypes.html#str
288 https://docs.python.org/3.7/library/constants.html#None
289 https://docs.python.org/3.7/library/functions.html#bool
290 https://docs.python.org/3.7/library/constants.html#None
291 https://docs.python.org/3.7/library/constants.html#True
292 https://docs.python.org/3.7/library/constants.html#False
293 https://docs.python.org/3.7/library/constants.html#None

120 Chapter 13. API - Input Devices

https://docs.python.org/3.7/library/statistics.html#statistics.median
https://docs.python.org/3.7/library/stdtypes.html#frozenset
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#None


GPIO Zero Documentation, Release 1.6.1

the pin will be floating. As gpiozero cannot automatically guess the active state
when not pulling the pin, the active_state parameter must be passed.

• active_state (bool294 or None295) – If True296, when the hardware pin state
is HIGH, the software pin is HIGH. If False297, the input polarity is reversed: when
the hardware pin state is HIGH, the software pin state is LOW. Use this parameter
to set the active state of the underlying pin when configuring it as not pulled
(when pull_up is None298). When pull_up is True299 or False300, the active
state is automatically set to the proper value.

• pin_factory (Factory (page 230) or None301) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

is_active
Returns True302 if the device is currently active and False303 otherwise. This property is
usually derived from value (page 121). Unlike value (page 121), this is always a boolean.

pull_up
If True304, the device uses a pull-up resistor to set the GPIO pin “high” by default.

value
Returns a value representing the device’s state. Frequently, this is a boolean value, or a
number between 0 and 1 but some devices use larger ranges (e.g. -1 to +1) and composite
devices usually use tuples to return the states of all their subordinate components.

13.2.4 GPIODevice

class gpiozero.GPIODevice(pin, pin_factory=None)
Extends Device (page 201). Represents a generic GPIO device and provides the services common
to all single-pin GPIO devices (like ensuring two GPIO devices do no share a pin (page 122)).

Parameters pin (int305 or str306) – The GPIO pin that the device is connected
to. See Pin Numbering (page 3) for valid pin numbers. If this is None307 a
GPIODeviceError (page 247) will be raised. If the pin is already in use by another
device, GPIOPinInUse (page 247) will be raised.

close()
Shut down the device and release all associated resources (such as GPIO pins).

This method is idempotent (can be called on an already closed device without any side-effects).
It is primarily intended for interactive use at the command line. It disables the device and
releases its pin(s) for use by another device.

You can attempt to do this simply by deleting an object, but unless you’ve cleaned up all
references to the object this may not work (even if you’ve cleaned up all references, there’s still
no guarantee the garbage collector will actually delete the object at that point). By contrast,
the close method provides a means of ensuring that the object is shut down.

For example, if you have a breadboard with a buzzer connected to pin 16, but then wish to
attach an LED instead:

294 https://docs.python.org/3.7/library/functions.html#bool
295 https://docs.python.org/3.7/library/constants.html#None
296 https://docs.python.org/3.7/library/constants.html#True
297 https://docs.python.org/3.7/library/constants.html#False
298 https://docs.python.org/3.7/library/constants.html#None
299 https://docs.python.org/3.7/library/constants.html#True
300 https://docs.python.org/3.7/library/constants.html#False
301 https://docs.python.org/3.7/library/constants.html#None
302 https://docs.python.org/3.7/library/constants.html#True
303 https://docs.python.org/3.7/library/constants.html#False
304 https://docs.python.org/3.7/library/constants.html#True
305 https://docs.python.org/3.7/library/functions.html#int
306 https://docs.python.org/3.7/library/stdtypes.html#str
307 https://docs.python.org/3.7/library/constants.html#None

13.2. Base Classes 121

https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None


GPIO Zero Documentation, Release 1.6.1

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device (page 201) descendents can also be used as context managers using the with308 state-
ment. For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

closed
Returns True309 if the device is closed (see the close() (page 121) method). Once a device is
closed you can no longer use any other methods or properties to control or query the device.

pin
The Pin (page 231) that the device is connected to. This will be None310 if the device has
been closed (see the close() (page 201) method). When dealing with GPIO pins, query
pin.number to discover the GPIO pin (in BCM numbering) that the device is connected to.

value
Returns a value representing the device’s state. Frequently, this is a boolean value, or a
number between 0 and 1 but some devices use larger ranges (e.g. -1 to +1) and composite
devices usually use tuples to return the states of all their subordinate components.

308 https://docs.python.org/3.7/reference/compound_stmts.html#with
309 https://docs.python.org/3.7/library/constants.html#True
310 https://docs.python.org/3.7/library/constants.html#None

122 Chapter 13. API - Input Devices

https://docs.python.org/3.7/reference/compound_stmts.html#with
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#None


CHAPTER 14

API - Output Devices

These output device component interfaces have been provided for simple use of everyday components.
Components must be wired up correctly before use in code.

Note: All GPIO pin numbers use Broadcom (BCM) numbering by default. See the Pin Numbering
(page 3) section for more information.

14.1 Regular Classes

The following classes are intended for general use with the devices they represent. All classes in this
section are concrete (not abstract).

14.1.1 LED

class gpiozero.LED(pin, *, active_high=True, initial_value=False, pin_factory=None)
Extends DigitalOutputDevice (page 139) and represents a light emitting diode (LED).

Connect the cathode (short leg, flat side) of the LED to a ground pin; connect the anode (longer
leg) to a limiting resistor; connect the other side of the limiting resistor to a GPIO pin (the limiting
resistor can be placed either side of the LED).

The following example will light the LED:

from gpiozero import LED

led = LED(17)
led.on()

Parameters

• pin (int311 or str312) – The GPIO pin which the LED is connected to. See Pin
Numbering (page 3) for valid pin numbers. If this is None313 a GPIODeviceError

311 https://docs.python.org/3.7/library/functions.html#int
312 https://docs.python.org/3.7/library/stdtypes.html#str
313 https://docs.python.org/3.7/library/constants.html#None

123

https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None


GPIO Zero Documentation, Release 1.6.1

(page 247) will be raised.

• active_high (bool314) – If True315 (the default), the LED will operate normally
with the circuit described above. If False316 you should wire the cathode to the
GPIO pin, and the anode to a 3V3 pin (via a limiting resistor).

• initial_value (bool317 or None318) – If False319 (the default), the LED will
be off initially. If None320, the LED will be left in whatever state the pin is found
in when configured for output (warning: this can be on). If True321, the LED
will be switched on initially.

• pin_factory (Factory (page 230) or None322) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

blink(on_time=1, off_time=1, n=None, background=True)
Make the device turn on and off repeatedly.

Parameters

• on_time (float323) – Number of seconds on. Defaults to 1 second.

• off_time (float324) – Number of seconds off. Defaults to 1 second.

• n (int325 or None326) – Number of times to blink; None327 (the default) means
forever.

• background (bool328) – If True329 (the default), start a background thread
to continue blinking and return immediately. If False330, only return when
the blink is finished (warning: the default value of n will result in this method
never returning).

off()
Turns the device off.

on()
Turns the device on.

toggle()
Reverse the state of the device. If it’s on, turn it off; if it’s off, turn it on.

is_lit
Returns True331 if the device is currently active and False332 otherwise. This property is
usually derived from value (page 125). Unlike value (page 125), this is always a boolean.

pin
The Pin (page 231) that the device is connected to. This will be None333 if the device has
been closed (see the close() (page 201) method). When dealing with GPIO pins, query
pin.number to discover the GPIO pin (in BCM numbering) that the device is connected to.

314 https://docs.python.org/3.7/library/functions.html#bool
315 https://docs.python.org/3.7/library/constants.html#True
316 https://docs.python.org/3.7/library/constants.html#False
317 https://docs.python.org/3.7/library/functions.html#bool
318 https://docs.python.org/3.7/library/constants.html#None
319 https://docs.python.org/3.7/library/constants.html#False
320 https://docs.python.org/3.7/library/constants.html#None
321 https://docs.python.org/3.7/library/constants.html#True
322 https://docs.python.org/3.7/library/constants.html#None
323 https://docs.python.org/3.7/library/functions.html#float
324 https://docs.python.org/3.7/library/functions.html#float
325 https://docs.python.org/3.7/library/functions.html#int
326 https://docs.python.org/3.7/library/constants.html#None
327 https://docs.python.org/3.7/library/constants.html#None
328 https://docs.python.org/3.7/library/functions.html#bool
329 https://docs.python.org/3.7/library/constants.html#True
330 https://docs.python.org/3.7/library/constants.html#False
331 https://docs.python.org/3.7/library/constants.html#True
332 https://docs.python.org/3.7/library/constants.html#False
333 https://docs.python.org/3.7/library/constants.html#None

124 Chapter 14. API - Output Devices

https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#None


GPIO Zero Documentation, Release 1.6.1

value
Returns 1 if the device is currently active and 0 otherwise. Setting this property changes the
state of the device.

14.1.2 PWMLED

class gpiozero.PWMLED(pin, *, active_high=True, initial_value=0, frequency=100,
pin_factory=None)

Extends PWMOutputDevice (page 140) and represents a light emitting diode (LED) with variable
brightness.

A typical configuration of such a device is to connect a GPIO pin to the anode (long leg) of the
LED, and the cathode (short leg) to ground, with an optional resistor to prevent the LED from
burning out.

Parameters

• pin (int334 or str335) – The GPIO pin which the LED is connected to. See Pin
Numbering (page 3) for valid pin numbers. If this is None336 a GPIODeviceError
(page 247) will be raised.

• active_high (bool337) – If True338 (the default), the on() (page 126) method
will set the GPIO to HIGH. If False339, the on() (page 126) method will set
the GPIO to LOW (the off() (page 126) method always does the opposite).

• initial_value (float340) – If 0 (the default), the LED will be off initially.
Other values between 0 and 1 can be specified as an initial brightness for the
LED. Note that None341 cannot be specified (unlike the parent class) as there is
no way to tell PWM not to alter the state of the pin.

• frequency (int342) – The frequency (in Hz) of pulses emitted to drive the LED.
Defaults to 100Hz.

• pin_factory (Factory (page 230) or None343) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, n=None, back-
ground=True)

Make the device turn on and off repeatedly.

Parameters

• on_time (float344) – Number of seconds on. Defaults to 1 second.

• off_time (float345) – Number of seconds off. Defaults to 1 second.

• fade_in_time (float346) – Number of seconds to spend fading in. Defaults to
0.

• fade_out_time (float347) – Number of seconds to spend fading out. Defaults
to 0.

334 https://docs.python.org/3.7/library/functions.html#int
335 https://docs.python.org/3.7/library/stdtypes.html#str
336 https://docs.python.org/3.7/library/constants.html#None
337 https://docs.python.org/3.7/library/functions.html#bool
338 https://docs.python.org/3.7/library/constants.html#True
339 https://docs.python.org/3.7/library/constants.html#False
340 https://docs.python.org/3.7/library/functions.html#float
341 https://docs.python.org/3.7/library/constants.html#None
342 https://docs.python.org/3.7/library/functions.html#int
343 https://docs.python.org/3.7/library/constants.html#None
344 https://docs.python.org/3.7/library/functions.html#float
345 https://docs.python.org/3.7/library/functions.html#float
346 https://docs.python.org/3.7/library/functions.html#float
347 https://docs.python.org/3.7/library/functions.html#float

14.1. Regular Classes 125

https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float


GPIO Zero Documentation, Release 1.6.1

• n (int348 or None349) – Number of times to blink; None350 (the default) means
forever.

• background (bool351) – If True352 (the default), start a background thread
to continue blinking and return immediately. If False353, only return when
the blink is finished (warning: the default value of n will result in this method
never returning).

off()
Turns the device off.

on()
Turns the device on.

pulse(fade_in_time=1, fade_out_time=1, n=None, background=True)
Make the device fade in and out repeatedly.

Parameters

• fade_in_time (float354) – Number of seconds to spend fading in. Defaults to
1.

• fade_out_time (float355) – Number of seconds to spend fading out. Defaults
to 1.

• n (int356 or None357) – Number of times to pulse; None358 (the default) means
forever.

• background (bool359) – If True360 (the default), start a background thread to
continue pulsing and return immediately. If False361, only return when the
pulse is finished (warning: the default value of n will result in this method
never returning).

toggle()
Toggle the state of the device. If the device is currently off (value (page 126) is 0.0), this
changes it to “fully” on (value (page 126) is 1.0). If the device has a duty cycle (value
(page 126)) of 0.1, this will toggle it to 0.9, and so on.

is_lit
Returns True362 if the device is currently active (value (page 126) is non-zero) and False363

otherwise.

pin
The Pin (page 231) that the device is connected to. This will be None364 if the device has
been closed (see the close() (page 201) method). When dealing with GPIO pins, query
pin.number to discover the GPIO pin (in BCM numbering) that the device is connected to.

value
The duty cycle of the PWM device. 0.0 is off, 1.0 is fully on. Values in between may be
specified for varying levels of power in the device.

348 https://docs.python.org/3.7/library/functions.html#int
349 https://docs.python.org/3.7/library/constants.html#None
350 https://docs.python.org/3.7/library/constants.html#None
351 https://docs.python.org/3.7/library/functions.html#bool
352 https://docs.python.org/3.7/library/constants.html#True
353 https://docs.python.org/3.7/library/constants.html#False
354 https://docs.python.org/3.7/library/functions.html#float
355 https://docs.python.org/3.7/library/functions.html#float
356 https://docs.python.org/3.7/library/functions.html#int
357 https://docs.python.org/3.7/library/constants.html#None
358 https://docs.python.org/3.7/library/constants.html#None
359 https://docs.python.org/3.7/library/functions.html#bool
360 https://docs.python.org/3.7/library/constants.html#True
361 https://docs.python.org/3.7/library/constants.html#False
362 https://docs.python.org/3.7/library/constants.html#True
363 https://docs.python.org/3.7/library/constants.html#False
364 https://docs.python.org/3.7/library/constants.html#None

126 Chapter 14. API - Output Devices

https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#None


GPIO Zero Documentation, Release 1.6.1

14.1.3 RGBLED

class gpiozero.RGBLED(red, green, blue, *, active_high=True, initial_value=(0, 0, 0),
pwm=True, pin_factory=None)

Extends Device (page 201) and represents a full color LED component (composed of red, green,
and blue LEDs).

Connect the common cathode (longest leg) to a ground pin; connect each of the other legs (repre-
senting the red, green, and blue anodes) to any GPIO pins. You should use three limiting resistors
(one per anode).

The following code will make the LED yellow:

from gpiozero import RGBLED

led = RGBLED(2, 3, 4)
led.color = (1, 1, 0)

The colorzero365 library is also supported:

from gpiozero import RGBLED
from colorzero import Color

led = RGBLED(2, 3, 4)
led.color = Color('yellow')

Parameters

• red (int366 or str367) – The GPIO pin that controls the red component of the
RGB LED. See Pin Numbering (page 3) for valid pin numbers. If this is None368

a GPIODeviceError (page 247) will be raised.

• green (int369 or str370) – The GPIO pin that controls the green component
of the RGB LED.

• blue (int371 or str372) – The GPIO pin that controls the blue component of
the RGB LED.

• active_high (bool373) – Set to True374 (the default) for common cathode RGB
LEDs. If you are using a common anode RGB LED, set this to False375.

• initial_value (Color376 or tuple377) – The initial color for the RGB LED.
Defaults to black (0, 0, 0).

• pwm (bool378) – If True379 (the default), construct PWMLED (page 125) in-
stances for each component of the RGBLED. If False380, construct regular LED
(page 123) instances, which prevents smooth color graduations.

365 https://colorzero.readthedocs.io/
366 https://docs.python.org/3.7/library/functions.html#int
367 https://docs.python.org/3.7/library/stdtypes.html#str
368 https://docs.python.org/3.7/library/constants.html#None
369 https://docs.python.org/3.7/library/functions.html#int
370 https://docs.python.org/3.7/library/stdtypes.html#str
371 https://docs.python.org/3.7/library/functions.html#int
372 https://docs.python.org/3.7/library/stdtypes.html#str
373 https://docs.python.org/3.7/library/functions.html#bool
374 https://docs.python.org/3.7/library/constants.html#True
375 https://docs.python.org/3.7/library/constants.html#False
376 https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Color
377 https://docs.python.org/3.7/library/stdtypes.html#tuple
378 https://docs.python.org/3.7/library/functions.html#bool
379 https://docs.python.org/3.7/library/constants.html#True
380 https://docs.python.org/3.7/library/constants.html#False

14.1. Regular Classes 127

https://colorzero.readthedocs.io/
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Color
https://docs.python.org/3.7/library/stdtypes.html#tuple
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False


GPIO Zero Documentation, Release 1.6.1

• pin_factory (Factory (page 230) or None381) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, on_color=(1, 1, 1),
off_color=(0, 0, 0), n=None, background=True)

Make the device turn on and off repeatedly.

Parameters

• on_time (float382) – Number of seconds on. Defaults to 1 second.

• off_time (float383) – Number of seconds off. Defaults to 1 second.

• fade_in_time (float384) – Number of seconds to spend fading in. De-
faults to 0. Must be 0 if pwm was False385 when the class was constructed
(ValueError386 will be raised if not).

• fade_out_time (float387) – Number of seconds to spend fading out. De-
faults to 0. Must be 0 if pwm was False388 when the class was constructed
(ValueError389 will be raised if not).

• on_color (Color390 or tuple391) – The color to use when the LED is “on”.
Defaults to white.

• off_color (Color392 or tuple393) – The color to use when the LED is “off”.
Defaults to black.

• n (int394 or None395) – Number of times to blink; None396 (the default) means
forever.

• background (bool397) – If True398 (the default), start a background thread
to continue blinking and return immediately. If False399, only return when
the blink is finished (warning: the default value of n will result in this method
never returning).

off()
Turn the LED off. This is equivalent to setting the LED color to black (0, 0, 0).

on()
Turn the LED on. This equivalent to setting the LED color to white (1, 1, 1).

pulse(fade_in_time=1, fade_out_time=1, on_color=(1, 1, 1), off_color=(0, 0, 0), n=None,
background=True)

Make the device fade in and out repeatedly.

Parameters

• fade_in_time (float400) – Number of seconds to spend fading in. Defaults to
1.

381 https://docs.python.org/3.7/library/constants.html#None
382 https://docs.python.org/3.7/library/functions.html#float
383 https://docs.python.org/3.7/library/functions.html#float
384 https://docs.python.org/3.7/library/functions.html#float
385 https://docs.python.org/3.7/library/constants.html#False
386 https://docs.python.org/3.7/library/exceptions.html#ValueError
387 https://docs.python.org/3.7/library/functions.html#float
388 https://docs.python.org/3.7/library/constants.html#False
389 https://docs.python.org/3.7/library/exceptions.html#ValueError
390 https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Color
391 https://docs.python.org/3.7/library/stdtypes.html#tuple
392 https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Color
393 https://docs.python.org/3.7/library/stdtypes.html#tuple
394 https://docs.python.org/3.7/library/functions.html#int
395 https://docs.python.org/3.7/library/constants.html#None
396 https://docs.python.org/3.7/library/constants.html#None
397 https://docs.python.org/3.7/library/functions.html#bool
398 https://docs.python.org/3.7/library/constants.html#True
399 https://docs.python.org/3.7/library/constants.html#False
400 https://docs.python.org/3.7/library/functions.html#float

128 Chapter 14. API - Output Devices

https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/exceptions.html#ValueError
https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Color
https://docs.python.org/3.7/library/stdtypes.html#tuple
https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Color
https://docs.python.org/3.7/library/stdtypes.html#tuple
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/functions.html#float


GPIO Zero Documentation, Release 1.6.1

• fade_out_time (float401) – Number of seconds to spend fading out. Defaults
to 1.

• on_color (Color402 or tuple403) – The color to use when the LED is “on”.
Defaults to white.

• off_color (Color404 or tuple405) – The color to use when the LED is “off”.
Defaults to black.

• n (int406 or None407) – Number of times to pulse; None408 (the default) means
forever.

• background (bool409) – If True410 (the default), start a background thread to
continue pulsing and return immediately. If False411, only return when the
pulse is finished (warning: the default value of n will result in this method
never returning).

toggle()
Toggle the state of the device. If the device is currently off (value (page 129) is (0, 0, 0)),
this changes it to “fully” on (value (page 129) is (1, 1, 1)). If the device has a specific
color, this method inverts the color.

blue
Represents the blue element of the LED as a Blue412 object.

color
Represents the color of the LED as a Color413 object.

green
Represents the green element of the LED as a Green414 object.

is_lit
Returns True415 if the LED is currently active (not black) and False416 otherwise.

red
Represents the red element of the LED as a Red417 object.

value
Represents the color of the LED as an RGB 3-tuple of (red, green, blue) where each value
is between 0 and 1 if pwm was True418 when the class was constructed (and only 0 or 1 if
not).

For example, red would be (1, 0, 0) and yellow would be (1, 1, 0), while orange would
be (1, 0.5, 0).

401 https://docs.python.org/3.7/library/functions.html#float
402 https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Color
403 https://docs.python.org/3.7/library/stdtypes.html#tuple
404 https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Color
405 https://docs.python.org/3.7/library/stdtypes.html#tuple
406 https://docs.python.org/3.7/library/functions.html#int
407 https://docs.python.org/3.7/library/constants.html#None
408 https://docs.python.org/3.7/library/constants.html#None
409 https://docs.python.org/3.7/library/functions.html#bool
410 https://docs.python.org/3.7/library/constants.html#True
411 https://docs.python.org/3.7/library/constants.html#False
412 https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Blue
413 https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Color
414 https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Green
415 https://docs.python.org/3.7/library/constants.html#True
416 https://docs.python.org/3.7/library/constants.html#False
417 https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Red
418 https://docs.python.org/3.7/library/constants.html#True

14.1. Regular Classes 129

https://docs.python.org/3.7/library/functions.html#float
https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Color
https://docs.python.org/3.7/library/stdtypes.html#tuple
https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Color
https://docs.python.org/3.7/library/stdtypes.html#tuple
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Blue
https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Color
https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Green
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Red
https://docs.python.org/3.7/library/constants.html#True


GPIO Zero Documentation, Release 1.6.1

14.1.4 Buzzer

class gpiozero.Buzzer(pin, *, active_high=True, initial_value=False, pin_factory=None)
Extends DigitalOutputDevice (page 139) and represents a digital buzzer component.

Note: This interface is only capable of simple on/off commands, and is not capable of playing a
variety of tones (see TonalBuzzer (page 131)).

Connect the cathode (negative pin) of the buzzer to a ground pin; connect the other side to any
GPIO pin.

The following example will sound the buzzer:

from gpiozero import Buzzer

bz = Buzzer(3)
bz.on()

Parameters

• pin (int419 or str420) – The GPIO pin which the buzzer is connected to.
See Pin Numbering (page 3) for valid pin numbers. If this is None421 a
GPIODeviceError (page 247) will be raised.

• active_high (bool422) – If True423 (the default), the buzzer will operate nor-
mally with the circuit described above. If False424 you should wire the cathode
to the GPIO pin, and the anode to a 3V3 pin.

• initial_value (bool425 or None426) – If False427 (the default), the buzzer
will be silent initially. If None428, the buzzer will be left in whatever state the
pin is found in when configured for output (warning: this can be on). If True429,
the buzzer will be switched on initially.

• pin_factory (Factory (page 230) or None430) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

beep(on_time=1, off_time=1, n=None, background=True)
Make the device turn on and off repeatedly.

Parameters

• on_time (float431) – Number of seconds on. Defaults to 1 second.

• off_time (float432) – Number of seconds off. Defaults to 1 second.

• n (int433 or None434) – Number of times to blink; None435 (the default) means
forever.

419 https://docs.python.org/3.7/library/functions.html#int
420 https://docs.python.org/3.7/library/stdtypes.html#str
421 https://docs.python.org/3.7/library/constants.html#None
422 https://docs.python.org/3.7/library/functions.html#bool
423 https://docs.python.org/3.7/library/constants.html#True
424 https://docs.python.org/3.7/library/constants.html#False
425 https://docs.python.org/3.7/library/functions.html#bool
426 https://docs.python.org/3.7/library/constants.html#None
427 https://docs.python.org/3.7/library/constants.html#False
428 https://docs.python.org/3.7/library/constants.html#None
429 https://docs.python.org/3.7/library/constants.html#True
430 https://docs.python.org/3.7/library/constants.html#None
431 https://docs.python.org/3.7/library/functions.html#float
432 https://docs.python.org/3.7/library/functions.html#float
433 https://docs.python.org/3.7/library/functions.html#int
434 https://docs.python.org/3.7/library/constants.html#None
435 https://docs.python.org/3.7/library/constants.html#None

130 Chapter 14. API - Output Devices

https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None


GPIO Zero Documentation, Release 1.6.1

• background (bool436) – If True437 (the default), start a background thread
to continue blinking and return immediately. If False438, only return when
the blink is finished (warning: the default value of n will result in this method
never returning).

off()
Turns the device off.

on()
Turns the device on.

toggle()
Reverse the state of the device. If it’s on, turn it off; if it’s off, turn it on.

is_active
Returns True439 if the device is currently active and False440 otherwise. This property is
usually derived from value (page 131). Unlike value (page 131), this is always a boolean.

pin
The Pin (page 231) that the device is connected to. This will be None441 if the device has
been closed (see the close() (page 201) method). When dealing with GPIO pins, query
pin.number to discover the GPIO pin (in BCM numbering) that the device is connected to.

value
Returns 1 if the device is currently active and 0 otherwise. Setting this property changes the
state of the device.

14.1.5 TonalBuzzer

class gpiozero.TonalBuzzer(pin, *, initial_value=None, mid_tone=Tone(’A4’), octaves=1,
pin_factory=None)

Extends CompositeDevice (page 185) and represents a tonal buzzer.

Parameters

• pin (int442 or str443) – The GPIO pin which the buzzer is connected to.
See Pin Numbering (page 3) for valid pin numbers. If this is None444 a
GPIODeviceError (page 247) will be raised.

• initial_value (float445) – If None446 (the default), the buzzer will be off
initially. Values between -1 and 1 can be specified as an initial value for the
buzzer.

• mid_tone (int447 or str448) – The tone which is represented the device’s mid-
dle value (0). The default is “A4” (MIDI note 69).

• octaves (int449) – The number of octaves to allow away from the base note.
The default is 1, meaning a value of -1 goes one octave below the base note, and
one above, i.e. from A3 to A5 with the default base note of A4.

• pin_factory (Factory (page 230) or None450) – See API - Pins (page 225) for
436 https://docs.python.org/3.7/library/functions.html#bool
437 https://docs.python.org/3.7/library/constants.html#True
438 https://docs.python.org/3.7/library/constants.html#False
439 https://docs.python.org/3.7/library/constants.html#True
440 https://docs.python.org/3.7/library/constants.html#False
441 https://docs.python.org/3.7/library/constants.html#None
442 https://docs.python.org/3.7/library/functions.html#int
443 https://docs.python.org/3.7/library/stdtypes.html#str
444 https://docs.python.org/3.7/library/constants.html#None
445 https://docs.python.org/3.7/library/functions.html#float
446 https://docs.python.org/3.7/library/constants.html#None
447 https://docs.python.org/3.7/library/functions.html#int
448 https://docs.python.org/3.7/library/stdtypes.html#str
449 https://docs.python.org/3.7/library/functions.html#int
450 https://docs.python.org/3.7/library/constants.html#None

14.1. Regular Classes 131

https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/constants.html#None


GPIO Zero Documentation, Release 1.6.1

more information (this is an advanced feature which most users can ignore).

Note: Note that this class does not currently work with PiGPIOFactory (page 241).

play(tone)
Play the given tone. This can either be an instance of Tone (page 217) or can be anything
that could be used to construct an instance of Tone (page 217).

For example:

>>> from gpiozero import TonalBuzzer
>>> from gpiozero.tones import Tone
>>> b = TonalBuzzer(17)
>>> b.play(Tone("A4"))
>>> b.play(Tone(220.0)) # Hz
>>> b.play(Tone(60)) # middle C in MIDI notation
>>> b.play("A4")
>>> b.play(220.0)
>>> b.play(60)

stop()
Turn the buzzer off. This is equivalent to setting value (page 132) to None451.

is_active
Returns True452 if the buzzer is currently playing, otherwise False453.

max_tone
The highest tone that the buzzer can play, i.e. the tone played when value (page 132) is 1.

mid_tone
The middle tone available, i.e. the tone played when value (page 132) is 0.

min_tone
The lowest tone that the buzzer can play, i.e. the tone played when value (page 132) is -1.

octaves
The number of octaves available (above and below mid_tone).

tone
Returns the Tone (page 217) that the buzzer is currently playing, or None454 if the buzzer is
silent. This property can also be set to play the specified tone.

value
Represents the state of the buzzer as a value between -1 (representing the minimum tone)
and 1 (representing the maximum tone). This can also be the special value None455 indicating
that the buzzer is currently silent.

14.1.6 Motor

class gpiozero.Motor(forward, backward, *, pwm=True, pin_factory=None)
Extends CompositeDevice (page 185) and represents a generic motor connected to a bi-directional
motor driver circuit (i.e. an H-bridge456).

451 https://docs.python.org/3.7/library/constants.html#None
452 https://docs.python.org/3.7/library/constants.html#True
453 https://docs.python.org/3.7/library/constants.html#False
454 https://docs.python.org/3.7/library/constants.html#None
455 https://docs.python.org/3.7/library/constants.html#None
456 https://en.wikipedia.org/wiki/H_bridge

132 Chapter 14. API - Output Devices

https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://en.wikipedia.org/wiki/H_bridge


GPIO Zero Documentation, Release 1.6.1

Attach an H-bridge457 motor controller to your Pi; connect a power source (e.g. a battery pack or
the 5V pin) to the controller; connect the outputs of the controller board to the two terminals of
the motor; connect the inputs of the controller board to two GPIO pins.

The following code will make the motor turn “forwards”:

from gpiozero import Motor

motor = Motor(17, 18)
motor.forward()

Parameters

• forward (int458 or str459) – The GPIO pin that the forward input of the
motor driver chip is connected to. See Pin Numbering (page 3) for valid pin
numbers. If this is None460 a GPIODeviceError (page 247) will be raised.

• backward (int461 or str462) – The GPIO pin that the backward input of the
motor driver chip is connected to. See Pin Numbering (page 3) for valid pin
numbers. If this is None463 a GPIODeviceError (page 247) will be raised.

• enable (int464 or str465 or None466) – The GPIO pin that enables the motor.
Required for some motor controller boards. See Pin Numbering (page 3) for valid
pin numbers.

• pwm (bool467) – If True468 (the default), construct PWMOutputDevice (page 140)
instances for the motor controller pins, allowing both direction and variable speed
control. If False469, construct DigitalOutputDevice (page 139) instances, al-
lowing only direction control.

• pin_factory (Factory (page 230) or None470) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

backward(speed=1)
Drive the motor backwards.

Parameters speed (float471) – The speed at which the motor should turn. Can be
any value between 0 (stopped) and the default 1 (maximum speed) if pwm was
True472 when the class was constructed (and only 0 or 1 if not).

forward(speed=1)
Drive the motor forwards.

Parameters speed (float473) – The speed at which the motor should turn. Can be
any value between 0 (stopped) and the default 1 (maximum speed) if pwm was
True474 when the class was constructed (and only 0 or 1 if not).

457 https://en.wikipedia.org/wiki/H_bridge
458 https://docs.python.org/3.7/library/functions.html#int
459 https://docs.python.org/3.7/library/stdtypes.html#str
460 https://docs.python.org/3.7/library/constants.html#None
461 https://docs.python.org/3.7/library/functions.html#int
462 https://docs.python.org/3.7/library/stdtypes.html#str
463 https://docs.python.org/3.7/library/constants.html#None
464 https://docs.python.org/3.7/library/functions.html#int
465 https://docs.python.org/3.7/library/stdtypes.html#str
466 https://docs.python.org/3.7/library/constants.html#None
467 https://docs.python.org/3.7/library/functions.html#bool
468 https://docs.python.org/3.7/library/constants.html#True
469 https://docs.python.org/3.7/library/constants.html#False
470 https://docs.python.org/3.7/library/constants.html#None
471 https://docs.python.org/3.7/library/functions.html#float
472 https://docs.python.org/3.7/library/constants.html#True
473 https://docs.python.org/3.7/library/functions.html#float
474 https://docs.python.org/3.7/library/constants.html#True

14.1. Regular Classes 133

https://en.wikipedia.org/wiki/H_bridge
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/constants.html#True


GPIO Zero Documentation, Release 1.6.1

reverse()
Reverse the current direction of the motor. If the motor is currently idle this does nothing.
Otherwise, the motor’s direction will be reversed at the current speed.

stop()
Stop the motor.

is_active
Returns True475 if the motor is currently running and False476 otherwise.

value
Represents the speed of the motor as a floating point value between -1 (full speed backward)
and 1 (full speed forward), with 0 representing stopped.

14.1.7 PhaseEnableMotor

class gpiozero.PhaseEnableMotor(phase, enable, *, pwm=True, pin_factory=None)
Extends CompositeDevice (page 185) and represents a generic motor connected to a Phase/Enable
motor driver circuit; the phase of the driver controls whether the motor turns forwards or back-
wards, while enable controls the speed with PWM.

The following code will make the motor turn “forwards”:

from gpiozero import PhaseEnableMotor
motor = PhaseEnableMotor(12, 5)
motor.forward()

Parameters

• phase (int477 or str478) – The GPIO pin that the phase (direction) input of
the motor driver chip is connected to. See Pin Numbering (page 3) for valid pin
numbers. If this is None479 a GPIODeviceError (page 247) will be raised.

• enable (int480 or str481) – The GPIO pin that the enable (speed) input of
the motor driver chip is connected to. See Pin Numbering (page 3) for valid pin
numbers. If this is None482 a GPIODeviceError (page 247) will be raised.

• pwm (bool483) – If True484 (the default), construct PWMOutputDevice (page 140)
instances for the motor controller pins, allowing both direction and variable speed
control. If False485, construct DigitalOutputDevice (page 139) instances, al-
lowing only direction control.

• pin_factory (Factory (page 230) or None486) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

backward(speed=1)
Drive the motor backwards.

Parameters speed (float487) – The speed at which the motor should turn. Can
be any value between 0 (stopped) and the default 1 (maximum speed).

475 https://docs.python.org/3.7/library/constants.html#True
476 https://docs.python.org/3.7/library/constants.html#False
477 https://docs.python.org/3.7/library/functions.html#int
478 https://docs.python.org/3.7/library/stdtypes.html#str
479 https://docs.python.org/3.7/library/constants.html#None
480 https://docs.python.org/3.7/library/functions.html#int
481 https://docs.python.org/3.7/library/stdtypes.html#str
482 https://docs.python.org/3.7/library/constants.html#None
483 https://docs.python.org/3.7/library/functions.html#bool
484 https://docs.python.org/3.7/library/constants.html#True
485 https://docs.python.org/3.7/library/constants.html#False
486 https://docs.python.org/3.7/library/constants.html#None
487 https://docs.python.org/3.7/library/functions.html#float

134 Chapter 14. API - Output Devices

https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#float


GPIO Zero Documentation, Release 1.6.1

forward(speed=1)
Drive the motor forwards.

Parameters speed (float488) – The speed at which the motor should turn. Can
be any value between 0 (stopped) and the default 1 (maximum speed).

reverse()
Reverse the current direction of the motor. If the motor is currently idle this does nothing.
Otherwise, the motor’s direction will be reversed at the current speed.

stop()
Stop the motor.

is_active
Returns True489 if the motor is currently running and False490 otherwise.

value
Represents the speed of the motor as a floating point value between -1 (full speed backward)
and 1 (full speed forward).

14.1.8 Servo

class gpiozero.Servo(pin, *, initial_value=0, min_pulse_width=1/1000,
max_pulse_width=2/1000, frame_width=20/1000, pin_factory=None)

Extends CompositeDevice (page 185) and represents a PWM-controlled servo motor connected to
a GPIO pin.

Connect a power source (e.g. a battery pack or the 5V pin) to the power cable of the servo (this is
typically colored red); connect the ground cable of the servo (typically colored black or brown) to
the negative of your battery pack, or a GND pin; connect the final cable (typically colored white
or orange) to the GPIO pin you wish to use for controlling the servo.

The following code will make the servo move between its minimum, maximum, and mid-point
positions with a pause between each:

from gpiozero import Servo
from time import sleep

servo = Servo(17)

while True:
servo.min()
sleep(1)
servo.mid()
sleep(1)
servo.max()
sleep(1)

You can also use the value (page 136) property to move the servo to a particular position, on a
scale from -1 (min) to 1 (max) where 0 is the mid-point:

from gpiozero import Servo

servo = Servo(17)

servo.value = 0.5

488 https://docs.python.org/3.7/library/functions.html#float
489 https://docs.python.org/3.7/library/constants.html#True
490 https://docs.python.org/3.7/library/constants.html#False

14.1. Regular Classes 135

https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False


GPIO Zero Documentation, Release 1.6.1

Note: To reduce servo jitter, use the pigpio pin driver rather than the default RPi.GPIO driver
(pigpio uses DMA sampling for much more precise edge timing). See Changing the pin factory
(page 227) for further information.

Parameters

• pin (int491 or str492) – The GPIO pin that the servo is connected to. See Pin
Numbering (page 3) for valid pin numbers. If this is None493 a GPIODeviceError
(page 247) will be raised.

• initial_value (float494) – If 0 (the default), the device’s mid-point will be set
initially. Other values between -1 and +1 can be specified as an initial position.
None495 means to start the servo un-controlled (see value (page 136)).

• min_pulse_width (float496) – The pulse width corresponding to the servo’s
minimum position. This defaults to 1ms.

• max_pulse_width (float497) – The pulse width corresponding to the servo’s
maximum position. This defaults to 2ms.

• frame_width (float498) – The length of time between servo control pulses mea-
sured in seconds. This defaults to 20ms which is a common value for servos.

• pin_factory (Factory (page 230) or None499) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

detach()
Temporarily disable control of the servo. This is equivalent to setting value (page 136) to
None500.

max()
Set the servo to its maximum position.

mid()
Set the servo to its mid-point position.

min()
Set the servo to its minimum position.

frame_width
The time between control pulses, measured in seconds.

is_active
Composite devices are considered “active” if any of their constituent devices have a “truthy”
value.

max_pulse_width
The control pulse width corresponding to the servo’s maximum position, measured in seconds.

min_pulse_width
The control pulse width corresponding to the servo’s minimum position, measured in seconds.

pulse_width
Returns the current pulse width controlling the servo.

491 https://docs.python.org/3.7/library/functions.html#int
492 https://docs.python.org/3.7/library/stdtypes.html#str
493 https://docs.python.org/3.7/library/constants.html#None
494 https://docs.python.org/3.7/library/functions.html#float
495 https://docs.python.org/3.7/library/constants.html#None
496 https://docs.python.org/3.7/library/functions.html#float
497 https://docs.python.org/3.7/library/functions.html#float
498 https://docs.python.org/3.7/library/functions.html#float
499 https://docs.python.org/3.7/library/constants.html#None
500 https://docs.python.org/3.7/library/constants.html#None

136 Chapter 14. API - Output Devices

https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None


GPIO Zero Documentation, Release 1.6.1

value
Represents the position of the servo as a value between -1 (the minimum position) and +1
(the maximum position). This can also be the special value None501 indicating that the servo
is currently “uncontrolled”, i.e. that no control signal is being sent. Typically this means the
servo’s position remains unchanged, but that it can be moved by hand.

14.1.9 AngularServo

class gpiozero.AngularServo(pin, *, initial_angle=0, min_angle=-90, max_angle=90,
min_pulse_width=1/1000, max_pulse_width=2/1000,
frame_width=20/1000, pin_factory=None)

Extends Servo (page 135) and represents a rotational PWM-controlled servo motor which can
be set to particular angles (assuming valid minimum and maximum angles are provided to the
constructor).

Connect a power source (e.g. a battery pack or the 5V pin) to the power cable of the servo (this is
typically colored red); connect the ground cable of the servo (typically colored black or brown) to
the negative of your battery pack, or a GND pin; connect the final cable (typically colored white
or orange) to the GPIO pin you wish to use for controlling the servo.

Next, calibrate the angles that the servo can rotate to. In an interactive Python session, construct
a Servo (page 135) instance. The servo should move to its mid-point by default. Set the servo
to its minimum value, and measure the angle from the mid-point. Set the servo to its maximum
value, and again measure the angle:

>>> from gpiozero import Servo
>>> s = Servo(17)
>>> s.min() # measure the angle
>>> s.max() # measure the angle

You should now be able to construct an AngularServo (page 137) instance with the correct bounds:

>>> from gpiozero import AngularServo
>>> s = AngularServo(17, min_angle=-42, max_angle=44)
>>> s.angle = 0.0
>>> s.angle
0.0
>>> s.angle = 15
>>> s.angle
15.0

Note: You can set min_angle greater than max_angle if you wish to reverse the sense of the
angles (e.g. min_angle=45, max_angle=-45). This can be useful with servos that rotate in the
opposite direction to your expectations of minimum and maximum.

Parameters

• pin (int502 or str503) – The GPIO pin that the servo is connected to. See Pin
Numbering (page 3) for valid pin numbers. If this is None504 a GPIODeviceError
(page 247) will be raised.

• initial_angle (float505) – Sets the servo’s initial angle to the specified value.
The default is 0. The value specified must be between min_angle and max_angle

501 https://docs.python.org/3.7/library/constants.html#None
502 https://docs.python.org/3.7/library/functions.html#int
503 https://docs.python.org/3.7/library/stdtypes.html#str
504 https://docs.python.org/3.7/library/constants.html#None
505 https://docs.python.org/3.7/library/functions.html#float

14.1. Regular Classes 137

https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#float


GPIO Zero Documentation, Release 1.6.1

inclusive. None506 means to start the servo un-controlled (see value (page 138)).

• min_angle (float507) – Sets the minimum angle that the servo can rotate to.
This defaults to -90, but should be set to whatever you measure from your servo
during calibration.

• max_angle (float508) – Sets the maximum angle that the servo can rotate to.
This defaults to 90, but should be set to whatever you measure from your servo
during calibration.

• min_pulse_width (float509) – The pulse width corresponding to the servo’s
minimum position. This defaults to 1ms.

• max_pulse_width (float510) – The pulse width corresponding to the servo’s
maximum position. This defaults to 2ms.

• frame_width (float511) – The length of time between servo control pulses mea-
sured in seconds. This defaults to 20ms which is a common value for servos.

• pin_factory (Factory (page 230) or None512) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

max()
Set the servo to its maximum position.

mid()
Set the servo to its mid-point position.

min()
Set the servo to its minimum position.

angle
The position of the servo as an angle measured in degrees. This will only be accurate if
min_angle (page 138) and max_angle (page 138) have been set appropriately in the construc-
tor.

This can also be the special value None513 indicating that the servo is currently “uncontrolled”,
i.e. that no control signal is being sent. Typically this means the servo’s position remains
unchanged, but that it can be moved by hand.

is_active
Composite devices are considered “active” if any of their constituent devices have a “truthy”
value.

max_angle
The maximum angle that the servo will rotate to when max() (page 138) is called.

min_angle
The minimum angle that the servo will rotate to when min() (page 138) is called.

value
Represents the position of the servo as a value between -1 (the minimum position) and +1
(the maximum position). This can also be the special value None514 indicating that the servo
is currently “uncontrolled”, i.e. that no control signal is being sent. Typically this means the
servo’s position remains unchanged, but that it can be moved by hand.

506 https://docs.python.org/3.7/library/constants.html#None
507 https://docs.python.org/3.7/library/functions.html#float
508 https://docs.python.org/3.7/library/functions.html#float
509 https://docs.python.org/3.7/library/functions.html#float
510 https://docs.python.org/3.7/library/functions.html#float
511 https://docs.python.org/3.7/library/functions.html#float
512 https://docs.python.org/3.7/library/constants.html#None
513 https://docs.python.org/3.7/library/constants.html#None
514 https://docs.python.org/3.7/library/constants.html#None

138 Chapter 14. API - Output Devices

https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None


GPIO Zero Documentation, Release 1.6.1

14.2 Base Classes

The classes in the sections above are derived from a series of base classes, some of which are effectively
abstract. The classes form the (partial) hierarchy displayed in the graph below (abstract classes are
shaded lighter than concrete classes):

CompositeDevice

Device

GPIODevice

AngularServoServo

Buzzer

DigitalOutputDevice

OutputDevice

LED

Motor

PWMLEDPWMOutputDevice

PhaseEnableMotor

RGBLED

TonalBuzzer

The following sections document these base classes for advanced users that wish to construct classes for
their own devices.

14.2.1 DigitalOutputDevice

class gpiozero.DigitalOutputDevice(pin, *, active_high=True, initial_value=False,
pin_factory=None)

Represents a generic output device with typical on/off behaviour.

This class extends OutputDevice (page 142) with a blink() (page 140) method which uses an
optional background thread to handle toggling the device state without further interaction.

Parameters

• pin (int515 or str516) – The GPIO pin that the device is connected to. See Pin
Numbering (page 3) for valid pin numbers. If this is None517 a GPIODeviceError
(page 247) will be raised.

• active_high (bool518) – If True519 (the default), the on() (page 140) method
will set the GPIO to HIGH. If False520, the on() (page 140) method will set
the GPIO to LOW (the off() (page 140) method always does the opposite).

515 https://docs.python.org/3.7/library/functions.html#int
516 https://docs.python.org/3.7/library/stdtypes.html#str
517 https://docs.python.org/3.7/library/constants.html#None
518 https://docs.python.org/3.7/library/functions.html#bool
519 https://docs.python.org/3.7/library/constants.html#True
520 https://docs.python.org/3.7/library/constants.html#False

14.2. Base Classes 139

https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False


GPIO Zero Documentation, Release 1.6.1

• initial_value (bool521 or None522) – If False523 (the default), the device will
be off initially. If None524, the device will be left in whatever state the pin is
found in when configured for output (warning: this can be on). If True525, the
device will be switched on initially.

• pin_factory (Factory (page 230) or None526) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

blink(on_time=1, off_time=1, n=None, background=True)
Make the device turn on and off repeatedly.

Parameters

• on_time (float527) – Number of seconds on. Defaults to 1 second.

• off_time (float528) – Number of seconds off. Defaults to 1 second.

• n (int529 or None530) – Number of times to blink; None531 (the default) means
forever.

• background (bool532) – If True533 (the default), start a background thread
to continue blinking and return immediately. If False534, only return when
the blink is finished (warning: the default value of n will result in this method
never returning).

off()
Turns the device off.

on()
Turns the device on.

value
Returns 1 if the device is currently active and 0 otherwise. Setting this property changes the
state of the device.

14.2.2 PWMOutputDevice

class gpiozero.PWMOutputDevice(pin, *, active_high=True, initial_value=0, frequency=100,
pin_factory=None)

Generic output device configured for pulse-width modulation (PWM).

Parameters

• pin (int535 or str536) – The GPIO pin that the device is connected to. See Pin
Numbering (page 3) for valid pin numbers. If this is None537 a GPIODeviceError
(page 247) will be raised.

521 https://docs.python.org/3.7/library/functions.html#bool
522 https://docs.python.org/3.7/library/constants.html#None
523 https://docs.python.org/3.7/library/constants.html#False
524 https://docs.python.org/3.7/library/constants.html#None
525 https://docs.python.org/3.7/library/constants.html#True
526 https://docs.python.org/3.7/library/constants.html#None
527 https://docs.python.org/3.7/library/functions.html#float
528 https://docs.python.org/3.7/library/functions.html#float
529 https://docs.python.org/3.7/library/functions.html#int
530 https://docs.python.org/3.7/library/constants.html#None
531 https://docs.python.org/3.7/library/constants.html#None
532 https://docs.python.org/3.7/library/functions.html#bool
533 https://docs.python.org/3.7/library/constants.html#True
534 https://docs.python.org/3.7/library/constants.html#False
535 https://docs.python.org/3.7/library/functions.html#int
536 https://docs.python.org/3.7/library/stdtypes.html#str
537 https://docs.python.org/3.7/library/constants.html#None

140 Chapter 14. API - Output Devices

https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None


GPIO Zero Documentation, Release 1.6.1

• active_high (bool538) – If True539 (the default), the on() (page 141) method
will set the GPIO to HIGH. If False540, the on() (page 141) method will set
the GPIO to LOW (the off() (page 141) method always does the opposite).

• initial_value (float541) – If 0 (the default), the device’s duty cycle will be 0
initially. Other values between 0 and 1 can be specified as an initial duty cycle.
Note that None542 cannot be specified (unlike the parent class) as there is no
way to tell PWM not to alter the state of the pin.

• frequency (int543) – The frequency (in Hz) of pulses emitted to drive the device.
Defaults to 100Hz.

• pin_factory (Factory (page 230) or None544) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, n=None, back-
ground=True)

Make the device turn on and off repeatedly.

Parameters

• on_time (float545) – Number of seconds on. Defaults to 1 second.

• off_time (float546) – Number of seconds off. Defaults to 1 second.

• fade_in_time (float547) – Number of seconds to spend fading in. Defaults to
0.

• fade_out_time (float548) – Number of seconds to spend fading out. Defaults
to 0.

• n (int549 or None550) – Number of times to blink; None551 (the default) means
forever.

• background (bool552) – If True553 (the default), start a background thread
to continue blinking and return immediately. If False554, only return when
the blink is finished (warning: the default value of n will result in this method
never returning).

off()
Turns the device off.

on()
Turns the device on.

pulse(fade_in_time=1, fade_out_time=1, n=None, background=True)
Make the device fade in and out repeatedly.

Parameters
538 https://docs.python.org/3.7/library/functions.html#bool
539 https://docs.python.org/3.7/library/constants.html#True
540 https://docs.python.org/3.7/library/constants.html#False
541 https://docs.python.org/3.7/library/functions.html#float
542 https://docs.python.org/3.7/library/constants.html#None
543 https://docs.python.org/3.7/library/functions.html#int
544 https://docs.python.org/3.7/library/constants.html#None
545 https://docs.python.org/3.7/library/functions.html#float
546 https://docs.python.org/3.7/library/functions.html#float
547 https://docs.python.org/3.7/library/functions.html#float
548 https://docs.python.org/3.7/library/functions.html#float
549 https://docs.python.org/3.7/library/functions.html#int
550 https://docs.python.org/3.7/library/constants.html#None
551 https://docs.python.org/3.7/library/constants.html#None
552 https://docs.python.org/3.7/library/functions.html#bool
553 https://docs.python.org/3.7/library/constants.html#True
554 https://docs.python.org/3.7/library/constants.html#False

14.2. Base Classes 141

https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False


GPIO Zero Documentation, Release 1.6.1

• fade_in_time (float555) – Number of seconds to spend fading in. Defaults to
1.

• fade_out_time (float556) – Number of seconds to spend fading out. Defaults
to 1.

• n (int557 or None558) – Number of times to pulse; None559 (the default) means
forever.

• background (bool560) – If True561 (the default), start a background thread to
continue pulsing and return immediately. If False562, only return when the
pulse is finished (warning: the default value of n will result in this method
never returning).

toggle()
Toggle the state of the device. If the device is currently off (value (page 142) is 0.0), this
changes it to “fully” on (value (page 142) is 1.0). If the device has a duty cycle (value
(page 142)) of 0.1, this will toggle it to 0.9, and so on.

frequency
The frequency of the pulses used with the PWM device, in Hz. The default is 100Hz.

is_active
Returns True563 if the device is currently active (value (page 142) is non-zero) and False564

otherwise.

value
The duty cycle of the PWM device. 0.0 is off, 1.0 is fully on. Values in between may be
specified for varying levels of power in the device.

14.2.3 OutputDevice

class gpiozero.OutputDevice(pin, *, active_high=True, initial_value=False,
pin_factory=None)

Represents a generic GPIO output device.

This class extends GPIODevice (page 121) to add facilities common to GPIO output devices: an
on() (page 143) method to switch the device on, a corresponding off() (page 143) method, and
a toggle() (page 143) method.

Parameters

• pin (int565 or str566) – The GPIO pin that the device is connected to. See Pin
Numbering (page 3) for valid pin numbers. If this is None567 a GPIODeviceError
(page 247) will be raised.

• active_high (bool568) – If True569 (the default), the on() (page 143) method
will set the GPIO to HIGH. If False570, the on() (page 143) method will set
the GPIO to LOW (the off() (page 143) method always does the opposite).

555 https://docs.python.org/3.7/library/functions.html#float
556 https://docs.python.org/3.7/library/functions.html#float
557 https://docs.python.org/3.7/library/functions.html#int
558 https://docs.python.org/3.7/library/constants.html#None
559 https://docs.python.org/3.7/library/constants.html#None
560 https://docs.python.org/3.7/library/functions.html#bool
561 https://docs.python.org/3.7/library/constants.html#True
562 https://docs.python.org/3.7/library/constants.html#False
563 https://docs.python.org/3.7/library/constants.html#True
564 https://docs.python.org/3.7/library/constants.html#False
565 https://docs.python.org/3.7/library/functions.html#int
566 https://docs.python.org/3.7/library/stdtypes.html#str
567 https://docs.python.org/3.7/library/constants.html#None
568 https://docs.python.org/3.7/library/functions.html#bool
569 https://docs.python.org/3.7/library/constants.html#True
570 https://docs.python.org/3.7/library/constants.html#False

142 Chapter 14. API - Output Devices

https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False


GPIO Zero Documentation, Release 1.6.1

• initial_value (bool571 or None572) – If False573 (the default), the device will
be off initially. If None574, the device will be left in whatever state the pin is
found in when configured for output (warning: this can be on). If True575, the
device will be switched on initially.

• pin_factory (Factory (page 230) or None576) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

off()
Turns the device off.

on()
Turns the device on.

toggle()
Reverse the state of the device. If it’s on, turn it off; if it’s off, turn it on.

active_high
When True577, the value (page 143) property is True578 when the device’s pin (page 122) is
high. When False579 the value (page 143) property is True580 when the device’s pin is low
(i.e. the value is inverted).

This property can be set after construction; be warned that changing it will invert value
(page 143) (i.e. changing this property doesn’t change the device’s pin state - it just changes
how that state is interpreted).

value
Returns 1 if the device is currently active and 0 otherwise. Setting this property changes the
state of the device.

14.2.4 GPIODevice

class gpiozero.GPIODevice(pin, *, pin_factory=None)
Extends Device (page 201). Represents a generic GPIO device and provides the services common
to all single-pin GPIO devices (like ensuring two GPIO devices do no share a pin (page 122)).

Parameters pin (int581 or str582) – The GPIO pin that the device is connected
to. See Pin Numbering (page 3) for valid pin numbers. If this is None583 a
GPIODeviceError (page 247) will be raised. If the pin is already in use by another
device, GPIOPinInUse (page 247) will be raised.

close()
Shut down the device and release all associated resources (such as GPIO pins).

This method is idempotent (can be called on an already closed device without any side-effects).
It is primarily intended for interactive use at the command line. It disables the device and
releases its pin(s) for use by another device.

You can attempt to do this simply by deleting an object, but unless you’ve cleaned up all
references to the object this may not work (even if you’ve cleaned up all references, there’s still
no guarantee the garbage collector will actually delete the object at that point). By contrast,
the close method provides a means of ensuring that the object is shut down.

571 https://docs.python.org/3.7/library/functions.html#bool
572 https://docs.python.org/3.7/library/constants.html#None
573 https://docs.python.org/3.7/library/constants.html#False
574 https://docs.python.org/3.7/library/constants.html#None
575 https://docs.python.org/3.7/library/constants.html#True
576 https://docs.python.org/3.7/library/constants.html#None
577 https://docs.python.org/3.7/library/constants.html#True
578 https://docs.python.org/3.7/library/constants.html#True
579 https://docs.python.org/3.7/library/constants.html#False
580 https://docs.python.org/3.7/library/constants.html#True
581 https://docs.python.org/3.7/library/functions.html#int
582 https://docs.python.org/3.7/library/stdtypes.html#str
583 https://docs.python.org/3.7/library/constants.html#None

14.2. Base Classes 143

https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None


GPIO Zero Documentation, Release 1.6.1

For example, if you have a breadboard with a buzzer connected to pin 16, but then wish to
attach an LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device (page 201) descendents can also be used as context managers using the with584 state-
ment. For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

closed
Returns True585 if the device is closed (see the close() (page 121) method). Once a device is
closed you can no longer use any other methods or properties to control or query the device.

pin
The Pin (page 231) that the device is connected to. This will be None586 if the device has
been closed (see the close() (page 201) method). When dealing with GPIO pins, query
pin.number to discover the GPIO pin (in BCM numbering) that the device is connected to.

value
Returns a value representing the device’s state. Frequently, this is a boolean value, or a
number between 0 and 1 but some devices use larger ranges (e.g. -1 to +1) and composite
devices usually use tuples to return the states of all their subordinate components.

584 https://docs.python.org/3.7/reference/compound_stmts.html#with
585 https://docs.python.org/3.7/library/constants.html#True
586 https://docs.python.org/3.7/library/constants.html#None

144 Chapter 14. API - Output Devices

https://docs.python.org/3.7/reference/compound_stmts.html#with
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#None


CHAPTER 15

API - SPI Devices

SPI stands for Serial Peripheral Interface587 and is a mechanism allowing compatible devices to commu-
nicate with the Pi. SPI is a four-wire protocol meaning it usually requires four pins to operate:

• A “clock” pin which provides timing information.

• A “MOSI” pin (Master Out, Slave In) which the Pi uses to send information to the device.

• A “MISO” pin (Master In, Slave Out) which the Pi uses to receive information from the device.

• A “select” pin which the Pi uses to indicate which device it’s talking to. This last pin is necessary
because multiple devices can share the clock, MOSI, and MISO pins, but only one device can be
connected to each select pin.

The gpiozero library provides two SPI implementations:

• A software based implementation. This is always available, can use any four GPIO pins for SPI
communication, but is rather slow and won’t work with all devices.

• A hardware based implementation. This is only available when the SPI kernel module is loaded,
and the Python spidev library is available. It can only use specific pins for SPI communication
(GPIO11=clock, GPIO10=MOSI, GPIO9=MISO, while GPIO8 is select for device 0 and GPIO7
is select for device 1). However, it is extremely fast and works with all devices.

15.1 SPI keyword args

When constructing an SPI device there are two schemes for specifying which pins it is connected to:

• You can specify port and device keyword arguments. The port parameter must be 0 (there is only
one user-accessible hardware SPI interface on the Pi using GPIO11 as the clock pin, GPIO10 as
the MOSI pin, and GPIO9 as the MISO pin), while the device parameter must be 0 or 1. If device
is 0, the select pin will be GPIO8. If device is 1, the select pin will be GPIO7.

• Alternatively you can specify clock_pin, mosi_pin, miso_pin, and select_pin keyword arguments.
In this case the pins can be any 4 GPIO pins (remember that SPI devices can share clock, MOSI,
and MISO pins, but not select pins - the gpiozero library will enforce this restriction).

587 https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

145

https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus


GPIO Zero Documentation, Release 1.6.1

You cannot mix these two schemes, i.e. attempting to specify port and clock_pin will result in
SPIBadArgs (page 247) being raised. However, you can omit any arguments from either scheme. The
defaults are:

• port and device both default to 0.

• clock_pin defaults to 11, mosi_pin defaults to 10, miso_pin defaults to 9, and select_pin defaults
to 8.

• As with other GPIO based devices you can optionally specify a pin_factory argument overriding
the default pin factory (see API - Pins (page 225) for more information).

Hence the following constructors are all equivalent:

from gpiozero import MCP3008

MCP3008(channel=0)
MCP3008(channel=0, device=0)
MCP3008(channel=0, port=0, device=0)
MCP3008(channel=0, select_pin=8)
MCP3008(channel=0, clock_pin=11, mosi_pin=10, miso_pin=9, select_pin=8)

Note that the defaults describe equivalent sets of pins and that these pins are compatible with the
hardware implementation. Regardless of which scheme you use, gpiozero will attempt to use the hardware
implementation if it is available and if the selected pins are compatible, falling back to the software
implementation if not.

15.2 Analog to Digital Converters (ADC)

The following classes are intended for general use with the integrated circuits they are named after. All
classes in this section are concrete (not abstract).

15.2.1 MCP3001

class gpiozero.MCP3001(max_voltage=3.3, **spi_args)
The MCP3001588 is a 10-bit analog to digital converter with 1 channel. Please note that the
MCP3001 always operates in differential mode, measuring the value of IN+ relative to IN-.

value
The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for
certain devices operating in differential mode).

15.2.2 MCP3002

class gpiozero.MCP3002(channel=0, differential=False, max_voltage=3.3, **spi_args)
The MCP3002589 is a 10-bit analog to digital converter with 2 channels (0-1).

channel
The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the
MCP3004/3204/3302 have 4 channels (0-3), the MCP3002/3202 have 2 channels (0-1), and
the MCP3001/3201/3301 only have 1 channel.

differential
If True, the device is operated in differential mode. In this mode one channel (specified by
the channel attribute) is read relative to the value of a second channel (implied by the chip’s
design).

588 http://www.farnell.com/datasheets/630400.pdf
589 http://www.farnell.com/datasheets/1599363.pdf

146 Chapter 15. API - SPI Devices

http://www.farnell.com/datasheets/630400.pdf
http://www.farnell.com/datasheets/1599363.pdf


GPIO Zero Documentation, Release 1.6.1

Please refer to the device data-sheet to determine which channel is used as the relative base
value (for example, when using an MCP3008 (page 147) in differential mode, channel 0 is read
relative to channel 1).

value
The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for
certain devices operating in differential mode).

15.2.3 MCP3004

class gpiozero.MCP3004(channel=0, differential=False, max_voltage=3.3, **spi_args)
The MCP3004590 is a 10-bit analog to digital converter with 4 channels (0-3).

channel
The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the
MCP3004/3204/3302 have 4 channels (0-3), the MCP3002/3202 have 2 channels (0-1), and
the MCP3001/3201/3301 only have 1 channel.

differential
If True, the device is operated in differential mode. In this mode one channel (specified by
the channel attribute) is read relative to the value of a second channel (implied by the chip’s
design).

Please refer to the device data-sheet to determine which channel is used as the relative base
value (for example, when using an MCP3008 (page 147) in differential mode, channel 0 is read
relative to channel 1).

value
The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for
certain devices operating in differential mode).

15.2.4 MCP3008

class gpiozero.MCP3008(channel=0, differential=False, max_voltage=3.3, **spi_args)
The MCP3008591 is a 10-bit analog to digital converter with 8 channels (0-7).

channel
The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the
MCP3004/3204/3302 have 4 channels (0-3), the MCP3002/3202 have 2 channels (0-1), and
the MCP3001/3201/3301 only have 1 channel.

differential
If True, the device is operated in differential mode. In this mode one channel (specified by
the channel attribute) is read relative to the value of a second channel (implied by the chip’s
design).

Please refer to the device data-sheet to determine which channel is used as the relative base
value (for example, when using an MCP3008 (page 147) in differential mode, channel 0 is read
relative to channel 1).

value
The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for
certain devices operating in differential mode).

590 http://www.farnell.com/datasheets/808965.pdf
591 http://www.farnell.com/datasheets/808965.pdf

15.2. Analog to Digital Converters (ADC) 147

http://www.farnell.com/datasheets/808965.pdf
http://www.farnell.com/datasheets/808965.pdf


GPIO Zero Documentation, Release 1.6.1

15.2.5 MCP3201

class gpiozero.MCP3201(max_voltage=3.3, **spi_args)
The MCP3201592 is a 12-bit analog to digital converter with 1 channel. Please note that the
MCP3201 always operates in differential mode, measuring the value of IN+ relative to IN-.

value
The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for
certain devices operating in differential mode).

15.2.6 MCP3202

class gpiozero.MCP3202(channel=0, differential=False, max_voltage=3.3, **spi_args)
The MCP3202593 is a 12-bit analog to digital converter with 2 channels (0-1).

channel
The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the
MCP3004/3204/3302 have 4 channels (0-3), the MCP3002/3202 have 2 channels (0-1), and
the MCP3001/3201/3301 only have 1 channel.

differential
If True, the device is operated in differential mode. In this mode one channel (specified by
the channel attribute) is read relative to the value of a second channel (implied by the chip’s
design).

Please refer to the device data-sheet to determine which channel is used as the relative base
value (for example, when using an MCP3008 (page 147) in differential mode, channel 0 is read
relative to channel 1).

value
The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for
certain devices operating in differential mode).

15.2.7 MCP3204

class gpiozero.MCP3204(channel=0, differential=False, max_voltage=3.3, **spi_args)
The MCP3204594 is a 12-bit analog to digital converter with 4 channels (0-3).

channel
The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the
MCP3004/3204/3302 have 4 channels (0-3), the MCP3002/3202 have 2 channels (0-1), and
the MCP3001/3201/3301 only have 1 channel.

differential
If True, the device is operated in differential mode. In this mode one channel (specified by
the channel attribute) is read relative to the value of a second channel (implied by the chip’s
design).

Please refer to the device data-sheet to determine which channel is used as the relative base
value (for example, when using an MCP3008 (page 147) in differential mode, channel 0 is read
relative to channel 1).

value
The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for
certain devices operating in differential mode).

592 http://www.farnell.com/datasheets/1669366.pdf
593 http://www.farnell.com/datasheets/1669376.pdf
594 http://www.farnell.com/datasheets/808967.pdf

148 Chapter 15. API - SPI Devices

http://www.farnell.com/datasheets/1669366.pdf
http://www.farnell.com/datasheets/1669376.pdf
http://www.farnell.com/datasheets/808967.pdf


GPIO Zero Documentation, Release 1.6.1

15.2.8 MCP3208

class gpiozero.MCP3208(channel=0, differential=False, max_voltage=3.3, **spi_args)
The MCP3208595 is a 12-bit analog to digital converter with 8 channels (0-7).

channel
The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the
MCP3004/3204/3302 have 4 channels (0-3), the MCP3002/3202 have 2 channels (0-1), and
the MCP3001/3201/3301 only have 1 channel.

differential
If True, the device is operated in differential mode. In this mode one channel (specified by
the channel attribute) is read relative to the value of a second channel (implied by the chip’s
design).

Please refer to the device data-sheet to determine which channel is used as the relative base
value (for example, when using an MCP3008 (page 147) in differential mode, channel 0 is read
relative to channel 1).

value
The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for
certain devices operating in differential mode).

15.2.9 MCP3301

class gpiozero.MCP3301(max_voltage=3.3, **spi_args)
The MCP3301596 is a signed 13-bit analog to digital converter. Please note that the MCP3301
always operates in differential mode measuring the difference between IN+ and IN-. Its output
value is scaled from -1 to +1.

value
The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for
devices operating in differential mode).

15.2.10 MCP3302

class gpiozero.MCP3302(channel=0, differential=False, max_voltage=3.3, **spi_args)
The MCP3302597 is a 12/13-bit analog to digital converter with 4 channels (0-3). When operated
in differential mode, the device outputs a signed 13-bit value which is scaled from -1 to +1. When
operated in single-ended mode (the default), the device outputs an unsigned 12-bit value scaled
from 0 to 1.

channel
The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the
MCP3004/3204/3302 have 4 channels (0-3), the MCP3002/3202 have 2 channels (0-1), and
the MCP3001/3201/3301 only have 1 channel.

differential
If True, the device is operated in differential mode. In this mode one channel (specified by
the channel attribute) is read relative to the value of a second channel (implied by the chip’s
design).

Please refer to the device data-sheet to determine which channel is used as the relative base
value (for example, when using an MCP3304 (page 150) in differential mode, channel 0 is read
relative to channel 1).

595 http://www.farnell.com/datasheets/808967.pdf
596 http://www.farnell.com/datasheets/1669397.pdf
597 http://www.farnell.com/datasheets/1486116.pdf

15.2. Analog to Digital Converters (ADC) 149

http://www.farnell.com/datasheets/808967.pdf
http://www.farnell.com/datasheets/1669397.pdf
http://www.farnell.com/datasheets/1486116.pdf


GPIO Zero Documentation, Release 1.6.1

value
The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for
devices operating in differential mode).

15.2.11 MCP3304

class gpiozero.MCP3304(channel=0, differential=False, max_voltage=3.3, **spi_args)
The MCP3304598 is a 12/13-bit analog to digital converter with 8 channels (0-7). When operated
in differential mode, the device outputs a signed 13-bit value which is scaled from -1 to +1. When
operated in single-ended mode (the default), the device outputs an unsigned 12-bit value scaled
from 0 to 1.

channel
The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the
MCP3004/3204/3302 have 4 channels (0-3), the MCP3002/3202 have 2 channels (0-1), and
the MCP3001/3201/3301 only have 1 channel.

differential
If True, the device is operated in differential mode. In this mode one channel (specified by
the channel attribute) is read relative to the value of a second channel (implied by the chip’s
design).

Please refer to the device data-sheet to determine which channel is used as the relative base
value (for example, when using an MCP3304 (page 150) in differential mode, channel 0 is read
relative to channel 1).

value
The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for
devices operating in differential mode).

15.3 Base Classes

The classes in the sections above are derived from a series of base classes, some of which are effectively
abstract. The classes form the (partial) hierarchy displayed in the graph below (abstract classes are
shaded lighter than concrete classes):
598 http://www.farnell.com/datasheets/1486116.pdf

150 Chapter 15. API - SPI Devices

http://www.farnell.com/datasheets/1486116.pdf


GPIO Zero Documentation, Release 1.6.1

AnalogInputDeviceSPIDeviceDevice

MCP30xx

MCP3xxx

MCP32xx

MCP33xx

MCP3xx2

MCP3001

MCP3002

MCP3004

MCP3008

MCP3201

MCP3202

MCP3204

MCP3208

MCP3301

MCP3302

MCP3304

The following sections document these base classes for advanced users that wish to construct classes for
their own devices.

15.3.1 AnalogInputDevice

class gpiozero.AnalogInputDevice(bits, max_voltage=3.3, **spi_args)
Represents an analog input device connected to SPI (serial interface).

Typical analog input devices are analog to digital converters599 (ADCs). Several classes are
provided for specific ADC chips, including MCP3004 (page 147), MCP3008 (page 147), MCP3204
(page 148), and MCP3208 (page 149).

The following code demonstrates reading the first channel of an MCP3008 chip attached to the
Pi’s SPI pins:

from gpiozero import MCP3008

pot = MCP3008(0)
print(pot.value)

599 https://en.wikipedia.org/wiki/Analog-to-digital_converter

15.3. Base Classes 151

https://en.wikipedia.org/wiki/Analog-to-digital_converter


GPIO Zero Documentation, Release 1.6.1

The value (page 152) attribute is normalized such that its value is always between 0.0 and 1.0 (or
in special cases, such as differential sampling, -1 to +1). Hence, you can use an analog input to
control the brightness of a PWMLED (page 125) like so:

from gpiozero import MCP3008, PWMLED

pot = MCP3008(0)
led = PWMLED(17)
led.source = pot

The voltage (page 152) attribute reports values between 0.0 and max_voltage (which defaults to
3.3, the logic level of the GPIO pins).

bits
The bit-resolution of the device/channel.

max_voltage
The voltage required to set the device’s value to 1.

raw_value
The raw value as read from the device.

value
The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for
certain devices operating in differential mode).

voltage
The current voltage read from the device. This will be a value between 0 and the max_voltage
parameter specified in the constructor.

15.3.2 SPIDevice

class gpiozero.SPIDevice(**spi_args)
Extends Device (page 201). Represents a device that communicates via the SPI protocol.

See SPI keyword args (page 145) for information on the keyword arguments that can be specified
with the constructor.

close()
Shut down the device and release all associated resources (such as GPIO pins).

This method is idempotent (can be called on an already closed device without any side-effects).
It is primarily intended for interactive use at the command line. It disables the device and
releases its pin(s) for use by another device.

You can attempt to do this simply by deleting an object, but unless you’ve cleaned up all
references to the object this may not work (even if you’ve cleaned up all references, there’s still
no guarantee the garbage collector will actually delete the object at that point). By contrast,
the close method provides a means of ensuring that the object is shut down.

For example, if you have a breadboard with a buzzer connected to pin 16, but then wish to
attach an LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

152 Chapter 15. API - SPI Devices



GPIO Zero Documentation, Release 1.6.1

Device (page 201) descendents can also be used as context managers using the with600 state-
ment. For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

closed
Returns True601 if the device is closed (see the close() (page 152) method). Once a device is
closed you can no longer use any other methods or properties to control or query the device.

600 https://docs.python.org/3.7/reference/compound_stmts.html#with
601 https://docs.python.org/3.7/library/constants.html#True

15.3. Base Classes 153

https://docs.python.org/3.7/reference/compound_stmts.html#with
https://docs.python.org/3.7/library/constants.html#True


GPIO Zero Documentation, Release 1.6.1

154 Chapter 15. API - SPI Devices



CHAPTER 16

API - Boards and Accessories

These additional interfaces are provided to group collections of components together for ease of use,
and as examples. They are composites made up of components from the various API - Input Devices
(page 103) and API - Output Devices (page 123) provided by GPIO Zero. See those pages for more
information on using components individually.

Note: All GPIO pin numbers use Broadcom (BCM) numbering by default. See the Pin Numbering
(page 3) section for more information.

16.1 Regular Classes

The following classes are intended for general use with the devices they are named after. All classes in
this section are concrete (not abstract).

16.1.1 LEDBoard

class gpiozero.LEDBoard(*pins, pwm=False, active_high=True, initial_value=False,
pin_factory=None, **named_pins)

Extends LEDCollection (page 184) and represents a generic LED board or collection of LEDs.

The following example turns on all the LEDs on a board containing 5 LEDs attached to GPIO
pins 2 through 6:

from gpiozero import LEDBoard

leds = LEDBoard(2, 3, 4, 5, 6)
leds.on()

Parameters

• *pins – Specify the GPIO pins that the LEDs of the board are attached to. See
Pin Numbering (page 3) for valid pin numbers. You can designate as many pins
as necessary. You can also specify LEDBoard (page 155) instances to create trees
of LEDs.

155



GPIO Zero Documentation, Release 1.6.1

• pwm (bool602) – If True603, construct PWMLED (page 125) instances for each pin.
If False604 (the default), construct regular LED (page 123) instances.

• active_high (bool605) – If True606 (the default), the on() (page 157) method
will set all the associated pins to HIGH. If False607, the on() (page 157) method
will set all pins to LOW (the off() (page 157) method always does the opposite).

• initial_value (bool608 or None609) – If False610 (the default), all LEDs will
be off initially. If None611, each device will be left in whatever state the pin is
found in when configured for output (warning: this can be on). If True612, the
device will be switched on initially.

• pin_factory (Factory (page 230) or None613) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

• **named_pins – Specify GPIO pins that LEDs of the board are attached to,
associating each LED with a property name. You can designate as many pins as
necessary and use any names, provided they’re not already in use by something
else. You can also specify LEDBoard (page 155) instances to create trees of LEDs.

blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, n=None, back-
ground=True)

Make all the LEDs turn on and off repeatedly.

Parameters

• on_time (float614) – Number of seconds on. Defaults to 1 second.

• off_time (float615) – Number of seconds off. Defaults to 1 second.

• fade_in_time (float616) – Number of seconds to spend fading in. De-
faults to 0. Must be 0 if pwm was False617 when the class was constructed
(ValueError618 will be raised if not).

• fade_out_time (float619) – Number of seconds to spend fading out. De-
faults to 0. Must be 0 if pwm was False620 when the class was constructed
(ValueError621 will be raised if not).

• n (int622 or None623) – Number of times to blink; None624 (the default) means
forever.

• background (bool625) – If True626, start a background thread to continue
602 https://docs.python.org/3.7/library/functions.html#bool
603 https://docs.python.org/3.7/library/constants.html#True
604 https://docs.python.org/3.7/library/constants.html#False
605 https://docs.python.org/3.7/library/functions.html#bool
606 https://docs.python.org/3.7/library/constants.html#True
607 https://docs.python.org/3.7/library/constants.html#False
608 https://docs.python.org/3.7/library/functions.html#bool
609 https://docs.python.org/3.7/library/constants.html#None
610 https://docs.python.org/3.7/library/constants.html#False
611 https://docs.python.org/3.7/library/constants.html#None
612 https://docs.python.org/3.7/library/constants.html#True
613 https://docs.python.org/3.7/library/constants.html#None
614 https://docs.python.org/3.7/library/functions.html#float
615 https://docs.python.org/3.7/library/functions.html#float
616 https://docs.python.org/3.7/library/functions.html#float
617 https://docs.python.org/3.7/library/constants.html#False
618 https://docs.python.org/3.7/library/exceptions.html#ValueError
619 https://docs.python.org/3.7/library/functions.html#float
620 https://docs.python.org/3.7/library/constants.html#False
621 https://docs.python.org/3.7/library/exceptions.html#ValueError
622 https://docs.python.org/3.7/library/functions.html#int
623 https://docs.python.org/3.7/library/constants.html#None
624 https://docs.python.org/3.7/library/constants.html#None
625 https://docs.python.org/3.7/library/functions.html#bool
626 https://docs.python.org/3.7/library/constants.html#True

156 Chapter 16. API - Boards and Accessories

https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True


GPIO Zero Documentation, Release 1.6.1

blinking and return immediately. If False627, only return when the blink
is finished (warning: the default value of n will result in this method never
returning).

off(*args)
If no arguments are specified, turn all the LEDs off. If arguments are specified, they must be
the indexes of the LEDs you wish to turn off. For example:

from gpiozero import LEDBoard

leds = LEDBoard(2, 3, 4, 5)
leds.on() # turn on all LEDs
leds.off(0) # turn off the first LED (pin 2)
leds.off(-1) # turn off the last LED (pin 5)
leds.off(1, 2) # turn off the middle LEDs (pins 3 and 4)
leds.on() # turn on all LEDs

If blink() (page 156) is currently active, it will be stopped first.

Parameters args (int628) – The index(es) of the LED(s) to turn off. If no indexes
are specified turn off all LEDs.

on(*args)
If no arguments are specified, turn all the LEDs on. If arguments are specified, they must be
the indexes of the LEDs you wish to turn on. For example:

from gpiozero import LEDBoard

leds = LEDBoard(2, 3, 4, 5)
leds.on(0) # turn on the first LED (pin 2)
leds.on(-1) # turn on the last LED (pin 5)
leds.on(1, 2) # turn on the middle LEDs (pins 3 and 4)
leds.off() # turn off all LEDs
leds.on() # turn on all LEDs

If blink() (page 156) is currently active, it will be stopped first.

Parameters args (int629) – The index(es) of the LED(s) to turn on. If no indexes
are specified turn on all LEDs.

pulse(fade_in_time=1, fade_out_time=1, n=None, background=True)
Make all LEDs fade in and out repeatedly. Note that this method will only work if the pwm
parameter was True630 at construction time.

Parameters

• fade_in_time (float631) – Number of seconds to spend fading in. Defaults to
1.

• fade_out_time (float632) – Number of seconds to spend fading out. Defaults
to 1.

• n (int633 or None634) – Number of times to blink; None635 (the default) means
forever.

627 https://docs.python.org/3.7/library/constants.html#False
628 https://docs.python.org/3.7/library/functions.html#int
629 https://docs.python.org/3.7/library/functions.html#int
630 https://docs.python.org/3.7/library/constants.html#True
631 https://docs.python.org/3.7/library/functions.html#float
632 https://docs.python.org/3.7/library/functions.html#float
633 https://docs.python.org/3.7/library/functions.html#int
634 https://docs.python.org/3.7/library/constants.html#None
635 https://docs.python.org/3.7/library/constants.html#None

16.1. Regular Classes 157

https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None


GPIO Zero Documentation, Release 1.6.1

• background (bool636) – If True637 (the default), start a background thread
to continue blinking and return immediately. If False638, only return when
the blink is finished (warning: the default value of n will result in this method
never returning).

toggle(*args)
If no arguments are specified, toggle the state of all LEDs. If arguments are specified, they
must be the indexes of the LEDs you wish to toggle. For example:

from gpiozero import LEDBoard

leds = LEDBoard(2, 3, 4, 5)
leds.toggle(0) # turn on the first LED (pin 2)
leds.toggle(-1) # turn on the last LED (pin 5)
leds.toggle() # turn the first and last LED off, and the

# middle pair on

If blink() (page 156) is currently active, it will be stopped first.

Parameters args (int639) – The index(es) of the LED(s) to toggle. If no indexes
are specified toggle the state of all LEDs.

16.1.2 LEDBarGraph

class gpiozero.LEDBarGraph(*pins, pwm=False, active_high=True, initial_value=0,
pin_factory=None)

Extends LEDCollection (page 184) to control a line of LEDs representing a bar graph. Positive
values (0 to 1) light the LEDs from first to last. Negative values (-1 to 0) light the LEDs from last
to first.

The following example demonstrates turning on the first two and last two LEDs in a board con-
taining five LEDs attached to GPIOs 2 through 6:

from gpiozero import LEDBarGraph
from time import sleep

graph = LEDBarGraph(2, 3, 4, 5, 6)
graph.value = 2/5 # Light the first two LEDs only
sleep(1)
graph.value = -2/5 # Light the last two LEDs only
sleep(1)
graph.off()

As with all other output devices, source (page 159) and values (page 159) are supported:

from gpiozero import LEDBarGraph, MCP3008
from signal import pause

graph = LEDBarGraph(2, 3, 4, 5, 6, pwm=True)
pot = MCP3008(channel=0)

graph.source = pot

pause()

636 https://docs.python.org/3.7/library/functions.html#bool
637 https://docs.python.org/3.7/library/constants.html#True
638 https://docs.python.org/3.7/library/constants.html#False
639 https://docs.python.org/3.7/library/functions.html#int

158 Chapter 16. API - Boards and Accessories

https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/functions.html#int


GPIO Zero Documentation, Release 1.6.1

Parameters

• *pins – Specify the GPIO pins that the LEDs of the bar graph are attached to.
See Pin Numbering (page 3) for valid pin numbers. You can designate as many
pins as necessary.

• pwm (bool640) – If True641, construct PWMLED (page 125) instances for each pin.
If False642 (the default), construct regular LED (page 123) instances. This pa-
rameter can only be specified as a keyword parameter.

• active_high (bool643) – If True644 (the default), the on() method will set all
the associated pins to HIGH. If False645, the on() method will set all pins to
LOW (the off() method always does the opposite). This parameter can only
be specified as a keyword parameter.

• initial_value (float646) – The initial value (page 159) of the graph given as
a float between -1 and +1. Defaults to 0.0. This parameter can only be specified
as a keyword parameter.

• pin_factory (Factory (page 230) or None647) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

lit_count
The number of LEDs on the bar graph actually lit up. Note that just like value (page 159),
this can be negative if the LEDs are lit from last to first.

source
The iterable to use as a source of values for value (page 159).

value
The value of the LED bar graph. When no LEDs are lit, the value is 0. When all LEDs
are lit, the value is 1. Values between 0 and 1 light LEDs linearly from first to last. Values
between 0 and -1 light LEDs linearly from last to first.

To light a particular number of LEDs, simply divide that number by the number of LEDs.
For example, if your graph contains 3 LEDs, the following will light the first:

from gpiozero import LEDBarGraph

graph = LEDBarGraph(12, 16, 19)
graph.value = 1/3

Note: Setting value to -1 will light all LEDs. However, querying it subsequently will return
1 as both representations are the same in hardware. The readable range of value (page 159)
is effectively -1 < value <= 1.

values
An infinite iterator of values read from value (page 159).

640 https://docs.python.org/3.7/library/functions.html#bool
641 https://docs.python.org/3.7/library/constants.html#True
642 https://docs.python.org/3.7/library/constants.html#False
643 https://docs.python.org/3.7/library/functions.html#bool
644 https://docs.python.org/3.7/library/constants.html#True
645 https://docs.python.org/3.7/library/constants.html#False
646 https://docs.python.org/3.7/library/functions.html#float
647 https://docs.python.org/3.7/library/constants.html#None

16.1. Regular Classes 159

https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/constants.html#None


GPIO Zero Documentation, Release 1.6.1

16.1.3 LEDCharDisplay

class gpiozero.LEDCharDisplay(*pins, dp=None, font=None, pwm=False, active_high=True,
initial_value=’ ’, pin_factory=None)

Extends LEDCollection (page 184) for a multi-segment LED display.

Multi-segment LED displays648 typically have 7 pins (labelled “a” through “g”) representing 7
LEDs layed out in a figure-of-8 fashion. Frequently, an eigth pin labelled “dp” is included for a
trailing decimal-point:

a
�����

f � � b
� g �
�����

e � � c
� �
����� • dp
d

Other common layouts are 9, 14, and 16 segment displays which include additional segments
permitting more accurate renditions of alphanumerics. For example:

a
�����

f ��i�j�� b
� ���k�
g�� ��h

e � ���n� c
��l�m��
����� • dp
d

Such displays have either a common anode, or common cathode pin. This class defaults to the
latter; when using a common anode display active_high should be set to False649.

Instances of this class can be used to display characters or control individual LEDs on the display.
For example:

from gpiozero import LEDCharDisplay

char = LEDCharDisplay(4, 5, 6, 7, 8, 9, 10, active_high=False)
char.value = 'C'

If the class is constructed with 7 or 14 segments, a default font (page 161) will be loaded, mapping
some ASCII characters to typical layouts. In other cases, the default mapping will simply assign
” ” (space) to all LEDs off. You can assign your own mapping at construction time or after
instantiation.

While the example above shows the display with a str650 value, theoretically the font can map
any value that can be the key in a dict651, so the value of the display can be likewise be any valid
key value (e.g. you could map integer digits to LED patterns). That said, there is one exception
to this: when dp is specified to enable the decimal-point, the value (page 161) must be a str652

as the presence or absence of a “.” suffix indicates whether the dp LED is lit.

Parameters
648 https://en.wikipedia.org/wiki/Seven-segment_display
649 https://docs.python.org/3.7/library/constants.html#False
650 https://docs.python.org/3.7/library/stdtypes.html#str
651 https://docs.python.org/3.7/library/stdtypes.html#dict
652 https://docs.python.org/3.7/library/stdtypes.html#str

160 Chapter 16. API - Boards and Accessories

https://en.wikipedia.org/wiki/Seven-segment_display
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#str


GPIO Zero Documentation, Release 1.6.1

• *pins – Specify the GPIO pins that the multi-segment display is attached to.
Pins should be in the LED segment order A, B, C, D, E, F, G, and will be named
automatically by the class. If a decimal-point pin is present, specify it separately
as the dp parameter.

• dp (int653 or str654) – If a decimal-point segment is present, specify it as this
named parameter.

• font (dict655 or None656) – A mapping of values (typically characters, but
may also be numbers) to tuples of LED states. A default mapping for ASCII
characters is provided for 7 and 14 segment displays.

• pwm (bool657) – If True658, construct PWMLED (page 125) instances for each pin.
If False659 (the default), construct regular LED (page 123) instances.

• active_high (bool660) – If True661 (the default), the on() method will set all
the associated pins to HIGH. If False662, the on() method will set all pins to
LOW (the off() method always does the opposite).

• initial_value – The initial value to display. Defaults to space (” “) which
typically maps to all LEDs being inactive. If None663, each device will be left
in whatever state the pin is found in when configured for output (warning: this
can be on).

• pin_factory (Factory (page 230) or None664) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

font
An LEDCharFont (page 163) mapping characters to tuples of LED states. The font is mutable
after construction. You can assign a tuple of LED states to a character to modify the font,
delete an existing character in the font, or assign a mapping of characters to tuples to replace
the entire font.

Note that modifying the font (page 161) never alters the underlying LED states. Only
assignment to value (page 161), or calling the inherited LEDCollection (page 184) methods
(on(), off(), etc.) modifies LED states. However, modifying the font may alter the character
returned by querying value (page 161).

value
The character the display should show. This is mapped by the current font (page 161) to a
tuple of LED states which is applied to the underlying LED objects when this attribute is set.

When queried, the current LED states are looked up in the font to determine the character
shown. If the current LED states do not correspond to any character in the font (page 161),
the value is None665.

It is possible for multiple characters in the font to map to the same LED states (e.g. S and 5).
In this case, if the font was constructed from an ordered mapping (which is the default), then
the first matching mapping will always be returned. This also implies that the value queried
need not match the value set.

653 https://docs.python.org/3.7/library/functions.html#int
654 https://docs.python.org/3.7/library/stdtypes.html#str
655 https://docs.python.org/3.7/library/stdtypes.html#dict
656 https://docs.python.org/3.7/library/constants.html#None
657 https://docs.python.org/3.7/library/functions.html#bool
658 https://docs.python.org/3.7/library/constants.html#True
659 https://docs.python.org/3.7/library/constants.html#False
660 https://docs.python.org/3.7/library/functions.html#bool
661 https://docs.python.org/3.7/library/constants.html#True
662 https://docs.python.org/3.7/library/constants.html#False
663 https://docs.python.org/3.7/library/constants.html#None
664 https://docs.python.org/3.7/library/constants.html#None
665 https://docs.python.org/3.7/library/constants.html#None

16.1. Regular Classes 161

https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None


GPIO Zero Documentation, Release 1.6.1

16.1.4 LEDMultiCharDisplay

class gpiozero.LEDMultiCharDisplay(char, *pins, active_high=True, initial_value=None,
pin_factory=None)

Wraps LEDCharDisplay (page 160) for multi-character multiplexed666 LED character displays.

The class is constructed with a char which is an instance of the LEDCharDisplay (page 160) class,
capable of controlling the LEDs in one character of the display, and an additional set of pins that
represent the common cathode (or anode) of each character.

Warning: You should not attempt to connect the common cathode (or anode) off each
character directly to a GPIO. Rather, use a set of transistors (or some other suitable component
capable of handling the current of all the segment LEDs simultaneously) to connect the common
cathode to ground (or the common anode to the supply) and control those transistors from the
GPIOs specified under pins.

The active_high parameter defaults to True667. Note that it only applies to the specified pins,
which are assumed to be controlling a set of transistors (hence the default). The specified char will
use its own active_high parameter. Finally, initial_value defaults to a tuple of value (page 161)
attribute of the specified display multiplied by the number of pins provided.

When the value (page 162) is set such that one or more characters in the display differ in value,
a background thread is implicitly started to rotate the active character, relying on persistence of
vision668 to display the complete value.

plex_delay
The delay (measured in seconds) in the loop used to switch each character in the multiplexed
display on. Defaults to 0.005 seconds which is generally sufficient to provide a “stable” (non-
flickery) display.

value
The sequence of values to display.

This can be any sequence containing keys from the font (page 161) of the associated character
display. For example, if the value consists only of single-character strings, it’s valid to assign
a string to this property (as a string is simply a sequence of individual character keys):

from gpiozero import LEDCharDisplay, LEDMultiCharDisplay

c = LEDCharDisplay(4, 5, 6, 7, 8, 9, 10)
d = LEDMultiCharDisplay(c, 19, 20, 21, 22)
d.value = 'LEDS'

However, things get more complicated if a decimal point is in use as then this class needs to
know explicitly where to break the value for use on each character of the display. This can be
handled by simply assigning a sequence of strings thus:

from gpiozero import LEDCharDisplay, LEDMultiCharDisplay

c = LEDCharDisplay(4, 5, 6, 7, 8, 9, 10)
d = LEDMultiCharDisplay(c, 19, 20, 21, 22)
d.value = ('L.', 'E', 'D', 'S')

This is how the value will always be represented when queried (as a tuple of individual values)
as it neatly handles dealing with heterogeneous types and the aforementioned decimal point
issue.

666 https://en.wikipedia.org/wiki/Multiplexed_display
667 https://docs.python.org/3.7/library/constants.html#True
668 https://en.wikipedia.org/wiki/Persistence_of_vision

162 Chapter 16. API - Boards and Accessories

https://en.wikipedia.org/wiki/Multiplexed_display
https://docs.python.org/3.7/library/constants.html#True
https://en.wikipedia.org/wiki/Persistence_of_vision
https://en.wikipedia.org/wiki/Persistence_of_vision


GPIO Zero Documentation, Release 1.6.1

Note: The value also controls whether a background thread is in use to multiplex the display.
When all positions in the value are equal the background thread is disabled and all characters
are simultaneously enabled.

16.1.5 LEDCharFont

class gpiozero.LEDCharFont(font)
Contains a mapping of values to tuples of LED states.

This effectively acts as a “font” for LEDCharDisplay (page 160), and two default fonts (for 7-
segment and 14-segment displays) are shipped with GPIO Zero by default. You can construct your
own font instance from a dict669 which maps values (usually single-character strings) to a tuple
of LED states:

from gpiozero import LEDCharDisplay, LEDCharFont

my_font = LEDCharFont({
' ': (0, 0, 0, 0, 0, 0, 0),
'D': (1, 1, 1, 1, 1, 1, 0),
'A': (1, 1, 1, 0, 1, 1, 1),
'd': (0, 1, 1, 1, 1, 0, 1),
'a': (1, 1, 1, 1, 1, 0, 1),

})
display = LEDCharDisplay(26, 13, 12, 22, 17, 19, 6, dp=5, font=my_font)
display.value = 'D'

Font instances are mutable and can be changed while actively in use by an instance of
LEDCharDisplay (page 160). However, changing the font will not change the state of the LEDs in
the display (though it may change the value (page 161) of the display when next queried).

Note: Your custom mapping should always include a value (typically space) which represents all
the LEDs off. This will usually be the default value for an instance of LEDCharDisplay (page 160).

You may also wish to load fonts from a friendly text-based format. A simple parser for
such formats (supporting an arbitrary number of segments) is provided by gpiozero.fonts.
load_segment_font() (page 214).

16.1.6 ButtonBoard

class gpiozero.ButtonBoard(*pins, pull_up=True, active_state=None, bounce_time=None,
hold_time=1, hold_repeat=False, pin_factory=None,
**named_pins)

Extends CompositeDevice (page 185) and represents a generic button board or collection of but-
tons. The value (page 165) of the button board is a tuple of all the buttons states. This can be
used to control all the LEDs in a LEDBoard (page 155) with a ButtonBoard (page 163):

from gpiozero import LEDBoard, ButtonBoard
from signal import pause

leds = LEDBoard(2, 3, 4, 5)
btns = ButtonBoard(6, 7, 8, 9)
leds.source = btns

(continues on next page)

669 https://docs.python.org/3.7/library/stdtypes.html#dict

16.1. Regular Classes 163

https://docs.python.org/3.7/library/stdtypes.html#dict


GPIO Zero Documentation, Release 1.6.1

(continued from previous page)

pause()

Alternatively you could represent the number of pressed buttons with an LEDBarGraph (page 158):

from gpiozero import LEDBarGraph, ButtonBoard
from statistics import mean
from signal import pause

graph = LEDBarGraph(2, 3, 4, 5)
bb = ButtonBoard(6, 7, 8, 9)
graph.source = (mean(values) for values in bb.values)

pause()

Parameters

• *pins – Specify the GPIO pins that the buttons of the board are attached to.
See Pin Numbering (page 3) for valid pin numbers. You can designate as many
pins as necessary.

• pull_up (bool670 or None671) – If True672 (the default), the GPIO pins will
be pulled high by default. In this case, connect the other side of the buttons to
ground. If False673, the GPIO pins will be pulled low by default. In this case,
connect the other side of the buttons to 3V3. If None674, the pin will be floating,
so it must be externally pulled up or down and the active_state parameter
must be set accordingly.

• active_state (bool675 or None676) – See description under InputDevice
(page 120) for more information.

• bounce_time (float677) – If None678 (the default), no software bounce compen-
sation will be performed. Otherwise, this is the length of time (in seconds) that
the buttons will ignore changes in state after an initial change.

• hold_time (float679) – The length of time (in seconds) to wait after any button
is pushed, until executing the when_held handler. Defaults to 1.

• hold_repeat (bool680) – If True681, the when_held handler will be repeat-
edly executed as long as any buttons remain held, every hold_time seconds.
If False682 (the default) the when_held handler will be only be executed once
per hold.

• pin_factory (Factory (page 230) or None683) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

• **named_pins – Specify GPIO pins that buttons of the board are attached to,
associating each button with a property name. You can designate as many pins

670 https://docs.python.org/3.7/library/functions.html#bool
671 https://docs.python.org/3.7/library/constants.html#None
672 https://docs.python.org/3.7/library/constants.html#True
673 https://docs.python.org/3.7/library/constants.html#False
674 https://docs.python.org/3.7/library/constants.html#None
675 https://docs.python.org/3.7/library/functions.html#bool
676 https://docs.python.org/3.7/library/constants.html#None
677 https://docs.python.org/3.7/library/functions.html#float
678 https://docs.python.org/3.7/library/constants.html#None
679 https://docs.python.org/3.7/library/functions.html#float
680 https://docs.python.org/3.7/library/functions.html#bool
681 https://docs.python.org/3.7/library/constants.html#True
682 https://docs.python.org/3.7/library/constants.html#False
683 https://docs.python.org/3.7/library/constants.html#None

164 Chapter 16. API - Boards and Accessories

https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#None


GPIO Zero Documentation, Release 1.6.1

as necessary and use any names, provided they’re not already in use by something
else.

wait_for_press(timeout=None)
Pause the script until the device is activated, or the timeout is reached.

Parameters timeout (float684 or None685) – Number of seconds to wait before
proceeding. If this is None686 (the default), then wait indefinitely until the device
is active.

wait_for_release(timeout=None)
Pause the script until the device is deactivated, or the timeout is reached.

Parameters timeout (float687 or None688) – Number of seconds to wait before
proceeding. If this is None689 (the default), then wait indefinitely until the device
is inactive.

is_pressed
Composite devices are considered “active” if any of their constituent devices have a “truthy”
value.

pressed_time
The length of time (in seconds) that the device has been active for. When the device is
inactive, this is None690.

value
A namedtuple()691 containing a value for each subordinate device. Devices with names will
be represented as named elements. Unnamed devices will have a unique name generated for
them, and they will appear in the position they appeared in the constructor.

when_pressed
The function to run when the device changes state from inactive to active.

This can be set to a function which accepts no (mandatory) parameters, or a Python function
which accepts a single mandatory parameter (with as many optional parameters as you like).
If the function accepts a single mandatory parameter, the device that activated it will be
passed as that parameter.

Set this property to None692 (the default) to disable the event.

when_released
The function to run when the device changes state from active to inactive.

This can be set to a function which accepts no (mandatory) parameters, or a Python function
which accepts a single mandatory parameter (with as many optional parameters as you like).
If the function accepts a single mandatory parameter, the device that deactivated it will be
passed as that parameter.

Set this property to None693 (the default) to disable the event.

16.1.7 TrafficLights

class gpiozero.TrafficLights(red, amber, green, *, yellow=None, pwm=False, ini-
tial_value=False, pin_factory=None)

Extends LEDBoard (page 155) for devices containing red, yellow, and green LEDs.
684 https://docs.python.org/3.7/library/functions.html#float
685 https://docs.python.org/3.7/library/constants.html#None
686 https://docs.python.org/3.7/library/constants.html#None
687 https://docs.python.org/3.7/library/functions.html#float
688 https://docs.python.org/3.7/library/constants.html#None
689 https://docs.python.org/3.7/library/constants.html#None
690 https://docs.python.org/3.7/library/constants.html#None
691 https://docs.python.org/3.7/library/collections.html#collections.namedtuple
692 https://docs.python.org/3.7/library/constants.html#None
693 https://docs.python.org/3.7/library/constants.html#None

16.1. Regular Classes 165

https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/collections.html#collections.namedtuple
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None


GPIO Zero Documentation, Release 1.6.1

The following example initializes a device connected to GPIO pins 2, 3, and 4, then lights the
amber (yellow) LED attached to GPIO 3:

from gpiozero import TrafficLights

traffic = TrafficLights(2, 3, 4)
traffic.amber.on()

Parameters

• red (int694 or str695) – The GPIO pin that the red LED is attached to. See
Pin Numbering (page 3) for valid pin numbers.

• amber (int696 or str697 or None698) – The GPIO pin that the amber LED is
attached to. See Pin Numbering (page 3) for valid pin numbers.

• yellow (int699 or str700 or None701) – The GPIO pin that the yellow LED
is attached to. This is merely an alias for the amber parameter; you can’t specify
both amber and yellow. See Pin Numbering (page 3) for valid pin numbers.

• green (int702 or str703) – The GPIO pin that the green LED is attached to.
See Pin Numbering (page 3) for valid pin numbers.

• pwm (bool704) – If True705, construct PWMLED (page 125) instances to represent
each LED. If False706 (the default), construct regular LED (page 123) instances.

• initial_value (bool707 or None708) – If False709 (the default), all LEDs will
be off initially. If None710, each device will be left in whatever state the pin is
found in when configured for output (warning: this can be on). If True711, the
device will be switched on initially.

• pin_factory (Factory (page 230) or None712) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

red
The red LED (page 123) or PWMLED (page 125).

amber
The amber LED (page 123) or PWMLED (page 125). Note that this attribute will not be present
when the instance is constructed with the yellow keyword parameter.

yellow
The yellow LED (page 123) or PWMLED (page 125). Note that this attribute will only be present
when the instance is constructed with the yellow keyword parameter.

green
The green LED (page 123) or PWMLED (page 125).

694 https://docs.python.org/3.7/library/functions.html#int
695 https://docs.python.org/3.7/library/stdtypes.html#str
696 https://docs.python.org/3.7/library/functions.html#int
697 https://docs.python.org/3.7/library/stdtypes.html#str
698 https://docs.python.org/3.7/library/constants.html#None
699 https://docs.python.org/3.7/library/functions.html#int
700 https://docs.python.org/3.7/library/stdtypes.html#str
701 https://docs.python.org/3.7/library/constants.html#None
702 https://docs.python.org/3.7/library/functions.html#int
703 https://docs.python.org/3.7/library/stdtypes.html#str
704 https://docs.python.org/3.7/library/functions.html#bool
705 https://docs.python.org/3.7/library/constants.html#True
706 https://docs.python.org/3.7/library/constants.html#False
707 https://docs.python.org/3.7/library/functions.html#bool
708 https://docs.python.org/3.7/library/constants.html#None
709 https://docs.python.org/3.7/library/constants.html#False
710 https://docs.python.org/3.7/library/constants.html#None
711 https://docs.python.org/3.7/library/constants.html#True
712 https://docs.python.org/3.7/library/constants.html#None

166 Chapter 16. API - Boards and Accessories

https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#None


GPIO Zero Documentation, Release 1.6.1

16.1.8 TrafficLightsBuzzer

class gpiozero.TrafficLightsBuzzer(lights, buzzer, button, *, pin_factory=None)
Extends CompositeOutputDevice (page 185) and is a generic class for HATs with traffic lights, a
button and a buzzer.

Parameters

• lights (TrafficLights (page 165)) – An instance of TrafficLights (page 165)
representing the traffic lights of the HAT.

• buzzer (Buzzer (page 130)) – An instance of Buzzer (page 130) representing
the buzzer on the HAT.

• button (Button (page 103)) – An instance of Button (page 103) representing
the button on the HAT.

• pin_factory (Factory (page 230) or None713) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

lights
The TrafficLights (page 165) instance passed as the lights parameter.

buzzer
The Buzzer (page 130) instance passed as the buzzer parameter.

button
The Button (page 103) instance passed as the button parameter.

16.1.9 PiHutXmasTree

class gpiozero.PiHutXmasTree(*, pwm=False, initial_value=False, pin_factory=None)
Extends LEDBoard (page 155) for The Pi Hut’s Xmas board714: a 3D Christmas tree board with
24 red LEDs and a white LED as a star on top.

The 24 red LEDs can be accessed through the attributes led0, led1, led2, and so on. The white
star LED is accessed through the star (page 168) attribute. Alternatively, as with all descendents
of LEDBoard (page 155), you can treat the instance as a sequence of LEDs (the first element is the
star (page 168)).

The Xmas Tree board pins are fixed and therefore there’s no need to specify them when constructing
this class. The following example turns all the LEDs on one at a time:

from gpiozero import PiHutXmasTree
from time import sleep

tree = PiHutXmasTree()

for light in tree:
light.on()
sleep(1)

The following example turns the star LED on and sets all the red LEDs to flicker randomly:

from gpiozero import PiHutXmasTree
from gpiozero.tools import random_values
from signal import pause

tree = PiHutXmasTree(pwm=True)
(continues on next page)

713 https://docs.python.org/3.7/library/constants.html#None
714 https://thepihut.com/xmas

16.1. Regular Classes 167

https://docs.python.org/3.7/library/constants.html#None
https://thepihut.com/xmas


GPIO Zero Documentation, Release 1.6.1

(continued from previous page)

tree.star.on()

for led in tree[1:]:
led.source_delay = 0.1
led.source = random_values()

pause()

Parameters

• pwm (bool715) – If True716, construct PWMLED (page 125) instances for each pin.
If False717 (the default), construct regular LED (page 123) instances.

• initial_value (bool718 or None719) – If False720 (the default), all LEDs will
be off initially. If None721, each device will be left in whatever state the pin is
found in when configured for output (warning: this can be on). If True722, the
device will be switched on initially.

• pin_factory (Factory (page 230) or None723) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

star
Returns the LED (page 123) or PWMLED (page 125) representing the white star on top of the
tree.

led0, led1, led2, ...
Returns the LED (page 123) or PWMLED (page 125) representing one of the red LEDs. There
are actually 24 of these properties named led0, led1, and so on but for the sake of brevity we
represent all 24 under this section.

16.1.10 LedBorg

class gpiozero.LedBorg(*, pwm=True, initial_value=(0, 0, 0), pin_factory=None)
Extends RGBLED (page 127) for the PiBorg LedBorg724: an add-on board containing a very bright
RGB LED.

The LedBorg pins are fixed and therefore there’s no need to specify them when constructing this
class. The following example turns the LedBorg purple:

from gpiozero import LedBorg

led = LedBorg()
led.color = (1, 0, 1)

Parameters
715 https://docs.python.org/3.7/library/functions.html#bool
716 https://docs.python.org/3.7/library/constants.html#True
717 https://docs.python.org/3.7/library/constants.html#False
718 https://docs.python.org/3.7/library/functions.html#bool
719 https://docs.python.org/3.7/library/constants.html#None
720 https://docs.python.org/3.7/library/constants.html#False
721 https://docs.python.org/3.7/library/constants.html#None
722 https://docs.python.org/3.7/library/constants.html#True
723 https://docs.python.org/3.7/library/constants.html#None
724 https://www.piborg.org/ledborg

168 Chapter 16. API - Boards and Accessories

https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#None
https://www.piborg.org/ledborg


GPIO Zero Documentation, Release 1.6.1

• initial_value (Color725 or tuple726) – The initial color for the LedBorg.
Defaults to black (0, 0, 0).

• pwm (bool727) – If True728 (the default), construct PWMLED (page 125) instances
for each component of the LedBorg. If False729, construct regular LED (page 123)
instances, which prevents smooth color graduations.

• pin_factory (Factory (page 230) or None730) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

16.1.11 PiLiter

class gpiozero.PiLiter(*, pwm=False, initial_value=False, pin_factory=None)
Extends LEDBoard (page 155) for the Ciseco Pi-LITEr731: a strip of 8 very bright LEDs.

The Pi-LITEr pins are fixed and therefore there’s no need to specify them when constructing this
class. The following example turns on all the LEDs of the Pi-LITEr:

from gpiozero import PiLiter

lite = PiLiter()
lite.on()

Parameters

• pwm (bool732) – If True733, construct PWMLED (page 125) instances for each pin.
If False734 (the default), construct regular LED (page 123) instances.

• initial_value (bool735 or None736) – If False737 (the default), all LEDs will
be off initially. If None738, each LED will be left in whatever state the pin is
found in when configured for output (warning: this can be on). If True739, the
each LED will be switched on initially.

• pin_factory (Factory (page 230) or None740) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

16.1.12 PiLiterBarGraph

class gpiozero.PiLiterBarGraph(*, pwm=False, initial_value=False, pin_factory=None)
Extends LEDBarGraph (page 158) to treat the Ciseco Pi-LITEr741 as an 8-segment bar graph.

The Pi-LITEr pins are fixed and therefore there’s no need to specify them when constructing this
class. The following example sets the graph value to 0.5:

725 https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Color
726 https://docs.python.org/3.7/library/stdtypes.html#tuple
727 https://docs.python.org/3.7/library/functions.html#bool
728 https://docs.python.org/3.7/library/constants.html#True
729 https://docs.python.org/3.7/library/constants.html#False
730 https://docs.python.org/3.7/library/constants.html#None
731 http://shop.ciseco.co.uk/pi-liter-8-led-strip-for-the-raspberry-pi/
732 https://docs.python.org/3.7/library/functions.html#bool
733 https://docs.python.org/3.7/library/constants.html#True
734 https://docs.python.org/3.7/library/constants.html#False
735 https://docs.python.org/3.7/library/functions.html#bool
736 https://docs.python.org/3.7/library/constants.html#None
737 https://docs.python.org/3.7/library/constants.html#False
738 https://docs.python.org/3.7/library/constants.html#None
739 https://docs.python.org/3.7/library/constants.html#True
740 https://docs.python.org/3.7/library/constants.html#None
741 http://shop.ciseco.co.uk/pi-liter-8-led-strip-for-the-raspberry-pi/

16.1. Regular Classes 169

https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Color
https://docs.python.org/3.7/library/stdtypes.html#tuple
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#None
http://shop.ciseco.co.uk/pi-liter-8-led-strip-for-the-raspberry-pi/
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#None
http://shop.ciseco.co.uk/pi-liter-8-led-strip-for-the-raspberry-pi/


GPIO Zero Documentation, Release 1.6.1

from gpiozero import PiLiterBarGraph

graph = PiLiterBarGraph()
graph.value = 0.5

Parameters

• pwm (bool742) – If True743, construct PWMLED (page 125) instances for each pin.
If False744 (the default), construct regular LED (page 123) instances.

• initial_value (float745) – The initial value of the graph given as a float
between -1 and +1. Defaults to 0.0.

• pin_factory (Factory (page 230) or None746) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

16.1.13 PiTraffic

class gpiozero.PiTraffic(*, pwm=False, initial_value=False, pin_factory=None)
Extends TrafficLights (page 165) for the Low Voltage Labs PI-TRAFFIC747 vertical traffic lights
board when attached to GPIO pins 9, 10, and 11.

There’s no need to specify the pins if the PI-TRAFFIC is connected to the default pins (9, 10, 11).
The following example turns on the amber LED on the PI-TRAFFIC:

from gpiozero import PiTraffic

traffic = PiTraffic()
traffic.amber.on()

To use the PI-TRAFFIC board when attached to a non-standard set of pins, simply use the parent
class, TrafficLights (page 165).

Parameters

• pwm (bool748) – If True749, construct PWMLED (page 125) instances to represent
each LED. If False750 (the default), construct regular LED (page 123) instances.

• initial_value (bool751) – If False752 (the default), all LEDs will be off ini-
tially. If None753, each device will be left in whatever state the pin is found in
when configured for output (warning: this can be on). If True754, the device will
be switched on initially.

• pin_factory (Factory (page 230) or None755) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

742 https://docs.python.org/3.7/library/functions.html#bool
743 https://docs.python.org/3.7/library/constants.html#True
744 https://docs.python.org/3.7/library/constants.html#False
745 https://docs.python.org/3.7/library/functions.html#float
746 https://docs.python.org/3.7/library/constants.html#None
747 http://lowvoltagelabs.com/products/pi-traffic/
748 https://docs.python.org/3.7/library/functions.html#bool
749 https://docs.python.org/3.7/library/constants.html#True
750 https://docs.python.org/3.7/library/constants.html#False
751 https://docs.python.org/3.7/library/functions.html#bool
752 https://docs.python.org/3.7/library/constants.html#False
753 https://docs.python.org/3.7/library/constants.html#None
754 https://docs.python.org/3.7/library/constants.html#True
755 https://docs.python.org/3.7/library/constants.html#None

170 Chapter 16. API - Boards and Accessories

https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/constants.html#None
http://lowvoltagelabs.com/products/pi-traffic/
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#None


GPIO Zero Documentation, Release 1.6.1

16.1.14 PiStop

class gpiozero.PiStop(location, *, pwm=False, initial_value=False, pin_factory=None)
Extends TrafficLights (page 165) for the PiHardware Pi-Stop756: a vertical traffic lights board.

The following example turns on the amber LED on a Pi-Stop connected to location A+:

from gpiozero import PiStop

traffic = PiStop('A+')
traffic.amber.on()

Parameters

• location (str757) – The location758 on the GPIO header to which the Pi-Stop
is connected. Must be one of: A, A+, B, B+, C, D.

• pwm (bool759) – If True760, construct PWMLED (page 125) instances to represent
each LED. If False761 (the default), construct regular LED (page 123) instances.

• initial_value (bool762) – If False763 (the default), all LEDs will be off ini-
tially. If None764, each device will be left in whatever state the pin is found in
when configured for output (warning: this can be on). If True765, the device will
be switched on initially.

• pin_factory (Factory (page 230) or None766) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

16.1.15 FishDish

class gpiozero.FishDish(*, pwm=False, pin_factory=None)
Extends CompositeOutputDevice (page 185) for the Pi Supply FishDish767: traffic light LEDs, a
button and a buzzer.

The FishDish pins are fixed and therefore there’s no need to specify them when constructing this
class. The following example waits for the button to be pressed on the FishDish, then turns on all
the LEDs:

from gpiozero import FishDish

fish = FishDish()
fish.button.wait_for_press()
fish.lights.on()

Parameters
756 https://pihw.wordpress.com/meltwaters-pi-hardware-kits/pi-stop/
757 https://docs.python.org/3.7/library/stdtypes.html#str
758 https://github.com/PiHw/Pi-Stop/blob/master/markdown_source/markdown/Discover-PiStop.md
759 https://docs.python.org/3.7/library/functions.html#bool
760 https://docs.python.org/3.7/library/constants.html#True
761 https://docs.python.org/3.7/library/constants.html#False
762 https://docs.python.org/3.7/library/functions.html#bool
763 https://docs.python.org/3.7/library/constants.html#False
764 https://docs.python.org/3.7/library/constants.html#None
765 https://docs.python.org/3.7/library/constants.html#True
766 https://docs.python.org/3.7/library/constants.html#None
767 https://www.pi-supply.com/product/fish-dish-raspberry-pi-led-buzzer-board/

16.1. Regular Classes 171

https://pihw.wordpress.com/meltwaters-pi-hardware-kits/pi-stop/
https://docs.python.org/3.7/library/stdtypes.html#str
https://github.com/PiHw/Pi-Stop/blob/master/markdown_source/markdown/Discover-PiStop.md
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#None
https://www.pi-supply.com/product/fish-dish-raspberry-pi-led-buzzer-board/


GPIO Zero Documentation, Release 1.6.1

• pwm (bool768) – If True769, construct PWMLED (page 125) instances to represent
each LED. If False770 (the default), construct regular LED (page 123) instances.

• pin_factory (Factory (page 230) or None771) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

16.1.16 TrafficHat

class gpiozero.TrafficHat(*, pwm=False, pin_factory=None)
Extends CompositeOutputDevice (page 185) for the Pi Supply Traffic HAT772: a board with traffic
light LEDs, a button and a buzzer.

The Traffic HAT pins are fixed and therefore there’s no need to specify them when constructing
this class. The following example waits for the button to be pressed on the Traffic HAT, then turns
on all the LEDs:

from gpiozero import TrafficHat

hat = TrafficHat()
hat.button.wait_for_press()
hat.lights.on()

Parameters

• pwm (bool773) – If True774, construct PWMLED (page 125) instances to represent
each LED. If False775 (the default), construct regular LED (page 123) instances.

• pin_factory (Factory (page 230) or None776) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

16.1.17 TrafficpHat

class gpiozero.TrafficpHat(*, pwm=False, pin_factory=None)
Extends TrafficLights (page 165) for the Pi Supply Traffic pHAT777: a small board with traffic
light LEDs.

The Traffic pHAT pins are fixed and therefore there’s no need to specify them when constructing
this class. The following example then turns on all the LEDs:

from gpiozero import TrafficpHat
phat = TrafficpHat()
phat.red.on()
phat.blink()

Parameters

• pwm (bool778) – If True779, construct PWMLED (page 125) instances to represent
each LED. If False780 (the default), construct regular LED (page 123) instances.

768 https://docs.python.org/3.7/library/functions.html#bool
769 https://docs.python.org/3.7/library/constants.html#True
770 https://docs.python.org/3.7/library/constants.html#False
771 https://docs.python.org/3.7/library/constants.html#None
772 https://uk.pi-supply.com/products/traffic-hat-for-raspberry-pi
773 https://docs.python.org/3.7/library/functions.html#bool
774 https://docs.python.org/3.7/library/constants.html#True
775 https://docs.python.org/3.7/library/constants.html#False
776 https://docs.python.org/3.7/library/constants.html#None
777 http://pisupp.ly/trafficphat
778 https://docs.python.org/3.7/library/functions.html#bool
779 https://docs.python.org/3.7/library/constants.html#True
780 https://docs.python.org/3.7/library/constants.html#False

172 Chapter 16. API - Boards and Accessories

https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#None
https://uk.pi-supply.com/products/traffic-hat-for-raspberry-pi
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#None
http://pisupp.ly/trafficphat
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False


GPIO Zero Documentation, Release 1.6.1

• initial_value (bool781 or None782) – If False783 (the default), all LEDs will
be off initially. If None784, each device will be left in whatever state the pin is
found in when configured for output (warning: this can be on). If True785, the
device will be switched on initially.

• pin_factory (Factory (page 230) or None786) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

16.1.18 JamHat

class gpiozero.JamHat(*, pwm=False, pin_factory=None)
Extends CompositeOutputDevice (page 185) for the ModMyPi JamHat787 board.

There are 6 LEDs, two buttons and a tonal buzzer. The pins are fixed. Usage:

from gpiozero import JamHat

hat = JamHat()

hat.button_1.wait_for_press()
hat.lights_1.on()
hat.buzzer.play('C4')
hat.button_2.wait_for_press()
hat.off()

Parameters

• pwm (bool788) – If True789, construct PWMLED (page 125) instances to repre-
sent each LED on the board. If False790 (the default), construct regular LED
(page 123) instances.

• pin_factory (Factory (page 230) or None791) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

lights_1, lights_2
Two LEDBoard (page 155) instances representing the top (lights_1) and bottom (lights_2)
rows of LEDs on the JamHat.

red, yellow, green
LED (page 123) or PWMLED (page 125) instances representing the red, yellow, and green
LEDs along the top row.

button_1, button_2
The left (button_1) and right (button_2) Button (page 103) objects on the JamHat.

buzzer
The TonalBuzzer (page 131) at the bottom right of the JamHat.

off()
Turns all the LEDs off and stops the buzzer.

781 https://docs.python.org/3.7/library/functions.html#bool
782 https://docs.python.org/3.7/library/constants.html#None
783 https://docs.python.org/3.7/library/constants.html#False
784 https://docs.python.org/3.7/library/constants.html#None
785 https://docs.python.org/3.7/library/constants.html#True
786 https://docs.python.org/3.7/library/constants.html#None
787 https://thepihut.com/products/jam-hat
788 https://docs.python.org/3.7/library/functions.html#bool
789 https://docs.python.org/3.7/library/constants.html#True
790 https://docs.python.org/3.7/library/constants.html#False
791 https://docs.python.org/3.7/library/constants.html#None

16.1. Regular Classes 173

https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#None
https://thepihut.com/products/jam-hat
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#None


GPIO Zero Documentation, Release 1.6.1

on()
Turns all the LEDs on and makes the buzzer play its mid tone.

16.1.19 Pibrella

class gpiozero.Pibrella(*, pwm=False, pin_factory=None)
Extends CompositeOutputDevice (page 185) for the Cyntech/Pimoroni Pibrella792 board.

The Pibrella board comprises 3 LEDs, a button, a tonal buzzer, four general purpose input channels,
and four general purpose output channels (with LEDs).

This class exposes the LEDs, button and buzzer.

Usage:

from gpiozero import Pibrella

pb = Pibrella()

pb.button.wait_for_press()
pb.lights.on()
pb.buzzer.play('A4')
pb.off()

The four input and output channels are exposed so you can create GPIO Zero devices using these
pins without looking up their respective pin numbers:

from gpiozero import Pibrella, LED, Button

pb = Pibrella()
btn = Button(pb.inputs.a, pull_up=False)
led = LED(pb.outputs.e)

btn.when_pressed = led.on

Parameters

• pwm (bool793) – If True794, construct PWMLED (page 125) instances to represent
each LED on the board, otherwise if False795 (the default), construct regular
LED (page 123) instances.

• pin_factory (Factory (page 230) or None796) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

lights
TrafficLights (page 165) instance representing the three LEDs

red, amber, green
LED (page 123) or PWMLED (page 125) instances representing the red, amber, and green
LEDs

button
The red Button (page 103) object on the Pibrella

buzzer
A TonalBuzzer (page 131) object representing the buzzer

792 http://www.pibrella.com/
793 https://docs.python.org/3.7/library/functions.html#bool
794 https://docs.python.org/3.7/library/constants.html#True
795 https://docs.python.org/3.7/library/constants.html#False
796 https://docs.python.org/3.7/library/constants.html#None

174 Chapter 16. API - Boards and Accessories

http://www.pibrella.com/
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#None


GPIO Zero Documentation, Release 1.6.1

inputs
A namedtuple()797 of the input pin numbers

a, b, c, d

outputs
A namedtuple()798 of the output pin numbers

e, f, g, h

off()
Turns all the LEDs off and stops the buzzer.

on()
Turns all the LEDs on and makes the buzzer play its mid tone.

16.1.20 Robot

class gpiozero.Robot(left, right, *, pwm=True, pin_factory=None)
Extends CompositeDevice (page 185) to represent a generic dual-motor robot.

This class is constructed with two tuples representing the forward and backward pins of the left
and right controllers respectively. For example, if the left motor’s controller is connected to GPIOs
4 and 14, while the right motor’s controller is connected to GPIOs 17 and 18 then the following
example will drive the robot forward:

from gpiozero import Robot

robot = Robot(left=(4, 14), right=(17, 18))
robot.forward()

Parameters

• left (tuple799) – A tuple of two (or three) GPIO pins representing the forward
and backward inputs of the left motor’s controller. Use three pins if your motor
controller requires an enable pin.

• right (tuple800) – A tuple of two (or three) GPIO pins representing the forward
and backward inputs of the right motor’s controller. Use three pins if your motor
controller requires an enable pin.

• pwm (bool801) – If True802 (the default), construct PWMOutputDevice (page 140)
instances for the motor controller pins, allowing both direction and variable speed
control. If False803, construct DigitalOutputDevice (page 139) instances, al-
lowing only direction control.

• pin_factory (Factory (page 230) or None804) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

left_motor
The Motor (page 132) on the left of the robot.

right_motor
The Motor (page 132) on the right of the robot.

797 https://docs.python.org/3.7/library/collections.html#collections.namedtuple
798 https://docs.python.org/3.7/library/collections.html#collections.namedtuple
799 https://docs.python.org/3.7/library/stdtypes.html#tuple
800 https://docs.python.org/3.7/library/stdtypes.html#tuple
801 https://docs.python.org/3.7/library/functions.html#bool
802 https://docs.python.org/3.7/library/constants.html#True
803 https://docs.python.org/3.7/library/constants.html#False
804 https://docs.python.org/3.7/library/constants.html#None

16.1. Regular Classes 175

https://docs.python.org/3.7/library/collections.html#collections.namedtuple
https://docs.python.org/3.7/library/collections.html#collections.namedtuple
https://docs.python.org/3.7/library/stdtypes.html#tuple
https://docs.python.org/3.7/library/stdtypes.html#tuple
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#None


GPIO Zero Documentation, Release 1.6.1

backward(speed=1, **kwargs)
Drive the robot backward by running both motors backward.

Parameters

• speed (float805) – Speed at which to drive the motors, as a value between 0
(stopped) and 1 (full speed). The default is 1.

• curve_left (float806) – The amount to curve left while moving backwards,
by driving the left motor at a slower speed. Maximum curve_left is 1, the
default is 0 (no curve). This parameter can only be specified as a keyword
parameter, and is mutually exclusive with curve_right.

• curve_right (float807) – The amount to curve right while moving backwards,
by driving the right motor at a slower speed. Maximum curve_right is 1, the
default is 0 (no curve). This parameter can only be specified as a keyword
parameter, and is mutually exclusive with curve_left.

forward(speed=1, **kwargs)
Drive the robot forward by running both motors forward.

Parameters

• speed (float808) – Speed at which to drive the motors, as a value between 0
(stopped) and 1 (full speed). The default is 1.

• curve_left (float809) – The amount to curve left while moving forwards, by
driving the left motor at a slower speed. Maximum curve_left is 1, the default
is 0 (no curve). This parameter can only be specified as a keyword parameter,
and is mutually exclusive with curve_right.

• curve_right (float810) – The amount to curve right while moving forwards,
by driving the right motor at a slower speed. Maximum curve_right is 1, the
default is 0 (no curve). This parameter can only be specified as a keyword
parameter, and is mutually exclusive with curve_left.

left(speed=1)
Make the robot turn left by running the right motor forward and left motor backward.

Parameters speed (float811) – Speed at which to drive the motors, as a value
between 0 (stopped) and 1 (full speed). The default is 1.

reverse()
Reverse the robot’s current motor directions. If the robot is currently running full speed
forward, it will run full speed backward. If the robot is turning left at half-speed, it will turn
right at half-speed. If the robot is currently stopped it will remain stopped.

right(speed=1)
Make the robot turn right by running the left motor forward and right motor backward.

Parameters speed (float812) – Speed at which to drive the motors, as a value
between 0 (stopped) and 1 (full speed). The default is 1.

stop()
Stop the robot.

value
Represents the motion of the robot as a tuple of (left_motor_speed, right_motor_speed)

805 https://docs.python.org/3.7/library/functions.html#float
806 https://docs.python.org/3.7/library/functions.html#float
807 https://docs.python.org/3.7/library/functions.html#float
808 https://docs.python.org/3.7/library/functions.html#float
809 https://docs.python.org/3.7/library/functions.html#float
810 https://docs.python.org/3.7/library/functions.html#float
811 https://docs.python.org/3.7/library/functions.html#float
812 https://docs.python.org/3.7/library/functions.html#float

176 Chapter 16. API - Boards and Accessories

https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float


GPIO Zero Documentation, Release 1.6.1

with (-1, -1) representing full speed backwards, (1, 1) representing full speed forwards,
and (0, 0) representing stopped.

16.1.21 PhaseEnableRobot

class gpiozero.PhaseEnableRobot(left, right, *, pwm=True, pin_factory=None)
Extends CompositeDevice (page 185) to represent a dual-motor robot based around a
Phase/Enable motor board.

This class is constructed with two tuples representing the phase (direction) and enable (speed) pins
of the left and right controllers respectively. For example, if the left motor’s controller is connected
to GPIOs 12 and 5, while the right motor’s controller is connected to GPIOs 13 and 6 so the
following example will drive the robot forward:

from gpiozero import PhaseEnableRobot

robot = PhaseEnableRobot(left=(5, 12), right=(6, 13))
robot.forward()

Parameters

• left (tuple813) – A tuple of two GPIO pins representing the phase and enable
inputs of the left motor’s controller.

• right (tuple814) – A tuple of two GPIO pins representing the phase and enable
inputs of the right motor’s controller.

• pwm (bool815) – If True816 (the default), construct PWMOutputDevice (page 140)
instances for the motor controller’s enable pins, allowing both direction and
variable speed control. If False817, construct DigitalOutputDevice (page 139)
instances, allowing only direction control.

• pin_factory (Factory (page 230) or None818) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

left_motor
The PhaseEnableMotor (page 134) on the left of the robot.

right_motor
The PhaseEnableMotor (page 134) on the right of the robot.

backward(speed=1)
Drive the robot backward by running both motors backward.

Parameters speed (float819) – Speed at which to drive the motors, as a value
between 0 (stopped) and 1 (full speed). The default is 1.

forward(speed=1)
Drive the robot forward by running both motors forward.

Parameters speed (float820) – Speed at which to drive the motors, as a value
between 0 (stopped) and 1 (full speed). The default is 1.

left(speed=1)
Make the robot turn left by running the right motor forward and left motor backward.

813 https://docs.python.org/3.7/library/stdtypes.html#tuple
814 https://docs.python.org/3.7/library/stdtypes.html#tuple
815 https://docs.python.org/3.7/library/functions.html#bool
816 https://docs.python.org/3.7/library/constants.html#True
817 https://docs.python.org/3.7/library/constants.html#False
818 https://docs.python.org/3.7/library/constants.html#None
819 https://docs.python.org/3.7/library/functions.html#float
820 https://docs.python.org/3.7/library/functions.html#float

16.1. Regular Classes 177

https://docs.python.org/3.7/library/stdtypes.html#tuple
https://docs.python.org/3.7/library/stdtypes.html#tuple
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float


GPIO Zero Documentation, Release 1.6.1

Parameters speed (float821) – Speed at which to drive the motors, as a value
between 0 (stopped) and 1 (full speed). The default is 1.

reverse()
Reverse the robot’s current motor directions. If the robot is currently running full speed
forward, it will run full speed backward. If the robot is turning left at half-speed, it will turn
right at half-speed. If the robot is currently stopped it will remain stopped.

right(speed=1)
Make the robot turn right by running the left motor forward and right motor backward.

Parameters speed (float822) – Speed at which to drive the motors, as a value
between 0 (stopped) and 1 (full speed). The default is 1.

stop()
Stop the robot.

value
Returns a tuple of two floating point values (-1 to 1) representing the speeds of the robot’s
two motors (left and right). This property can also be set to alter the speed of both motors.

16.1.22 RyanteckRobot

class gpiozero.RyanteckRobot(*, pwm=True, pin_factory=None)
Extends Robot (page 175) for the Ryanteck motor controller board823.

The Ryanteck MCB pins are fixed and therefore there’s no need to specify them when constructing
this class. The following example drives the robot forward:

from gpiozero import RyanteckRobot

robot = RyanteckRobot()
robot.forward()

Parameters

• pwm (bool824) – If True825 (the default), construct PWMOutputDevice (page 140)
instances for the motor controller pins, allowing both direction and variable speed
control. If False826, construct DigitalOutputDevice (page 139) instances, al-
lowing only direction control.

• pin_factory (Factory (page 230) or None827) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

16.1.23 CamJamKitRobot

class gpiozero.CamJamKitRobot(*, pwm=True, pin_factory=None)
Extends Robot (page 175) for the CamJam #3 EduKit828 motor controller board.

The CamJam robot controller pins are fixed and therefore there’s no need to specify them when
constructing this class. The following example drives the robot forward:

821 https://docs.python.org/3.7/library/functions.html#float
822 https://docs.python.org/3.7/library/functions.html#float
823 https://uk.pi-supply.com/products/ryanteck-rtk-000-001-motor-controller-board-kit-raspberry-pi
824 https://docs.python.org/3.7/library/functions.html#bool
825 https://docs.python.org/3.7/library/constants.html#True
826 https://docs.python.org/3.7/library/constants.html#False
827 https://docs.python.org/3.7/library/constants.html#None
828 http://camjam.me/?page_id=1035

178 Chapter 16. API - Boards and Accessories

https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://uk.pi-supply.com/products/ryanteck-rtk-000-001-motor-controller-board-kit-raspberry-pi
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#None
http://camjam.me/?page_id=1035


GPIO Zero Documentation, Release 1.6.1

from gpiozero import CamJamKitRobot

robot = CamJamKitRobot()
robot.forward()

Parameters

• pwm (bool829) – If True830 (the default), construct PWMOutputDevice (page 140)
instances for the motor controller pins, allowing both direction and variable speed
control. If False831, construct DigitalOutputDevice (page 139) instances, al-
lowing only direction control.

• pin_factory (Factory (page 230) or None832) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

16.1.24 PololuDRV8835Robot

class gpiozero.PololuDRV8835Robot(*, pwm=True, pin_factory=None)
Extends PhaseEnableRobot (page 177) for the Pololu DRV8835 Dual Motor Driver Kit833.

The Pololu DRV8835 pins are fixed and therefore there’s no need to specify them when constructing
this class. The following example drives the robot forward:

from gpiozero import PololuDRV8835Robot

robot = PololuDRV8835Robot()
robot.forward()

Parameters

• pwm (bool834) – If True835 (the default), construct PWMOutputDevice (page 140)
instances for the motor controller’s enable pins, allowing both direction and
variable speed control. If False836, construct DigitalOutputDevice (page 139)
instances, allowing only direction control.

• pin_factory (Factory (page 230) or None837) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

16.1.25 Energenie

class gpiozero.Energenie(socket, *, initial_value=False, pin_factory=None)
Extends Device (page 201) to represent an Energenie socket838 controller.

This class is constructed with a socket number and an optional initial state (defaults to False839,
meaning off). Instances of this class can be used to switch peripherals on and off. For example:

829 https://docs.python.org/3.7/library/functions.html#bool
830 https://docs.python.org/3.7/library/constants.html#True
831 https://docs.python.org/3.7/library/constants.html#False
832 https://docs.python.org/3.7/library/constants.html#None
833 https://www.pololu.com/product/2753
834 https://docs.python.org/3.7/library/functions.html#bool
835 https://docs.python.org/3.7/library/constants.html#True
836 https://docs.python.org/3.7/library/constants.html#False
837 https://docs.python.org/3.7/library/constants.html#None
838 https://energenie4u.co.uk/index.php/catalogue/product/ENER002-2PI
839 https://docs.python.org/3.7/library/constants.html#False

16.1. Regular Classes 179

https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#None
https://www.pololu.com/product/2753
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#None
https://energenie4u.co.uk/index.php/catalogue/product/ENER002-2PI
https://docs.python.org/3.7/library/constants.html#False


GPIO Zero Documentation, Release 1.6.1

from gpiozero import Energenie

lamp = Energenie(1)
lamp.on()

Parameters

• socket (int840) – Which socket this instance should control. This is an integer
number between 1 and 4.

• initial_value (bool841 or None842) – The initial state of the socket. As En-
ergenie sockets provide no means of reading their state, you may provide an
initial state for the socket, which will be set upon construction. This defaults
to False843 which will switch the socket off. Specifying None844 will not set any
initial state nor transmit any control signal to the device.

• pin_factory (Factory (page 230) or None845) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

off()
Turns the socket off.

on()
Turns the socket on.

socket
Returns the socket number.

value
Returns True846 if the socket is on and False847 if the socket is off. Setting this property
changes the state of the socket. Returns None848 only when constructed with initial_value
set to None849 and neither on() (page 180) nor off() (page 180) have been called since
construction.

16.1.26 StatusZero

class gpiozero.StatusZero(*labels, pwm=False, active_high=True, initial_value=False,
pin_factory=None)

Extends LEDBoard (page 155) for The Pi Hut’s STATUS Zero850: a Pi Zero sized add-on board
with three sets of red/green LEDs to provide a status indicator.

The following example designates the first strip the label “wifi” and the second “raining”, and turns
them green and red respectfully:

from gpiozero import StatusZero

status = StatusZero('wifi', 'raining')
status.wifi.green.on()
status.raining.red.on()

840 https://docs.python.org/3.7/library/functions.html#int
841 https://docs.python.org/3.7/library/functions.html#bool
842 https://docs.python.org/3.7/library/constants.html#None
843 https://docs.python.org/3.7/library/constants.html#False
844 https://docs.python.org/3.7/library/constants.html#None
845 https://docs.python.org/3.7/library/constants.html#None
846 https://docs.python.org/3.7/library/constants.html#True
847 https://docs.python.org/3.7/library/constants.html#False
848 https://docs.python.org/3.7/library/constants.html#None
849 https://docs.python.org/3.7/library/constants.html#None
850 https://thepihut.com/statuszero

180 Chapter 16. API - Boards and Accessories

https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://thepihut.com/statuszero


GPIO Zero Documentation, Release 1.6.1

Each designated label will contain two LED (page 123) objects named “red” and “green”.

Parameters

• *labels (str851) – Specify the names of the labels you wish to designate the
strips to. You can list up to three labels. If no labels are given, three strips will
be initialised with names ‘one’, ‘two’, and ‘three’. If some, but not all strips are
given labels, any remaining strips will not be initialised.

• pin_factory (Factory (page 230) or None852) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

your-label-here, your-label-here, ...
This entry represents one of the three labelled attributes supported on the STATUS Zero
board. It is an LEDBoard (page 155) which contains:

red
The LED (page 123) or PWMLED (page 125) representing the red LED next to the label.

green
The LED (page 123) or PWMLED (page 125) representing the green LED next to the label.

16.1.27 StatusBoard

class gpiozero.StatusBoard(*labels, pwm=False, active_high=True, initial_value=False,
pin_factory=None)

Extends CompositeOutputDevice (page 185) for The Pi Hut’s STATUS853 board: a HAT sized
add-on board with five sets of red/green LEDs and buttons to provide a status indicator with
additional input.

The following example designates the first strip the label “wifi” and the second “raining”, turns
the wifi green and then activates the button to toggle its lights when pressed:

from gpiozero import StatusBoard

status = StatusBoard('wifi', 'raining')
status.wifi.lights.green.on()
status.wifi.button.when_pressed = status.wifi.lights.toggle

Each designated label will contain a “lights” LEDBoard (page 155) containing two LED (page 123)
objects named “red” and “green”, and a Button (page 103) object named “button”.

Parameters

• *labels (str854) – Specify the names of the labels you wish to designate the
strips to. You can list up to five labels. If no labels are given, five strips will be
initialised with names ‘one’ to ‘five’. If some, but not all strips are given labels,
any remaining strips will not be initialised.

• pin_factory (Factory (page 230) or None855) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

your-label-here, your-label-here, ...
This entry represents one of the five labelled attributes supported on the STATUS board. It
is an CompositeOutputDevice (page 185) which contains:

lights
A LEDBoard (page 155) representing the lights next to the label. It contains:

851 https://docs.python.org/3.7/library/stdtypes.html#str
852 https://docs.python.org/3.7/library/constants.html#None
853 https://thepihut.com/status
854 https://docs.python.org/3.7/library/stdtypes.html#str
855 https://docs.python.org/3.7/library/constants.html#None

16.1. Regular Classes 181

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None
https://thepihut.com/status
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None


GPIO Zero Documentation, Release 1.6.1

red
The LED (page 123) or PWMLED (page 125) representing the red LED next to the label.

green
The LED (page 123) or PWMLED (page 125) representing the green LED next to the
label.

button
A Button (page 103) representing the button next to the label.

16.1.28 SnowPi

class gpiozero.SnowPi(*, pwm=False, initial_value=False, pin_factory=None)
Extends LEDBoard (page 155) for the Ryanteck SnowPi856 board.

The SnowPi pins are fixed and therefore there’s no need to specify them when constructing this
class. The following example turns on the eyes, sets the nose pulsing, and the arms blinking:

from gpiozero import SnowPi

snowman = SnowPi(pwm=True)
snowman.eyes.on()
snowman.nose.pulse()
snowman.arms.blink()

Parameters

• pwm (bool857) – If True858, construct PWMLED (page 125) instances to represent
each LED. If False859 (the default), construct regular LED (page 123) instances.

• initial_value (bool860) – If False861 (the default), all LEDs will be off ini-
tially. If None862, each device will be left in whatever state the pin is found in
when configured for output (warning: this can be on). If True863, the device will
be switched on initially.

• pin_factory (Factory (page 230) or None864) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

arms
A LEDBoard (page 155) representing the arms of the snow man. It contains the following
attributes:

left, right
Two LEDBoard (page 155) objects representing the left and right arms of the snow-man.
They contain:

top, middle, bottom
The LED (page 123) or PWMLED (page 125) down the snow-man’s arms.

eyes
A LEDBoard (page 155) representing the eyes of the snow-man. It contains:

left, right
The LED (page 123) or PWMLED (page 125) for the snow-man’s eyes.

856 https://ryanteck.uk/raspberry-pi/114-snowpi-the-gpio-snowman-for-raspberry-pi-0635648608303.html
857 https://docs.python.org/3.7/library/functions.html#bool
858 https://docs.python.org/3.7/library/constants.html#True
859 https://docs.python.org/3.7/library/constants.html#False
860 https://docs.python.org/3.7/library/functions.html#bool
861 https://docs.python.org/3.7/library/constants.html#False
862 https://docs.python.org/3.7/library/constants.html#None
863 https://docs.python.org/3.7/library/constants.html#True
864 https://docs.python.org/3.7/library/constants.html#None

182 Chapter 16. API - Boards and Accessories

https://ryanteck.uk/raspberry-pi/114-snowpi-the-gpio-snowman-for-raspberry-pi-0635648608303.html
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#None


GPIO Zero Documentation, Release 1.6.1

nose
The LED (page 123) or PWMLED (page 125) for the snow-man’s nose.

16.1.29 PumpkinPi

class gpiozero.PumpkinPi(*, pwm=False, initial_value=False, pin_factory=None)
Extends LEDBoard (page 155) for the ModMyPi PumpkinPi865 board.

There are twelve LEDs connected up to individual pins, so for the PumpkinPi the pins are fixed.
For example:

from gpiozero import PumpkinPi

pumpkin = PumpkinPi(pwm=True)
pumpkin.sides.pulse()
pumpkin.off()

Parameters

• pwm (bool866) – If True867, construct PWMLED (page 125) instances to represent
each LED. If False868 (the default), construct regular LED (page 123) instances

• initial_value (bool869 or None870) – If False871 (the default), all LEDs will
be off initially. If None872, each device will be left in whatever state the pin is
found in when configured for output (warning: this can be on). If True873, the
device will be switched on initially.

• pin_factory (Factory (page 230) or None874) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

sides
A LEDBoard (page 155) representing the LEDs around the edge of the pumpkin. It contains:

left, right
Two LEDBoard (page 155) instances representing the LEDs on the left and right sides of
the pumpkin. They each contain:

top, midtop, middle, midbottom, bottom
Each LED (page 123) or PWMLED (page 125) around the specified side of the pumpkin.

eyes
A LEDBoard (page 155) representing the eyes of the pumpkin. It contains:

left, right
The LED (page 123) or PWMLED (page 125) for each of the pumpkin’s eyes.

16.2 Base Classes

The classes in the sections above are derived from a series of base classes, some of which are effectively
abstract. The classes form the (partial) hierarchy displayed in the graph below:
865 https://www.modmypi.com/halloween-pumpkin-programmable-kit
866 https://docs.python.org/3.7/library/functions.html#bool
867 https://docs.python.org/3.7/library/constants.html#True
868 https://docs.python.org/3.7/library/constants.html#False
869 https://docs.python.org/3.7/library/functions.html#bool
870 https://docs.python.org/3.7/library/constants.html#None
871 https://docs.python.org/3.7/library/constants.html#False
872 https://docs.python.org/3.7/library/constants.html#None
873 https://docs.python.org/3.7/library/constants.html#True
874 https://docs.python.org/3.7/library/constants.html#None

16.2. Base Classes 183

https://www.modmypi.com/halloween-pumpkin-programmable-kit
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#None


GPIO Zero Documentation, Release 1.6.1

EventsMixin

HoldMixin

CompositeDevice

Device

CompositeOutputDevice

LEDCollection

ButtonBoard

CamJamKitRobot

RobotEnergenie

FishDish

JamHat

LEDBarGraph

LEDBoard

LEDCharDisplay

LEDMultiCharDisplay

PhaseEnableRobot

PiHutXmasTree

PiLiter

PiLiterBarGraph

PiStop

TrafficLights PiTraffic

Pibrella

PololuDRV8835Robot

PumpkinPi

RotaryEncoder

RyanteckRobot

SnowPi

StatusBoard

StatusZero

TonalBuzzer

TrafficHat

TrafficLightsBuzzer

TrafficpHat

For composite devices, the following chart shows which devices are composed of which other devices:

RGBLED

LEDPWMLED

LEDBoardLEDBarGraphLEDCharDisplay

LEDMultiCharDisplay

DigitalOutputDevice

ButtonBoard

Button

TrafficLightsBuzzer

TrafficLights Buzzer

StatusBoardJamHat

TonalBuzzer

Robot

Motor

PWMOutputDevice

PhaseEnableRobot

PhaseEnableMotorServo

RotaryEncoder

InputDevice

The following sections document these base classes for advanced users that wish to construct classes for
their own devices.

16.2.1 LEDCollection

class gpiozero.LEDCollection(*pins, pwm=False, active_high=True, initial_value=False,
pin_factory=None, **named_pins)

Extends CompositeOutputDevice (page 185). Abstract base class for LEDBoard (page 155) and
LEDBarGraph (page 158).

is_lit
Composite devices are considered “active” if any of their constituent devices have a “truthy”
value.

184 Chapter 16. API - Boards and Accessories



GPIO Zero Documentation, Release 1.6.1

leds
A flat tuple of all LEDs contained in this collection (and all sub-collections).

16.2.2 CompositeOutputDevice

class gpiozero.CompositeOutputDevice(*args, _order=None, pin_factory=None, **kwargs)
Extends CompositeDevice (page 185) with on() (page 185), off() (page 185), and toggle()
(page 185) methods for controlling subordinate output devices. Also extends value (page 185) to
be writeable.

Parameters

• *args (Device (page 201)) – The un-named devices that belong to the composite
device. The value (page 201) attributes of these devices will be represented
within the composite device’s tuple value (page 185) in the order specified here.

• _order (list875 or None876) – If specified, this is the order of named items
specified by keyword arguments (to ensure that the value (page 185) tuple is
constructed with a specific order). All keyword arguments must be included in
the collection. If omitted, an alphabetically sorted order will be selected for
keyword arguments.

• pin_factory (Factory (page 230) or None877) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

• **kwargs (Device (page 201)) – The named devices that belong to the composite
device. These devices will be accessible as named attributes on the resulting
device, and their value (page 185) attributes will be accessible as named elements
of the composite device’s tuple value (page 185).

off()
Turn all the output devices off.

on()
Turn all the output devices on.

toggle()
Toggle all the output devices. For each device, if it’s on, turn it off; if it’s off, turn it on.

value
A tuple containing a value for each subordinate device. This property can also be set to
update the state of all subordinate output devices.

16.2.3 CompositeDevice

class gpiozero.CompositeDevice(*args, _order=None, pin_factory=None, **kwargs)
Extends Device (page 201). Represents a device composed of multiple devices like simple HATs,
H-bridge motor controllers, robots composed of multiple motors, etc.

The constructor accepts subordinate devices as positional or keyword arguments. Positional ar-
guments form unnamed devices accessed by treating the composite device as a container, while
keyword arguments are added to the device as named (read-only) attributes.

For example:

>>> from gpiozero import *
>>> d = CompositeDevice(LED(2), LED(3), LED(4), btn=Button(17))
>>> d[0]

(continues on next page)

875 https://docs.python.org/3.7/library/stdtypes.html#list
876 https://docs.python.org/3.7/library/constants.html#None
877 https://docs.python.org/3.7/library/constants.html#None

16.2. Base Classes 185

https://docs.python.org/3.7/library/stdtypes.html#list
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None


GPIO Zero Documentation, Release 1.6.1

(continued from previous page)

<gpiozero.LED object on pin GPIO2, active_high=True, is_active=False>
>>> d[1]
<gpiozero.LED object on pin GPIO3, active_high=True, is_active=False>
>>> d[2]
<gpiozero.LED object on pin GPIO4, active_high=True, is_active=False>
>>> d.btn
<gpiozero.Button object on pin GPIO17, pull_up=True, is_active=False>
>>> d.value
CompositeDeviceValue(device_0=False, device_1=False, device_2=False, btn=False)

Parameters

• *args (Device (page 201)) – The un-named devices that belong to the composite
device. The value (page 187) attributes of these devices will be represented
within the composite device’s tuple value (page 187) in the order specified here.

• _order (list878 or None879) – If specified, this is the order of named items
specified by keyword arguments (to ensure that the value (page 187) tuple is
constructed with a specific order). All keyword arguments must be included in
the collection. If omitted, an alphabetically sorted order will be selected for
keyword arguments.

• pin_factory (Factory (page 230) or None880) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

• **kwargs (Device (page 201)) – The named devices that belong to the composite
device. These devices will be accessible as named attributes on the resulting
device, and their value (page 187) attributes will be accessible as named elements
of the composite device’s tuple value (page 187).

close()
Shut down the device and release all associated resources (such as GPIO pins).

This method is idempotent (can be called on an already closed device without any side-effects).
It is primarily intended for interactive use at the command line. It disables the device and
releases its pin(s) for use by another device.

You can attempt to do this simply by deleting an object, but unless you’ve cleaned up all
references to the object this may not work (even if you’ve cleaned up all references, there’s still
no guarantee the garbage collector will actually delete the object at that point). By contrast,
the close method provides a means of ensuring that the object is shut down.

For example, if you have a breadboard with a buzzer connected to pin 16, but then wish to
attach an LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device (page 201) descendents can also be used as context managers using the with881 state-
ment. For example:

878 https://docs.python.org/3.7/library/stdtypes.html#list
879 https://docs.python.org/3.7/library/constants.html#None
880 https://docs.python.org/3.7/library/constants.html#None
881 https://docs.python.org/3.7/reference/compound_stmts.html#with

186 Chapter 16. API - Boards and Accessories

https://docs.python.org/3.7/library/stdtypes.html#list
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/reference/compound_stmts.html#with


GPIO Zero Documentation, Release 1.6.1

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

closed
Returns True882 if the device is closed (see the close() (page 186) method). Once a device is
closed you can no longer use any other methods or properties to control or query the device.

is_active
Composite devices are considered “active” if any of their constituent devices have a “truthy”
value.

namedtuple
The namedtuple()883 type constructed to represent the value of the composite device. The
value (page 187) attribute returns values of this type.

value
A namedtuple()884 containing a value for each subordinate device. Devices with names will
be represented as named elements. Unnamed devices will have a unique name generated for
them, and they will appear in the position they appeared in the constructor.

882 https://docs.python.org/3.7/library/constants.html#True
883 https://docs.python.org/3.7/library/collections.html#collections.namedtuple
884 https://docs.python.org/3.7/library/collections.html#collections.namedtuple

16.2. Base Classes 187

https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/collections.html#collections.namedtuple
https://docs.python.org/3.7/library/collections.html#collections.namedtuple


GPIO Zero Documentation, Release 1.6.1

188 Chapter 16. API - Boards and Accessories



CHAPTER 17

API - Internal Devices

GPIO Zero also provides several “internal” devices which represent facilities provided by the operating
system itself. These can be used to react to things like the time of day, or whether a server is available
on the network.

These devices provide an API similar to and compatible with GPIO devices so that internal device
events can trigger changes to GPIO output devices the way input devices can. In the same way a Button
(page 103) object is active when it’s pressed, and can be used to trigger other devices when its state
changes, a TimeOfDay (page 190) object is active during a particular time period.

Consider the following code in which a Button (page 103) object is used to control an LED (page 123)
object:

from gpiozero import LED, Button
from signal import pause

led = LED(2)
btn = Button(3)

btn.when_pressed = led.on
btn.when_released = led.off

pause()

Now consider the following example in which a TimeOfDay (page 190) object is used to control an LED
(page 123) using the same method:

from gpiozero import LED, TimeOfDay
from datetime import time
from signal import pause

led = LED(2)
tod = TimeOfDay(time(9), time(10))

tod.when_activated = led.on
tod.when_deactivated = led.off

pause()

189



GPIO Zero Documentation, Release 1.6.1

Here, rather than the LED being controlled by the press of a button, it’s controlled by the time. When
the time reaches 09:00AM, the LED comes on, and at 10:00AM it goes off.

Like the Button (page 103) object, internal devices like the TimeOfDay (page 190) object has value
(page 191), values, is_active (page 191), when_activated (page 191) and when_deactivated
(page 191) attributes, so alternative methods using the other paradigms would also work.

Note: Note that although the constructor parameter pin_factory is available for internal devices, and
is required to be valid, the pin factory chosen will not make any practical difference. Reading a remote
Pi’s CPU temperature, for example, is not currently possible.

17.1 Regular Classes

The following classes are intended for general use with the devices they are named after. All classes in
this section are concrete (not abstract).

17.1.1 TimeOfDay

class gpiozero.TimeOfDay(start_time, end_time, *, utc=True, event_delay=10.0,
pin_factory=None)

Extends PolledInternalDevice (page 197) to provide a device which is active when the computer’s
clock indicates that the current time is between start_time and end_time (inclusive) which are
time885 instances.

The following example turns on a lamp attached to an Energenie (page 179) plug between 07:00AM
and 08:00AM:

from gpiozero import TimeOfDay, Energenie
from datetime import time
from signal import pause

lamp = Energenie(1)
morning = TimeOfDay(time(7), time(8))

morning.when_activated = lamp.on
morning.when_deactivated = lamp.off

pause()

Note that start_time may be greater than end_time, indicating a time period which crosses mid-
night.

Parameters

• start_time (time886) – The time from which the device will be considered
active.

• end_time (time887) – The time after which the device will be considered inactive.

• utc (bool888) – If True889 (the default), a naive UTC time will be used for the
comparison rather than a local time-zone reading.

• event_delay (float890) – The number of seconds between file reads (defaults
885 https://docs.python.org/3.7/library/datetime.html#datetime.time
886 https://docs.python.org/3.7/library/datetime.html#datetime.time
887 https://docs.python.org/3.7/library/datetime.html#datetime.time
888 https://docs.python.org/3.7/library/functions.html#bool
889 https://docs.python.org/3.7/library/constants.html#True
890 https://docs.python.org/3.7/library/functions.html#float

190 Chapter 17. API - Internal Devices

https://docs.python.org/3.7/library/datetime.html#datetime.time
https://docs.python.org/3.7/library/datetime.html#datetime.time
https://docs.python.org/3.7/library/datetime.html#datetime.time
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/functions.html#float


GPIO Zero Documentation, Release 1.6.1

to 10 seconds).

• pin_factory (Factory (page 230) or None891) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

end_time
The time of day after which the device will be considered inactive.

is_active
Returns True892 if the device is currently active and False893 otherwise. This property is
usually derived from value (page 191). Unlike value (page 191), this is always a boolean.

start_time
The time of day after which the device will be considered active.

utc
If True894, use a naive UTC time reading for comparison instead of a local timezone reading.

value
Returns 1 when the system clock reads between start_time (page 191) and end_time
(page 191), and 0 otherwise. If start_time (page 191) is greater than end_time (page 191)
(indicating a period that crosses midnight), then this returns 1 when the current time is
greater than start_time (page 191) or less than end_time (page 191).

when_activated
The function to run when the device changes state from inactive to active (time reaches
start_time).

This can be set to a function which accepts no (mandatory) parameters, or a Python function
which accepts a single mandatory parameter (with as many optional parameters as you like).
If the function accepts a single mandatory parameter, the device that activated it will be
passed as that parameter.

Set this property to None (the default) to disable the event.

when_deactivated
The function to run when the device changes state from active to inactive (time reaches
end_time).

This can be set to a function which accepts no (mandatory) parameters, or a Python function
which accepts a single mandatory parameter (with as many optional parameters as you like).
If the function accepts a single mandatory parameter, the device that activated it will be
passed as that parameter.

Set this property to None (the default) to disable the event.

17.1.2 PingServer

class gpiozero.PingServer(host, *, event_delay=10.0, pin_factory=None)
Extends PolledInternalDevice (page 197) to provide a device which is active when a host (domain
name or IP address) can be pinged.

The following example lights an LED while google.com is reachable:

from gpiozero import PingServer, LED
from signal import pause

google = PingServer('google.com')
led = LED(4)

(continues on next page)

891 https://docs.python.org/3.7/library/constants.html#None
892 https://docs.python.org/3.7/library/constants.html#True
893 https://docs.python.org/3.7/library/constants.html#False
894 https://docs.python.org/3.7/library/constants.html#True

17.1. Regular Classes 191

https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#True


GPIO Zero Documentation, Release 1.6.1

(continued from previous page)

google.when_activated = led.on
google.when_deactivated = led.off

pause()

Parameters

• host (str895) – The hostname or IP address to attempt to ping.

• event_delay (float896) – The number of seconds between pings (defaults to 10
seconds).

• pin_factory (Factory (page 230) or None897) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

host
The hostname or IP address to test whenever value (page 192) is queried.

is_active
Returns True898 if the device is currently active and False899 otherwise. This property is
usually derived from value (page 192). Unlike value (page 192), this is always a boolean.

value
Returns 1 if the host returned a single ping, and 0 otherwise.

when_activated
The function to run when the device changes state from inactive (host unresponsive) to active
(host responsive).

This can be set to a function which accepts no (mandatory) parameters, or a Python function
which accepts a single mandatory parameter (with as many optional parameters as you like).
If the function accepts a single mandatory parameter, the device that activated it will be
passed as that parameter.

Set this property to None (the default) to disable the event.

when_deactivated
The function to run when the device changes state from inactive (host responsive) to active
(host unresponsive).

This can be set to a function which accepts no (mandatory) parameters, or a Python function
which accepts a single mandatory parameter (with as many optional parameters as you like).
If the function accepts a single mandatory parameter, the device that activated it will be
passed as that parameter.

Set this property to None (the default) to disable the event.

17.1.3 CPUTemperature

class gpiozero.CPUTemperature(sensor_file=’/sys/class/thermal/thermal_zone0/temp’,
*, min_temp=0.0, max_temp=100.0, threshold=80.0,
event_delay=5.0, pin_factory=None)

Extends PolledInternalDevice (page 197) to provide a device which is active when the CPU
temperature exceeds the threshold value.

The following example plots the CPU’s temperature on an LED bar graph:
895 https://docs.python.org/3.7/library/stdtypes.html#str
896 https://docs.python.org/3.7/library/functions.html#float
897 https://docs.python.org/3.7/library/constants.html#None
898 https://docs.python.org/3.7/library/constants.html#True
899 https://docs.python.org/3.7/library/constants.html#False

192 Chapter 17. API - Internal Devices

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False


GPIO Zero Documentation, Release 1.6.1

from gpiozero import LEDBarGraph, CPUTemperature
from signal import pause

# Use minimums and maximums that are closer to "normal" usage so the
# bar graph is a bit more "lively"
cpu = CPUTemperature(min_temp=50, max_temp=90)

print('Initial temperature: {}C'.format(cpu.temperature))

graph = LEDBarGraph(5, 6, 13, 19, 25, pwm=True)
graph.source = cpu

pause()

Parameters

• sensor_file (str900) – The file from which to read the temperature. This
defaults to the sysfs file /sys/class/thermal/thermal_zone0/temp. Whatever
file is specified is expected to contain a single line containing the temperature in
milli-degrees celsius.

• min_temp (float901) – The temperature at which value (page 193) will read
0.0. This defaults to 0.0.

• max_temp (float902) – The temperature at which value (page 193) will read
1.0. This defaults to 100.0.

• threshold (float903) – The temperature above which the device will be con-
sidered “active”. (see is_active (page 193)). This defaults to 80.0.

• event_delay (float904) – The number of seconds between file reads (defaults
to 5 seconds).

• pin_factory (Factory (page 230) or None905) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

is_active
Returns True906 when the CPU temperature (page 193) exceeds the threshold.

temperature
Returns the current CPU temperature in degrees celsius.

value
Returns the current CPU temperature as a value between 0.0 (representing the min_temp
value) and 1.0 (representing the max_temp value). These default to 0.0 and 100.0 respectively,
hence value (page 193) is temperature (page 193) divided by 100 by default.

when_activated
The function to run when the device changes state from inactive to active (temperature reaches
threshold).

This can be set to a function which accepts no (mandatory) parameters, or a Python function
which accepts a single mandatory parameter (with as many optional parameters as you like).
If the function accepts a single mandatory parameter, the device that activated it will be
passed as that parameter.

900 https://docs.python.org/3.7/library/stdtypes.html#str
901 https://docs.python.org/3.7/library/functions.html#float
902 https://docs.python.org/3.7/library/functions.html#float
903 https://docs.python.org/3.7/library/functions.html#float
904 https://docs.python.org/3.7/library/functions.html#float
905 https://docs.python.org/3.7/library/constants.html#None
906 https://docs.python.org/3.7/library/constants.html#True

17.1. Regular Classes 193

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#True


GPIO Zero Documentation, Release 1.6.1

Set this property to None (the default) to disable the event.

when_deactivated
The function to run when the device changes state from active to inactive (temperature drops
below threshold).

This can be set to a function which accepts no (mandatory) parameters, or a Python function
which accepts a single mandatory parameter (with as many optional parameters as you like).
If the function accepts a single mandatory parameter, the device that activated it will be
passed as that parameter.

Set this property to None (the default) to disable the event.

17.1.4 LoadAverage

class gpiozero.LoadAverage(load_average_file=’/proc/loadavg’, *, min_load_average=0.0,
max_load_average=1.0, threshold=0.8, minutes=5,
event_delay=10.0, pin_factory=None)

Extends PolledInternalDevice (page 197) to provide a device which is active when the CPU
load average exceeds the threshold value.

The following example plots the load average on an LED bar graph:

from gpiozero import LEDBarGraph, LoadAverage
from signal import pause

la = LoadAverage(min_load_average=0, max_load_average=2)
graph = LEDBarGraph(5, 6, 13, 19, 25, pwm=True)

graph.source = la

pause()

Parameters

• load_average_file (str907) – The file from which to read the load average.
This defaults to the proc file /proc/loadavg. Whatever file is specified is ex-
pected to contain three space-separated load averages at the beginning of the
file, representing 1 minute, 5 minute and 15 minute averages respectively.

• min_load_average (float908) – The load average at which value (page 195)
will read 0.0. This defaults to 0.0.

• max_load_average (float909) – The load average at which value (page 195)
will read 1.0. This defaults to 1.0.

• threshold (float910) – The load average above which the device will be con-
sidered “active”. (see is_active (page 195)). This defaults to 0.8.

• minutes (int911) – The number of minutes over which to average the load. Must
be 1, 5 or 15. This defaults to 5.

• event_delay (float912) – The number of seconds between file reads (defaults
to 10 seconds).

907 https://docs.python.org/3.7/library/stdtypes.html#str
908 https://docs.python.org/3.7/library/functions.html#float
909 https://docs.python.org/3.7/library/functions.html#float
910 https://docs.python.org/3.7/library/functions.html#float
911 https://docs.python.org/3.7/library/functions.html#int
912 https://docs.python.org/3.7/library/functions.html#float

194 Chapter 17. API - Internal Devices

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#float


GPIO Zero Documentation, Release 1.6.1

• pin_factory (Factory (page 230) or None913) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

is_active
Returns True914 when the load_average (page 195) exceeds the threshold.

load_average
Returns the current load average.

value
Returns the current load average as a value between 0.0 (representing the min_load_average
value) and 1.0 (representing the max_load_average value). These default to 0.0 and 1.0
respectively.

when_activated
The function to run when the device changes state from inactive to active (load average reaches
threshold).

This can be set to a function which accepts no (mandatory) parameters, or a Python function
which accepts a single mandatory parameter (with as many optional parameters as you like).
If the function accepts a single mandatory parameter, the device that activated it will be
passed as that parameter.

Set this property to None (the default) to disable the event.

when_deactivated
The function to run when the device changes state from active to inactive (load average drops
below threshold).

This can be set to a function which accepts no (mandatory) parameters, or a Python function
which accepts a single mandatory parameter (with as many optional parameters as you like).
If the function accepts a single mandatory parameter, the device that activated it will be
passed as that parameter.

Set this property to None (the default) to disable the event.

17.1.5 DiskUsage

class gpiozero.DiskUsage(filesystem=’/’, *, threshold=90.0, event_delay=30.0,
pin_factory=None)

Extends PolledInternalDevice (page 197) to provide a device which is active when the disk space
used exceeds the threshold value.

The following example plots the disk usage on an LED bar graph:

from gpiozero import LEDBarGraph, DiskUsage
from signal import pause

disk = DiskUsage()

print('Current disk usage: {}%'.format(disk.usage))

graph = LEDBarGraph(5, 6, 13, 19, 25, pwm=True)
graph.source = disk

pause()

Parameters
913 https://docs.python.org/3.7/library/constants.html#None
914 https://docs.python.org/3.7/library/constants.html#True

17.1. Regular Classes 195

https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#True


GPIO Zero Documentation, Release 1.6.1

• filesystem (str915) – A path within the filesystem for which the disk usage
needs to be computed. This defaults to /, which is the root filesystem.

• threshold (float916) – The disk usage percentage above which the device will
be considered “active” (see is_active (page 196)). This defaults to 90.0.

• event_delay (float917) – The number of seconds between file reads (defaults
to 30 seconds).

• pin_factory (Factory (page 230) or None918) – See API - Pins (page 225) for
more information (this is an advanced feature which most users can ignore).

is_active
Returns True919 when the disk usage (page 196) exceeds the threshold.

usage
Returns the current disk usage in percentage.

value
Returns the current disk usage as a value between 0.0 and 1.0 by dividing usage (page 196)
by 100.

when_activated
The function to run when the device changes state from inactive to active (disk usage reaches
threshold).

This can be set to a function which accepts no (mandatory) parameters, or a Python function
which accepts a single mandatory parameter (with as many optional parameters as you like).
If the function accepts a single mandatory parameter, the device that activated it will be
passed as that parameter.

Set this property to None (the default) to disable the event.

when_deactivated
The function to run when the device changes state from active to inactive (disk usage drops
below threshold).

This can be set to a function which accepts no (mandatory) parameters, or a Python function
which accepts a single mandatory parameter (with as many optional parameters as you like).
If the function accepts a single mandatory parameter, the device that activated it will be
passed as that parameter.

Set this property to None (the default) to disable the event.

17.2 Base Classes

The classes in the sections above are derived from a series of base classes, some of which are effectively
abstract. The classes form the (partial) hierarchy displayed in the graph below (abstract classes are
shaded lighter than concrete classes):
915 https://docs.python.org/3.7/library/stdtypes.html#str
916 https://docs.python.org/3.7/library/functions.html#float
917 https://docs.python.org/3.7/library/functions.html#float
918 https://docs.python.org/3.7/library/constants.html#None
919 https://docs.python.org/3.7/library/constants.html#True

196 Chapter 17. API - Internal Devices

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#True


GPIO Zero Documentation, Release 1.6.1

Device InternalDevice

CPUTemperature

PolledInternalDevice

DiskUsage

LoadAverage

PingServer

TimeOfDay

The following sections document these base classes for advanced users that wish to construct classes for
their own devices.

17.2.1 PolledInternalDevice

class gpiozero.PolledInternalDevice(*, event_delay=1.0, pin_factory=None)
Extends InternalDevice (page 197) to provide a background thread to poll internal devices that
lack any other mechanism to inform the instance of changes.

17.2.2 InternalDevice

class gpiozero.InternalDevice(*, pin_factory=None)
Extends Device (page 201) to provide a basis for devices which have no specific hardware repre-
sentation. These are effectively pseudo-devices and usually represent operating system services like
the internal clock, file systems or network facilities.

17.2. Base Classes 197



GPIO Zero Documentation, Release 1.6.1

198 Chapter 17. API - Internal Devices



CHAPTER 18

API - Generic Classes

The GPIO Zero class hierarchy is quite extensive. It contains several base classes (most of which are
documented in their corresponding chapters):

• Device (page 201) is the root of the hierarchy, implementing base functionality like close()
(page 201) and context manager handlers.

• GPIODevice (page 121) represents individual devices that attach to a single GPIO pin

• SPIDevice (page 152) represents devices that communicate over an SPI interface (implemented as
four GPIO pins)

• InternalDevice (page 197) represents devices that are entirely internal to the Pi (usually operating
system related services)

• CompositeDevice (page 185) represents devices composed of multiple other devices like HATs

There are also several mixin classes920 for adding important functionality at numerous points in the
hierarchy, which is illustrated below (mixin classes are represented in purple, while abstract classes are
shaded lighter):
920 https://en.wikipedia.org/wiki/Mixin

199

https://en.wikipedia.org/wiki/Mixin


GPIO Zero Documentation, Release 1.6.1

EventsMixin HoldMixin

SharedMixin

SourceMixin

ValuesMixin

AnalogInputDevice

SPIDevice

CompositeDevice

Device

CompositeOutputDevice

GPIODevice

InternalDevice

LEDCollection

MCP30xx

MCP3xxx

MCP32xx

MCP33xx

MCP3xx2

SmoothedInputDevice

InputDevice

AngularServo

Servo

Button

DigitalInputDevice

ButtonBoard

Buzzer

DigitalOutputDevice

OutputDevice

CPUTemperaturePolledInternalDevice

CamJamKitRobot

Robot

DiskUsage

DistanceSensor

Energenie

FishDish

JamHat

LED

LEDBarGraph

LEDBoard

LEDCharDisplay

LEDMultiCharDisplay

LedBorg

RGBLED

LightSensor

LineSensor

LoadAverage

MCP3001

MCP3002

MCP3004

MCP3008

MCP3201

MCP3202

MCP3204

MCP3208

MCP3301

MCP3302

MCP3304

MotionSensor

Motor

PWMLED

PWMOutputDevice

PhaseEnableMotor

PhaseEnableRobot

PiHutXmasTree

PiLiter

PiLiterBarGraph

PiStop

TrafficLights PiTraffic

Pibrella

PingServer

PololuDRV8835Robot

PumpkinPi

RotaryEncoder

RyanteckRobot SnowPi

StatusBoard

StatusZero

TimeOfDay

TonalBuzzer

TrafficHat

TrafficLightsBuzzer

TrafficpHat

200 Chapter 18. API - Generic Classes



GPIO Zero Documentation, Release 1.6.1

18.1 Device

class gpiozero.Device(*, pin_factory=None)
Represents a single device of any type; GPIO-based, SPI-based, I2C-based, etc. This is the base
class of the device hierarchy. It defines the basic services applicable to all devices (specifically
the is_active (page 201) property, the value (page 201) property, and the close() (page 201)
method).

pin_factory
This attribute exists at both a class level (representing the default pin factory used to construct
devices when no pin_factory parameter is specified), and at an instance level (representing
the pin factory that the device was constructed with).

The pin factory provides various facilities to the device including allocating pins, providing
low level interfaces (e.g. SPI), and clock facilities (querying and calculating elapsed times).

close()
Shut down the device and release all associated resources (such as GPIO pins).

This method is idempotent (can be called on an already closed device without any side-effects).
It is primarily intended for interactive use at the command line. It disables the device and
releases its pin(s) for use by another device.

You can attempt to do this simply by deleting an object, but unless you’ve cleaned up all
references to the object this may not work (even if you’ve cleaned up all references, there’s still
no guarantee the garbage collector will actually delete the object at that point). By contrast,
the close method provides a means of ensuring that the object is shut down.

For example, if you have a breadboard with a buzzer connected to pin 16, but then wish to
attach an LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device (page 201) descendents can also be used as context managers using the with921 state-
ment. For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

closed
Returns True922 if the device is closed (see the close() (page 201) method). Once a device is
closed you can no longer use any other methods or properties to control or query the device.

is_active
Returns True923 if the device is currently active and False924 otherwise. This property is
usually derived from value (page 201). Unlike value (page 201), this is always a boolean.

921 https://docs.python.org/3.7/reference/compound_stmts.html#with
922 https://docs.python.org/3.7/library/constants.html#True
923 https://docs.python.org/3.7/library/constants.html#True
924 https://docs.python.org/3.7/library/constants.html#False

18.1. Device 201

https://docs.python.org/3.7/reference/compound_stmts.html#with
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False


GPIO Zero Documentation, Release 1.6.1

value
Returns a value representing the device’s state. Frequently, this is a boolean value, or a
number between 0 and 1 but some devices use larger ranges (e.g. -1 to +1) and composite
devices usually use tuples to return the states of all their subordinate components.

18.2 ValuesMixin

class gpiozero.ValuesMixin(...)
Adds a values (page 202) property to the class which returns an infinite generator of readings
from the value (page 201) property. There is rarely a need to use this mixin directly as all base
classes in GPIO Zero include it.

Note: Use this mixin first in the parent class list.

values
An infinite iterator of values read from value.

18.3 SourceMixin

class gpiozero.SourceMixin(...)
Adds a source (page 202) property to the class which, given an iterable or a ValuesMixin
(page 202) descendent, sets value (page 201) to each member of that iterable until it is exhausted.
This mixin is generally included in novel output devices to allow their state to be driven from
another device.

Note: Use this mixin first in the parent class list.

source
The iterable to use as a source of values for value.

source_delay
The delay (measured in seconds) in the loop used to read values from source (page 202).
Defaults to 0.01 seconds which is generally sufficient to keep CPU usage to a minimum while
providing adequate responsiveness.

18.4 SharedMixin

class gpiozero.SharedMixin(...)
This mixin marks a class as “shared”. In this case, the meta-class (GPIOMeta) will use
_shared_key() (page 202) to convert the constructor arguments to an immutable key, and will
check whether any existing instances match that key. If they do, they will be returned by the
constructor instead of a new instance. An internal reference counter is used to determine how
many times an instance has been “constructed” in this way.

When close() (page 201) is called, an internal reference counter will be decremented and the
instance will only close when it reaches zero.

classmethod _shared_key(*args, **kwargs)
This is called with the constructor arguments to generate a unique key (which must be storable
in a dict925 and, thus, immutable and hashable) representing the instance that can be shared.
This must be overridden by descendents.

925 https://docs.python.org/3.7/library/stdtypes.html#dict

202 Chapter 18. API - Generic Classes

https://docs.python.org/3.7/library/stdtypes.html#dict


GPIO Zero Documentation, Release 1.6.1

The default simply assumes all positional arguments are immutable and returns this as the
key but this is almost never the “right” thing to do and almost all descendents should override
this method.

18.5 EventsMixin

class gpiozero.EventsMixin(...)
Adds edge-detected when_activated() (page 203) and when_deactivated() (page 203) events to
a device based on changes to the is_active (page 201) property common to all devices. Also adds
wait_for_active() (page 203) and wait_for_inactive() (page 203) methods for level-waiting.

Note: Note that this mixin provides no means of actually firing its events; call _fire_events()
in sub-classes when device state changes to trigger the events. This should also be called once at
the end of initialization to set initial states.

wait_for_active(timeout=None)
Pause the script until the device is activated, or the timeout is reached.

Parameters timeout (float926 or None927) – Number of seconds to wait before
proceeding. If this is None928 (the default), then wait indefinitely until the device
is active.

wait_for_inactive(timeout=None)
Pause the script until the device is deactivated, or the timeout is reached.

Parameters timeout (float929 or None930) – Number of seconds to wait before
proceeding. If this is None931 (the default), then wait indefinitely until the device
is inactive.

active_time
The length of time (in seconds) that the device has been active for. When the device is
inactive, this is None932.

inactive_time
The length of time (in seconds) that the device has been inactive for. When the device is
active, this is None933.

when_activated
The function to run when the device changes state from inactive to active.

This can be set to a function which accepts no (mandatory) parameters, or a Python function
which accepts a single mandatory parameter (with as many optional parameters as you like).
If the function accepts a single mandatory parameter, the device that activated it will be
passed as that parameter.

Set this property to None934 (the default) to disable the event.

when_deactivated
The function to run when the device changes state from active to inactive.

This can be set to a function which accepts no (mandatory) parameters, or a Python function
which accepts a single mandatory parameter (with as many optional parameters as you like).

926 https://docs.python.org/3.7/library/functions.html#float
927 https://docs.python.org/3.7/library/constants.html#None
928 https://docs.python.org/3.7/library/constants.html#None
929 https://docs.python.org/3.7/library/functions.html#float
930 https://docs.python.org/3.7/library/constants.html#None
931 https://docs.python.org/3.7/library/constants.html#None
932 https://docs.python.org/3.7/library/constants.html#None
933 https://docs.python.org/3.7/library/constants.html#None
934 https://docs.python.org/3.7/library/constants.html#None

18.5. EventsMixin 203

https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None


GPIO Zero Documentation, Release 1.6.1

If the function accepts a single mandatory parameter, the device that deactivated it will be
passed as that parameter.

Set this property to None935 (the default) to disable the event.

18.6 HoldMixin

class gpiozero.HoldMixin(...)
Extends EventsMixin (page 203) to add the when_held (page 204) event and the machinery to fire
that event repeatedly (when hold_repeat (page 204) is True936) at internals defined by hold_time
(page 204).

held_time
The length of time (in seconds) that the device has been held for. This is counted from the
first execution of the when_held (page 204) event rather than when the device activated, in
contrast to active_time (page 203). If the device is not currently held, this is None937.

hold_repeat
If True938, when_held (page 204) will be executed repeatedly with hold_time (page 204)
seconds between each invocation.

hold_time
The length of time (in seconds) to wait after the device is activated, until executing the
when_held (page 204) handler. If hold_repeat (page 204) is True, this is also the length of
time between invocations of when_held (page 204).

is_held
When True939, the device has been active for at least hold_time (page 204) seconds.

when_held
The function to run when the device has remained active for hold_time (page 204) seconds.

This can be set to a function which accepts no (mandatory) parameters, or a Python function
which accepts a single mandatory parameter (with as many optional parameters as you like).
If the function accepts a single mandatory parameter, the device that activated will be passed
as that parameter.

Set this property to None940 (the default) to disable the event.

935 https://docs.python.org/3.7/library/constants.html#None
936 https://docs.python.org/3.7/library/constants.html#True
937 https://docs.python.org/3.7/library/constants.html#None
938 https://docs.python.org/3.7/library/constants.html#True
939 https://docs.python.org/3.7/library/constants.html#True
940 https://docs.python.org/3.7/library/constants.html#None

204 Chapter 18. API - Generic Classes

https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#None


CHAPTER 19

API - Device Source Tools

GPIO Zero includes several utility routines which are intended to be used with the Source/Values
(page 65) attributes common to most devices in the library. These utility routines are in the tools
module of GPIO Zero and are typically imported as follows:

from gpiozero.tools import scaled, negated, all_values

Given that source (page 202) and values (page 202) deal with infinite iterators, another excellent source
of utilities is the itertools941 module in the standard library.

19.1 Single source conversions

gpiozero.tools.absoluted(values)
Returns values with all negative elements negated (so that they’re positive). For example:

from gpiozero import PWMLED, Motor, MCP3008
from gpiozero.tools import absoluted, scaled
from signal import pause

led = PWMLED(4)
motor = Motor(22, 27)
pot = MCP3008(channel=0)

motor.source = scaled(pot, -1, 1)
led.source = absoluted(motor)

pause()

gpiozero.tools.booleanized(values, min_value, max_value, hysteresis=0)
Returns True for each item in values between min_value and max_value, and False otherwise.
hysteresis can optionally be used to add hysteresis942 which prevents the output value rapidly
flipping when the input value is fluctuating near the min_value or max_value thresholds. For
example, to light an LED only when a potentiometer is between ¼ and ¾ of its full range:

941 https://docs.python.org/3.7/library/itertools.html#module-itertools
942 https://en.wikipedia.org/wiki/Hysteresis

205

https://docs.python.org/3.7/library/itertools.html#module-itertools
https://en.wikipedia.org/wiki/Hysteresis


GPIO Zero Documentation, Release 1.6.1

from gpiozero import LED, MCP3008
from gpiozero.tools import booleanized
from signal import pause

led = LED(4)
pot = MCP3008(channel=0)

led.source = booleanized(pot, 0.25, 0.75)

pause()

gpiozero.tools.clamped(values, output_min=0, output_max=1)
Returns values clamped from output_min to output_max, i.e. any items less than output_min will
be returned as output_min and any items larger than output_max will be returned as output_max
(these default to 0 and 1 respectively). For example:

from gpiozero import PWMLED, MCP3008
from gpiozero.tools import clamped
from signal import pause

led = PWMLED(4)
pot = MCP3008(channel=0)

led.source = clamped(pot, 0.5, 1.0)

pause()

gpiozero.tools.inverted(values, input_min=0, input_max=1)
Returns the inversion of the supplied values (input_min becomes input_max, input_max becomes
input_min, input_min + 0.1 becomes input_max - 0.1, etc.). All items in values are assumed to
be between input_min and input_max (which default to 0 and 1 respectively), and the output will
be in the same range. For example:

from gpiozero import MCP3008, PWMLED
from gpiozero.tools import inverted
from signal import pause

led = PWMLED(4)
pot = MCP3008(channel=0)

led.source = inverted(pot)

pause()

gpiozero.tools.negated(values)
Returns the negation of the supplied values (True943 becomes False944, and False945 becomes
True946). For example:

from gpiozero import Button, LED
from gpiozero.tools import negated
from signal import pause

led = LED(4)
(continues on next page)

943 https://docs.python.org/3.7/library/constants.html#True
944 https://docs.python.org/3.7/library/constants.html#False
945 https://docs.python.org/3.7/library/constants.html#False
946 https://docs.python.org/3.7/library/constants.html#True

206 Chapter 19. API - Device Source Tools

https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#True


GPIO Zero Documentation, Release 1.6.1

(continued from previous page)

btn = Button(17)

led.source = negated(btn)

pause()

gpiozero.tools.post_delayed(values, delay)
Waits for delay seconds after returning each item from values.

gpiozero.tools.post_periodic_filtered(values, repeat_after, block)
After every repeat_after items, blocks the next block items from values. Note that unlike
pre_periodic_filtered() (page 207), repeat_after can’t be 0. For example, to block every
tenth item read from an ADC:

from gpiozero import MCP3008
from gpiozero.tools import post_periodic_filtered

adc = MCP3008(channel=0)

for value in post_periodic_filtered(adc, 9, 1):
print(value)

gpiozero.tools.pre_delayed(values, delay)
Waits for delay seconds before returning each item from values.

gpiozero.tools.pre_periodic_filtered(values, block, repeat_after)
Blocks the first block items from values, repeating the block after every repeat_after items, if
repeat_after is non-zero. For example, to discard the first 50 values read from an ADC:

from gpiozero import MCP3008
from gpiozero.tools import pre_periodic_filtered

adc = MCP3008(channel=0)

for value in pre_periodic_filtered(adc, 50, 0):
print(value)

Or to only display every even item read from an ADC:

from gpiozero import MCP3008
from gpiozero.tools import pre_periodic_filtered

adc = MCP3008(channel=0)

for value in pre_periodic_filtered(adc, 1, 1):
print(value)

gpiozero.tools.quantized(values, steps, input_min=0, input_max=1)
Returns values quantized to steps increments. All items in values are assumed to be between
input_min and input_max (which default to 0 and 1 respectively), and the output will be in the
same range.

For example, to quantize values between 0 and 1 to 5 “steps” (0.0, 0.25, 0.5, 0.75, 1.0):

from gpiozero import PWMLED, MCP3008
from gpiozero.tools import quantized
from signal import pause

(continues on next page)

19.1. Single source conversions 207



GPIO Zero Documentation, Release 1.6.1

(continued from previous page)

led = PWMLED(4)
pot = MCP3008(channel=0)

led.source = quantized(pot, 4)

pause()

gpiozero.tools.queued(values, qsize)
Queues up readings from values (the number of readings queued is determined by qsize) and begins
yielding values only when the queue is full. For example, to “cascade” values along a sequence of
LEDs:

from gpiozero import LEDBoard, Button
from gpiozero.tools import queued
from signal import pause

leds = LEDBoard(5, 6, 13, 19, 26)
btn = Button(17)

for i in range(4):
leds[i].source = queued(leds[i + 1], 5)
leds[i].source_delay = 0.01

leds[4].source = btn

pause()

gpiozero.tools.smoothed(values, qsize, average=<function mean>)
Queues up readings from values (the number of readings queued is determined by qsize) and begins
yielding the average of the last qsize values when the queue is full. The larger the qsize, the more
the values are smoothed. For example, to smooth the analog values read from an ADC:

from gpiozero import MCP3008
from gpiozero.tools import smoothed

adc = MCP3008(channel=0)

for value in smoothed(adc, 5):
print(value)

gpiozero.tools.scaled(values, output_min, output_max, input_min=0, input_max=1)
Returns values scaled from output_min to output_max, assuming that all items in values lie be-
tween input_min and input_max (which default to 0 and 1 respectively). For example, to control
the direction of a motor (which is represented as a value between -1 and 1) using a potentiometer
(which typically provides values between 0 and 1):

from gpiozero import Motor, MCP3008
from gpiozero.tools import scaled
from signal import pause

motor = Motor(20, 21)
pot = MCP3008(channel=0)

motor.source = scaled(pot, -1, 1)

pause()

208 Chapter 19. API - Device Source Tools



GPIO Zero Documentation, Release 1.6.1

Warning: If values contains elements that lie outside input_min to input_max (inclusive)
then the function will not produce values that lie within output_min to output_max (inclusive).

19.2 Combining sources

gpiozero.tools.all_values(*values)
Returns the logical conjunction947 of all supplied values (the result is only True948 if and only if
all input values are simultaneously True949). One or more values can be specified. For example,
to light an LED (page 123) only when both buttons are pressed:

from gpiozero import LED, Button
from gpiozero.tools import all_values
from signal import pause

led = LED(4)
btn1 = Button(20)
btn2 = Button(21)

led.source = all_values(btn1, btn2)

pause()

gpiozero.tools.any_values(*values)
Returns the logical disjunction950 of all supplied values (the result is True951 if any of the input
values are currently True952). One or more values can be specified. For example, to light an LED
(page 123) when any button is pressed:

from gpiozero import LED, Button
from gpiozero.tools import any_values
from signal import pause

led = LED(4)
btn1 = Button(20)
btn2 = Button(21)

led.source = any_values(btn1, btn2)

pause()

gpiozero.tools.averaged(*values)
Returns the mean of all supplied values. One or more values can be specified. For example, to light
a PWMLED (page 125) as the average of several potentiometers connected to an MCP3008 (page 147)
ADC:

from gpiozero import MCP3008, PWMLED
from gpiozero.tools import averaged
from signal import pause

pot1 = MCP3008(channel=0)
(continues on next page)

947 https://en.wikipedia.org/wiki/Logical_conjunction
948 https://docs.python.org/3.7/library/constants.html#True
949 https://docs.python.org/3.7/library/constants.html#True
950 https://en.wikipedia.org/wiki/Logical_disjunction
951 https://docs.python.org/3.7/library/constants.html#True
952 https://docs.python.org/3.7/library/constants.html#True

19.2. Combining sources 209

https://en.wikipedia.org/wiki/Logical_conjunction
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#True
https://en.wikipedia.org/wiki/Logical_disjunction
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#True


GPIO Zero Documentation, Release 1.6.1

(continued from previous page)

pot2 = MCP3008(channel=1)
pot3 = MCP3008(channel=2)
led = PWMLED(4)

led.source = averaged(pot1, pot2, pot3)

pause()

gpiozero.tools.multiplied(*values)
Returns the product of all supplied values. One or more values can be specified. For example, to
light a PWMLED (page 125) as the product (i.e. multiplication) of several potentiometers connected
to an MCP3008 (page 147) ADC:

from gpiozero import MCP3008, PWMLED
from gpiozero.tools import multiplied
from signal import pause

pot1 = MCP3008(channel=0)
pot2 = MCP3008(channel=1)
pot3 = MCP3008(channel=2)
led = PWMLED(4)

led.source = multiplied(pot1, pot2, pot3)

pause()

gpiozero.tools.summed(*values)
Returns the sum of all supplied values. One or more values can be specified. For example, to
light a PWMLED (page 125) as the (scaled) sum of several potentiometers connected to an MCP3008
(page 147) ADC:

from gpiozero import MCP3008, PWMLED
from gpiozero.tools import summed, scaled
from signal import pause

pot1 = MCP3008(channel=0)
pot2 = MCP3008(channel=1)
pot3 = MCP3008(channel=2)
led = PWMLED(4)

led.source = scaled(summed(pot1, pot2, pot3), 0, 1, 0, 3)

pause()

gpiozero.tools.zip_values(*devices)
Provides a source constructed from the values of each item, for example:

from gpiozero import MCP3008, Robot
from gpiozero.tools import zip_values
from signal import pause

robot = Robot(left=(4, 14), right=(17, 18))

left = MCP3008(0)
right = MCP3008(1)

robot.source = zip_values(left, right)
(continues on next page)

210 Chapter 19. API - Device Source Tools



GPIO Zero Documentation, Release 1.6.1

(continued from previous page)

pause()

zip_values(left, right) is equivalent to zip(left.values, right.values).

19.3 Artificial sources

gpiozero.tools.alternating_values(initial_value=False)
Provides an infinite source of values alternating between True953 and False954, starting wth ini-
tial_value (which defaults to False955). For example, to produce a flashing LED:

from gpiozero import LED
from gpiozero.tools import alternating_values
from signal import pause

red = LED(2)

red.source_delay = 0.5
red.source = alternating_values()

pause()

gpiozero.tools.cos_values(period=360)
Provides an infinite source of values representing a cosine wave (from -1 to +1) which repeats every
period values. For example, to produce a “siren” effect with a couple of LEDs that repeats once a
second:

from gpiozero import PWMLED
from gpiozero.tools import cos_values, scaled_half, inverted
from signal import pause

red = PWMLED(2)
blue = PWMLED(3)

red.source_delay = 0.01
blue.source_delay = red.source_delay
red.source = scaled_half(cos_values(100))
blue.source = inverted(red)

pause()

If you require a different range than -1 to +1, see scaled() (page 208).

gpiozero.tools.ramping_values(period=360)
Provides an infinite source of values representing a triangle wave (from 0 to 1 and back again)
which repeats every period values. For example, to pulse an LED once a second:

from gpiozero import PWMLED
from gpiozero.tools import ramping_values
from signal import pause

red = PWMLED(2)
(continues on next page)

953 https://docs.python.org/3.7/library/constants.html#True
954 https://docs.python.org/3.7/library/constants.html#False
955 https://docs.python.org/3.7/library/constants.html#False

19.3. Artificial sources 211

https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#False


GPIO Zero Documentation, Release 1.6.1

(continued from previous page)

red.source_delay = 0.01
red.source = ramping_values(100)

pause()

If you require a wider range than 0 to 1, see scaled() (page 208).

gpiozero.tools.random_values()
Provides an infinite source of random values between 0 and 1. For example, to produce a “flickering
candle” effect with an LED:

from gpiozero import PWMLED
from gpiozero.tools import random_values
from signal import pause

led = PWMLED(4)

led.source = random_values()

pause()

If you require a wider range than 0 to 1, see scaled() (page 208).

gpiozero.tools.sin_values(period=360)
Provides an infinite source of values representing a sine wave (from -1 to +1) which repeats every
period values. For example, to produce a “siren” effect with a couple of LEDs that repeats once a
second:

from gpiozero import PWMLED
from gpiozero.tools import sin_values, scaled_half, inverted
from signal import pause

red = PWMLED(2)
blue = PWMLED(3)

red.source_delay = 0.01
blue.source_delay = red.source_delay
red.source = scaled_half(sin_values(100))
blue.source = inverted(red)

pause()

If you require a different range than -1 to +1, see scaled() (page 208).

212 Chapter 19. API - Device Source Tools



CHAPTER 20

API - Fonts

GPIO Zero includes a concept of “fonts” which is somewhat different to that you may be familiar with.
While a typical printing font determines how a particular character is rendered on a page, a GPIO Zero
font determines how a particular character is rendered by a series of lights, like LED segments (e.g. with
LEDCharDisplay (page 160) or LEDMultiCharDisplay (page 162)).

As a result, GPIO Zero’s fonts are quite crude affairs, being little more than mappings of characters
to tuples of LED states. Still, it helps to have a “friendly” format for creating such fonts, and in this
module the library provides several routines for this purpose.

The module itself is typically imported as follows:

from gpiozero import fonts

20.1 Font Parsing

gpiozero.fonts.load_font_7seg(filename_or_obj)
Given a filename or a file-like object, parse it as an font definition for a 7-segment display956,
returning a dict957 suitable for use with LEDCharDisplay (page 160).

The file-format is a simple text-based format in which blank and #-prefixed lines are ignored. All
other lines are assumed to be groups of character definitions which are cells of 3x3 characters laid
out as follows:

Ca
fgb
edc

Where C is the character being defined, and a-g define the states of the LEDs for that position. a,
d, and g are on if they are “_”. b, c, e, and f are on if they are “|”. Any other character in these
positions is considered off. For example, you might define the following characters:

. 0_ 1. 2_ 3_ 4. 5_ 6_ 7_ 8_ 9_
... |.| ..| ._| ._| |_| |_. |_. ..| |_| |_|
... |_| ..| |_. ._| ..| ._| |_| ..| |_| ._|

956 https://en.wikipedia.org/wiki/Seven-segment_display
957 https://docs.python.org/3.7/library/stdtypes.html#dict

213

https://en.wikipedia.org/wiki/Seven-segment_display
https://docs.python.org/3.7/library/stdtypes.html#dict


GPIO Zero Documentation, Release 1.6.1

In the example above, empty locations are marked with “.” but could mostly be left as spaces.
However, the first item defines the space (” “) character and needs some non-space characters in its
definition as the parser also strips empty columns (as typically occur between character definitions).
This is also why the definition for “1” must include something to fill the middle column.

gpiozero.fonts.load_font_14seg(filename_or_obj)
Given a filename or a file-like object, parse it as a font definition for a 14-segment display958,
returning a dict959 suitable for use with LEDCharDisplay (page 160).

The file-format is a simple text-based format in which blank and #-prefixed lines are ignored. All
other lines are assumed to be groups of character definitions which are cells of 5x5 characters laid
out as follows:

X.a..
fijkb
.g.h.
elmnc
..d..

Where X is the character being defined, and a-n define the states of the LEDs for that position. a,
d, g, and h are on if they are “-“. b, c, e, f, j, and m are on if they are “|”. i and n are on if they
are “”. Finally, k and l are on if they are “/”. Any other character in these positions is considered
off. For example, you might define the following characters:

.... 0--- 1.. 2--- 3--- 4 5--- 6--- 7---. 8--- 9---
..... | /| /| | | | | | | / | | | |
..... | / | | --- -- ---| --- |--- | --- ---|
..... |/ | | | | | | | | | | | |
..... --- --- --- --- --- ---

In the example above, several locations have extraneous characters. For example, the “/” in the
center of the “0” definition, or the “-” in the middle of the “8”. These locations are ignored, but
filled in nonetheless to make the shape more obvious.

These extraneous locations could equally well be left as spaces. However, the first item defines the
space (” “) character and needs some non-space characters in its definition as the parser also strips
empty columns (as typically occur between character definitions) and verifies that definitions are
5 columns wide and 5 rows high.

This also explains why place-holder characters (“.”) have been inserted at the top of the definition
of the “1” character. Otherwise the parser will strip these empty columns and decide the definition
is invalid (as the result is only 3 columns wide).

gpiozero.fonts.load_segment_font(filename_or_obj, width, height, pins)
A generic function for parsing segment font definition files.

If you’re working with “standard” 7-segment960 or 14-segment961 displays you don’t want this
function; see load_font_7seg() (page 213) or load_font_14seg() (page 214) instead. However,
if you are working with another style of segmented display and wish to construct a parser for a
custom format, this is the function you want.

The filename_or_obj parameter is simply the file-like object or filename to load. This is typically
passed in from the calling function.

The width and height parameters give the width and height in characters of each character defini-
tion. For example, these are 3 and 3 for 7-segment displays. Finally, pins is a list of tuples that
defines the position of each pin definition in the character array, and the character that marks that
position “active”.

958 https://en.wikipedia.org/wiki/Fourteen-segment_display
959 https://docs.python.org/3.7/library/stdtypes.html#dict
960 https://en.wikipedia.org/wiki/Seven-segment_display
961 https://en.wikipedia.org/wiki/Fourteen-segment_display

214 Chapter 20. API - Fonts

https://en.wikipedia.org/wiki/Fourteen-segment_display
https://docs.python.org/3.7/library/stdtypes.html#dict
https://en.wikipedia.org/wiki/Seven-segment_display
https://en.wikipedia.org/wiki/Fourteen-segment_display


GPIO Zero Documentation, Release 1.6.1

For example, for 7-segment displays this function is called as follows:

load_segment_font(filename_or_obj, width=3, height=3, pins=[
(1, '_'), (5, '|'), (8, '|'), (7, '_'),
(6, '|'), (3, '|'), (4, '_')])

This dictates that each character will be defined by a 3x3 character grid which will be converted
into a nine-character string like so:

012
345 ==> '012345678'
678

Position 0 is always assumed to be the character being defined. The pins list then specifies: the
first pin is the character at position 1 which will be “on” when that character is “_”. The second
pin is the character at position 5 which will be “on” when that character is “|”, and so on.

20.1. Font Parsing 215



GPIO Zero Documentation, Release 1.6.1

216 Chapter 20. API - Fonts



CHAPTER 21

API - Tones

GPIO Zero includes a Tone (page 217) class intended for use with the TonalBuzzer (page 131). This
class is in the tones module of GPIO Zero and is typically imported as follows:

from gpiozero.tones import Tone

21.1 Tone

class gpiozero.tones.Tone
Represents a frequency of sound in a variety of musical notations.

Tone (page 217) class can be used with the TonalBuzzer (page 131) class to easily represent musical
tones. The class can be constructed in a variety of ways. For example as a straight frequency in
Hz962 (which is the internal storage format), as an integer MIDI note, or as a string representation
of a musical note.

All the following constructors are equivalent ways to construct the typical tuning note, concert
A963 at 440Hz, which is MIDI note #69:

>>> from gpiozero.tones import Tone
>>> Tone(440.0)
>>> Tone(69)
>>> Tone('A4')

If you do not want the constructor to guess which format you are using (there is some ambiguity
between frequencies and MIDI notes at the bottom end of the frequencies, from 128Hz down), you
can use one of the explicit constructors, from_frequency() (page 218), from_midi() (page 218),
or from_note() (page 218), or you can specify a keyword argument when constructing:

>>> Tone.from_frequency(440)
>>> Tone.from_midi(69)
>>> Tone.from_note('A4')
>>> Tone(frequency=440)

(continues on next page)

962 https://en.wikipedia.org/wiki/Hertz
963 https://en.wikipedia.org/wiki/Concert_pitch

217

https://en.wikipedia.org/wiki/Hertz
https://en.wikipedia.org/wiki/Concert_pitch
https://en.wikipedia.org/wiki/Concert_pitch


GPIO Zero Documentation, Release 1.6.1

(continued from previous page)

>>> Tone(midi=69)
>>> Tone(note='A4')

Several attributes are provided to permit conversion to any of the supported construction formats:
frequency (page 218), midi (page 218), and note (page 218). Methods are provided to step up()
(page 218) or down() (page 218) to adjacent MIDI notes.

Warning: Currently Tone (page 217) derives from float964 and can be used as a floating
point number in most circumstances (addition, subtraction, etc). This part of the API is not yet
considered “stable”; i.e. we may decide to enhance / change this behaviour in future versions.

down(n=1)
Return the Tone (page 217) n semi-tones below this frequency (n defaults to 1).

classmethod from_frequency(freq)
Construct a Tone (page 217) from a frequency specified in Hz965 which must be a positive
floating-point value in the range 0 < freq <= 20000.

classmethod from_midi(midi_note)
Construct a Tone (page 217) from a MIDI note, which must be an integer in the range 0 to
127. For reference, A4 (concert A966 typically used for tuning) is MIDI note #69.

classmethod from_note(note)
Construct a Tone (page 217) from a musical note which must consist of a capital letter A
through G, followed by an optional semi-tone modifier (“b” for flat, “#” for sharp, or their
Unicode equivalents), followed by an octave number (0 through 9).

For example concert A967, the typical tuning note at 440Hz, would be represented as “A4”.
One semi-tone above this would be “A#4” or alternatively “Bb4”. Unicode representations of
sharp and flat are also accepted.

up(n=1)
Return the Tone (page 217) n semi-tones above this frequency (n defaults to 1).

frequency
Return the frequency of the tone in Hz968.

midi
Return the (nearest) MIDI note to the tone’s frequency. This will be an integer number in
the range 0 to 127. If the frequency is outside the range represented by MIDI notes (which is
approximately 8Hz to 12.5KHz) ValueError969 exception will be raised.

note
Return the (nearest) note to the tone’s frequency. This will be a string in the form accepted
by from_note() (page 218). If the frequency is outside the range represented by this for-
mat (“A0” is approximately 27.5Hz, and “G9” is approximately 12.5Khz) a ValueError970

exception will be raised.

964 https://docs.python.org/3.7/library/functions.html#float
965 https://en.wikipedia.org/wiki/Hertz
966 https://en.wikipedia.org/wiki/Concert_pitch
967 https://en.wikipedia.org/wiki/Concert_pitch
968 https://en.wikipedia.org/wiki/Hertz
969 https://docs.python.org/3.7/library/exceptions.html#ValueError
970 https://docs.python.org/3.7/library/exceptions.html#ValueError

218 Chapter 21. API - Tones

https://docs.python.org/3.7/library/functions.html#float
https://en.wikipedia.org/wiki/Hertz
https://en.wikipedia.org/wiki/Concert_pitch
https://en.wikipedia.org/wiki/Concert_pitch
https://en.wikipedia.org/wiki/Hertz
https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/exceptions.html#ValueError


CHAPTER 22

API - Pi Information

The GPIO Zero library also contains a database of information about the various revisions of the Rasp-
berry Pi computer. This is used internally to raise warnings when non-physical pins are used, or to raise
exceptions when pull-downs are requested on pins with physical pull-up resistors attached. The following
functions and classes can be used to query this database:

22.1 pi_info

gpiozero.pi_info(revision=None)
Returns a PiBoardInfo (page 219) instance containing information about a revision of the Rasp-
berry Pi.

Parameters revision (str971) – The revision of the Pi to return information about.
If this is omitted or None972 (the default), then the library will attempt to determine
the model of Pi it is running on and return information about that.

22.2 PiBoardInfo

class gpiozero.PiBoardInfo
This class is a namedtuple()973 derivative used to represent information about a particular model
of Raspberry Pi. While it is a tuple, it is strongly recommended that you use the following named
attributes to access the data contained within. The object can be used in format strings with
various custom format specifications:

from gpiozero import *

print('{0}'.format(pi_info()))
print('{0:full}'.format(pi_info()))
print('{0:board}'.format(pi_info()))
print('{0:specs}'.format(pi_info()))
print('{0:headers}'.format(pi_info()))

971 https://docs.python.org/3.7/library/stdtypes.html#str
972 https://docs.python.org/3.7/library/constants.html#None
973 https://docs.python.org/3.7/library/collections.html#collections.namedtuple

219

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/collections.html#collections.namedtuple


GPIO Zero Documentation, Release 1.6.1

“color” and “mono” can be prefixed to format specifications to force the use of ANSI color codes974.
If neither is specified, ANSI codes will only be used if stdout is detected to be a tty:

print('{0:color board}'.format(pi_info())) # force use of ANSI codes
print('{0:mono board}'.format(pi_info())) # force plain ASCII

physical_pin(function)
Return the physical pin supporting the specified function. If no pins support the desired
function, this function raises PinNoPins (page 249). If multiple pins support the desired
function, PinMultiplePins (page 249) will be raised (use physical_pins() (page 220) if you
expect multiple pins in the result, such as for electrical ground).

Parameters function (str975) – The pin function you wish to search for. Usually
this is something like “GPIO9” for Broadcom GPIO pin 9.

physical_pins(function)
Return the physical pins supporting the specified function as tuples of (header, pin_number)
where header is a string specifying the header containing the pin_number. Note that the
return value is a set976 which is not indexable. Use physical_pin() (page 220) if you are
expecting a single return value.

Parameters function (str977) – The pin function you wish to search for. Usually
this is something like “GPIO9” for Broadcom GPIO pin 9, or “GND” for all the
pins connecting to electrical ground.

pprint(color=None)
Pretty-print a representation of the board along with header diagrams.

If color is None978 (the default), the diagram will include ANSI color codes if stdout is a
color-capable terminal. Otherwise color can be set to True979 or False980 to force color or
monochrome output.

pulled_up(function)
Returns a bool indicating whether a physical pull-up is attached to the pin supporting the
specified function. Either PinNoPins (page 249) or PinMultiplePins (page 249) may be
raised if the function is not associated with a single pin.

Parameters function (str981) – The pin function you wish to determine pull-up
for. Usually this is something like “GPIO9” for Broadcom GPIO pin 9.

to_gpio(spec)
Parses a pin spec, returning the equivalent Broadcom GPIO port number or raising a
ValueError982 exception if the spec does not represent a GPIO port.

The spec may be given in any of the following forms:

• An integer, which will be accepted as a GPIO number

• ‘GPIOn’ where n is the GPIO number

• ‘WPIn’ where n is the wiringPi983 pin number

• ‘BCMn’ where n is the GPIO number (alias of GPIOn)

• ‘BOARDn’ where n is the physical pin number on the main header
974 https://en.wikipedia.org/wiki/ANSI_escape_code
975 https://docs.python.org/3.7/library/stdtypes.html#str
976 https://docs.python.org/3.7/library/stdtypes.html#set
977 https://docs.python.org/3.7/library/stdtypes.html#str
978 https://docs.python.org/3.7/library/constants.html#None
979 https://docs.python.org/3.7/library/constants.html#True
980 https://docs.python.org/3.7/library/constants.html#False
981 https://docs.python.org/3.7/library/stdtypes.html#str
982 https://docs.python.org/3.7/library/exceptions.html#ValueError
983 http://wiringpi.com/pins/

220 Chapter 22. API - Pi Information

https://en.wikipedia.org/wiki/ANSI_escape_code
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#set
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/exceptions.html#ValueError
http://wiringpi.com/pins/


GPIO Zero Documentation, Release 1.6.1

• ‘h:n’ where h is the header name and n is the physical pin number (for example J8:5 is
physical pin 5 on header J8, which is the main header on modern Raspberry Pis)

revision
A string indicating the revision of the Pi. This is unique to each revision and can be considered
the “key” from which all other attributes are derived. However, in itself the string is fairly
meaningless.

model
A string containing the model of the Pi (for example, “B”, “B+”, “A+”, “2B”, “CM” (for the
Compute Module), or “Zero”).

pcb_revision
A string containing the PCB revision number which is silk-screened onto the Pi (on some
models).

Note: This is primarily useful to distinguish between the model B revision 1.0 and 2.0 (not
to be confused with the model 2B) which had slightly different pinouts on their 26-pin GPIO
headers.

released
A string containing an approximate release date for this revision of the Pi (formatted as
yyyyQq, e.g. 2012Q1 means the first quarter of 2012).

soc
A string indicating the SoC (system on a chip984) that this revision of the Pi is based upon.

manufacturer
A string indicating the name of the manufacturer (usually “Sony” but a few others exist).

memory
An integer indicating the amount of memory (in Mb) connected to the SoC.

Note: This can differ substantially from the amount of RAM available to the operating
system as the GPU’s memory is shared with the CPU. When the camera module is activated,
at least 128Mb of RAM is typically reserved for the GPU.

storage
A string indicating the type of bootable storage used with this revision of Pi, e.g. “SD”,
“MicroSD”, or “eMMC” (for the Compute Module).

usb
An integer indicating how many USB ports are physically present on this revision of the Pi,
of any type.

Note: This does not include the micro-USB or USB-C port used to power the Pi.

usb3
An integer indicating how many of the USB ports are USB3 ports on this revision of the Pi.

ethernet
An integer indicating how many Ethernet ports are physically present on this revision of the
Pi.

eth_speed
An integer indicating the maximum speed (in Mbps) of the Ethernet ports (if any). If no
Ethernet ports are present, this is 0.

984 https://en.wikipedia.org/wiki/System_on_a_chip

22.2. PiBoardInfo 221

https://en.wikipedia.org/wiki/System_on_a_chip


GPIO Zero Documentation, Release 1.6.1

wifi
A bool indicating whether this revision of the Pi has wifi built-in.

bluetooth
A bool indicating whether this revision of the Pi has bluetooth built-in.

csi
An integer indicating the number of CSI (camera) ports available on this revision of the Pi.

dsi
An integer indicating the number of DSI (display) ports available on this revision of the Pi.

headers
A dictionary which maps header labels to HeaderInfo (page 222) tuples. For example, to
obtain information about header P1 you would query headers['P1']. To obtain information
about pin 12 on header J8 you would query headers['J8'].pins[12].

A rendered version of this data can be obtained by using the PiBoardInfo (page 219) object
in a format string:

from gpiozero import *
print('{0:headers}'.format(pi_info()))

board
An ASCII art rendition of the board, primarily intended for console pretty-print usage. A more
usefully rendered version of this data can be obtained by using the PiBoardInfo (page 219)
object in a format string. For example:

from gpiozero import *
print('{0:board}'.format(pi_info()))

22.3 HeaderInfo

class gpiozero.HeaderInfo
This class is a namedtuple()985 derivative used to represent information about a pin header on a
board. The object can be used in a format string with various custom specifications:

from gpiozero import *

print('{0}'.format(pi_info().headers['J8']))
print('{0:full}'.format(pi_info().headers['J8']))
print('{0:col2}'.format(pi_info().headers['P1']))
print('{0:row1}'.format(pi_info().headers['P1']))

“color” and “mono” can be prefixed to format specifications to force the use of ANSI color codes986.
If neither is specified, ANSI codes will only be used if stdout is detected to be a tty:

print('{0:color row2}'.format(pi_info().headers['J8'])) # force use of ANSI codes
print('{0:mono row2}'.format(pi_info().headers['P1'])) # force plain ASCII

The following attributes are defined:

pprint(color=None)
Pretty-print a diagram of the header pins.

If color is None987 (the default, the diagram will include ANSI color codes if stdout is a
985 https://docs.python.org/3.7/library/collections.html#collections.namedtuple
986 https://en.wikipedia.org/wiki/ANSI_escape_code
987 https://docs.python.org/3.7/library/constants.html#None

222 Chapter 22. API - Pi Information

https://docs.python.org/3.7/library/collections.html#collections.namedtuple
https://en.wikipedia.org/wiki/ANSI_escape_code
https://docs.python.org/3.7/library/constants.html#None


GPIO Zero Documentation, Release 1.6.1

color-capable terminal). Otherwise color can be set to True988 or False989 to force color or
monochrome output.

name
The name of the header, typically as it appears silk-screened on the board (e.g. “P1” or “J8”).

rows
The number of rows on the header.

columns
The number of columns on the header.

pins
A dictionary mapping physical pin numbers to PinInfo (page 223) tuples.

22.4 PinInfo

class gpiozero.PinInfo
This class is a namedtuple()990 derivative used to represent information about a pin present on a
GPIO header. The following attributes are defined:

number
An integer containing the physical pin number on the header (starting from 1 in accordance
with convention).

function
A string describing the function of the pin. Some common examples include “GND” (for pins
connecting to ground), “3V3” (for pins which output 3.3 volts), “GPIO9” (for GPIO9 in the
Broadcom numbering scheme), etc.

pull_up
A bool indicating whether the pin has a physical pull-up resistor permanently attached (this
is usually False991 but GPIO2 and GPIO3 are usually True992). This is used internally by
gpiozero to raise errors when pull-down is requested on a pin with a physical pull-up resistor.

row
An integer indicating on which row the pin is physically located in the header (1-based)

col
An integer indicating in which column the pin is physically located in the header (1-based)

988 https://docs.python.org/3.7/library/constants.html#True
989 https://docs.python.org/3.7/library/constants.html#False
990 https://docs.python.org/3.7/library/collections.html#collections.namedtuple
991 https://docs.python.org/3.7/library/constants.html#False
992 https://docs.python.org/3.7/library/constants.html#True

22.4. PinInfo 223

https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/collections.html#collections.namedtuple
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#True


GPIO Zero Documentation, Release 1.6.1

224 Chapter 22. API - Pi Information



CHAPTER 23

API - Pins

As of release 1.1, the GPIO Zero library can be roughly divided into two things: pins and the devices
that are connected to them. The majority of the documentation focuses on devices as pins are below
the level that most users are concerned with. However, some users may wish to take advantage of the
capabilities of alternative GPIO implementations or (in future) use GPIO extender chips. This is the
purpose of the pins portion of the library.

When you construct a device, you pass in a pin specification. This is passed to a pin Factory (page 230)
which turns it into a Pin (page 231) implementation. The default factory can be queried (and changed)
with Device.pin_factory (page 201). However, all classes (even internal devices) accept a pin_factory
keyword argument to their constructors permitting the factory to be overridden on a per-device basis
(the reason for allowing per-device factories is made apparent in the Configuring Remote GPIO (page 49)
chapter).

This is illustrated in the following flow-chart:

225



GPIO Zero Documentation, Release 1.6.1

LED(pin_spec, ...,
pin_factory=None)

pin_factory
is None?

Device.pin_factory
is None?

yes

self.pin_factory =
pin_factory

no

Device.pin_factory =
Device._default_pin_factory()

yes

self.pin_factory =
Device.pin_factory

no

self.pin =
self.pin_factory.pin(pin_spec)

The default factory is constructed when the first device is initialised; if no default factory can be con-
structed (e.g. because no GPIO implementations are installed, or all of them fail to load for whatever
reason), a BadPinFactory (page 246) exception will be raised at construction time.

After importing gpiozero, until constructing a gpiozero device, the pin factory is None993, but at the
point of first construction the default pin factory will come into effect:

pi@raspberrypi:~ $ python3
Python 3.7.3 (default, Apr 3 2019, 05:39:12)
[GCC 8.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from gpiozero import Device, LED
>>> print(Device.pin_factory)
None

(continues on next page)

993 https://docs.python.org/3.7/library/constants.html#None

226 Chapter 23. API - Pins

https://docs.python.org/3.7/library/constants.html#None


GPIO Zero Documentation, Release 1.6.1

(continued from previous page)

>>> led = LED(2)
>>> Device.pin_factory
<gpiozero.pins.rpigpio.RPiGPIOFactory object at 0xb667ae30>
>>> led.pin_factory
<gpiozero.pins.rpigpio.RPiGPIOFactory object at 0xb6323530>

As above, on a Raspberry Pi with the RPi.GPIO library installed, (assuming no environment variables
are set), the default pin factory will be RPiGPIOFactory (page 239).

On a PC (with no pin libraries installed and no environment variables set), importing will work but
attempting to create a device will raise BadPinFactory (page 246):

ben@magicman:~ $ python3
Python 3.6.8 (default, Aug 20 2019, 17:12:48)
[GCC 8.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from gpiozero import Device, LED
>>> print(Device.pin_factory)
None
>>> led = LED(2)
...
BadPinFactory: Unable to load any default pin factory!

23.1 Changing the pin factory

The default pin factory can be replaced by specifying a value for the GPIOZERO_PIN_FACTORY (page 80)
environment variable. For example:

pi@raspberrypi:~ $ GPIOZERO_PIN_FACTORY=native python3
Python 3.7.3 (default, Apr 3 2019, 05:39:12)
[GCC 8.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from gpiozero import Device
>>> Device._default_pin_factory()
<gpiozero.pins.native.NativeFactory object at 0x762c26b0>

To set the GPIOZERO_PIN_FACTORY (page 80) for the rest of your session you can export this value:

pi@raspberrypi:~ $ export GPIOZERO_PIN_FACTORY=native
pi@raspberrypi:~ $ python3
Python 3.7.3 (default, Apr 3 2019, 05:39:12)
[GCC 8.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import gpiozero
>>> Device._default_pin_factory()
<gpiozero.pins.native.NativeFactory object at 0x762c26b0>
>>> quit()
pi@raspberrypi:~ $ python3
Python 3.7.3 (default, Apr 3 2019, 05:39:12)
[GCC 8.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import gpiozero
>>> Device._default_pin_factory()
<gpiozero.pins.native.NativeFactory object at 0x762c26b0>

23.1. Changing the pin factory 227



GPIO Zero Documentation, Release 1.6.1

If you add the export command to your ~/.bashrc file, you’ll set the default pin factory for all future
sessions too.

If the environment variable is set, the corresponding pin factory will be used, otherwise each of the four
GPIO pin factories will be attempted to be used in turn.

The following values, and the corresponding Factory (page 230) and Pin (page 231) classes are listed in
the table below. Factories are listed in the order that they are tried by default.

Name Factory class Pin class
rpig-
pio

gpiozero.pins.rpigpio.RPiGPIOFactory
(page 239)

gpiozero.pins.rpigpio.RPiGPIOPin
(page 240)

rpio gpiozero.pins.rpio.RPIOFactory
(page 240)

gpiozero.pins.rpio.RPIOPin (page 241)

pig-
pio

gpiozero.pins.pigpio.PiGPIOFactory
(page 241)

gpiozero.pins.pigpio.PiGPIOPin
(page 241)

na-
tive

gpiozero.pins.native.NativeFactory
(page 242)

gpiozero.pins.native.NativePin
(page 242)

If you need to change the default pin factory from within a script, either set Device.pin_factory
(page 201) to the new factory instance to use:

from gpiozero.pins.native import NativeFactory
from gpiozero import Device, LED

Device.pin_factory = NativeFactory()

# These will now implicitly use NativePin instead of RPiGPIOPin
led1 = LED(16)
led2 = LED(17)

Or use the pin_factory keyword parameter mentioned above:

from gpiozero.pins.native import NativeFactory
from gpiozero import LED

my_factory = NativeFactory()

# This will use NativePin instead of RPiGPIOPin for led1
# but led2 will continue to use RPiGPIOPin
led1 = LED(16, pin_factory=my_factory)
led2 = LED(17)

Certain factories may take default information from additional sources. For example, to default to
creating pins with gpiozero.pins.pigpio.PiGPIOPin (page 241) on a remote pi called “remote-pi” you
can set the PIGPIO_ADDR (page 80) environment variable when running your script:

$ GPIOZERO_PIN_FACTORY=pigpio PIGPIO_ADDR=remote-pi python3 my_script.py

Like the GPIOZERO_PIN_FACTORY (page 80) value, these can be exported from your ~/.bashrc script
too.

Warning: The astute and mischievous reader may note that it is possible to mix factories, e.g.
using RPiGPIOFactory (page 239) for one pin, and NativeFactory (page 242) for another. This is
unsupported, and if it results in your script crashing, your components failing, or your Raspberry Pi
turning into an actual raspberry pie, you have only yourself to blame.

Sensible uses of multiple pin factories are given in Configuring Remote GPIO (page 49).

228 Chapter 23. API - Pins



GPIO Zero Documentation, Release 1.6.1

23.2 Mock pins

There’s also a MockFactory (page 242) which generates entirely fake pins. This was originally intended
for GPIO Zero developers who wish to write tests for devices without having to have the physical device
wired in to their Pi. However, they have also proven useful in developing GPIO Zero scripts without
having a Pi to hand. This pin factory will never be loaded by default; it must be explicitly specified,
either by setting an environment variable or setting the pin factory within the script. For example:

pi@raspberrypi:~ $ GPIOZERO_PIN_FACTORY=mock python3

or:

from gpiozero import Device, LED
from gpiozero.pins.mock import MockFactory

Device.pin_factory = MockFactory()

led = LED(2)

You can create device objects and inspect their value changing as you’d expect:

pi@raspberrypi:~ $ GPIOZERO_PIN_FACTORY=mock python3
Python 3.7.3 (default, Apr 3 2019, 05:39:12)
[GCC 8.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from gpiozero import LED
>>> led = LED(2)
>>> led.value
0
>>> led.on()
>>> led.value
1

You can even control pin state changes to simulate device behaviour:

>>> from gpiozero import LED, Button

# Construct a couple of devices attached to mock pins 16 and 17, and link the devices
>>> led = LED(17)
>>> btn = Button(16)
>>> led.source = btn

# Initailly the button isn't "pressed" so the LED should be off
>>> led.value
0

# Drive the pin low (this is what would happen electrically when the button is␣
↪→pressed)
>>> btn.pin.drive_low()
# The LED is now on
>>> led.value
1

>>> btn.pin.drive_high()
# The button is now "released", so the LED should be off again
>>> led.value
0

23.2. Mock pins 229



GPIO Zero Documentation, Release 1.6.1

Several sub-classes of mock pins exist for emulating various other things (pins that do/don’t support
PWM, pins that are connected together, pins that drive high after a delay, etc), for example, you have
to use MockPWMPin (page 242) to be able to use devices requiring PWM:

pi@raspberrypi:~ $ GPIOZERO_PIN_FACTORY=mock GPIOZERO_MOCK_PIN_CLASS=mockpwmpin␣
↪→python3

or:

from gpiozero import Device, LED
from gpiozero.pins.mock import MockFactory, MockPWMPin

Device.pin_factory = MockFactory(pin_class=MockPWMPin)

led = LED(2)

Interested users are invited to read the GPIO Zero test suite994 for further examples of usage.

23.3 Base classes

class gpiozero.Factory
Generates pins and SPI interfaces for devices. This is an abstract base class for pin factories.
Descendents must override the following methods:

• ticks() (page 231)

• ticks_diff() (page 231)

Descendents may override the following methods, if applicable:

• close() (page 230)

• reserve_pins() (page 231)

• release_pins() (page 230)

• release_all() (page 230)

• pin() (page 230)

• spi() (page 231)

• _get_pi_info()

close()
Closes the pin factory. This is expected to clean up all resources manipulated by the factory.
It it typically called at script termination.

pin(spec)
Creates an instance of a Pin (page 231) descendent representing the specified pin.

Warning: Descendents must ensure that pin instances representing the same hardware
are identical; i.e. two separate invocations of pin() (page 230) for the same pin specifica-
tion must return the same object.

release_all(reserver)
Releases all pin reservations taken out by reserver. See release_pins() (page 230) for further
information).

994 https://github.com/gpiozero/gpiozero/tree/master/tests

230 Chapter 23. API - Pins

https://github.com/gpiozero/gpiozero/tree/master/tests


GPIO Zero Documentation, Release 1.6.1

release_pins(reserver, *pins)
Releases the reservation of reserver against pins. This is typically called during close()
(page 201) to clean up reservations taken during construction. Releasing a reservation that is
not currently held will be silently ignored (to permit clean-up after failed / partial construc-
tion).

reserve_pins(requester, *pins)
Called to indicate that the device reserves the right to use the specified pins. This should be
done during device construction. If pins are reserved, you must ensure that the reservation is
released by eventually called release_pins() (page 230).

spi(**spi_args)
Returns an instance of an SPI (page 234) interface, for the specified SPI port and device, or for
the specified pins (clock_pin, mosi_pin, miso_pin, and select_pin). Only one of the schemes
can be used; attempting to mix port and device with pin numbers will raise SPIBadArgs
(page 247).

ticks()
Return the current ticks, according to the factory. The reference point is undefined and thus
the result of this method is only meaningful when compared to another value returned by this
method.

The format of the time is also arbitrary, as is whether the time wraps after a certain duration.
Ticks should only be compared using the ticks_diff() (page 231) method.

ticks_diff(later, earlier)
Return the time in seconds between two ticks() (page 231) results. The arguments are
specified in the same order as they would be in the formula later - earlier but the result is
guaranteed to be in seconds, and to be positive even if the ticks “wrapped” between calls to
ticks() (page 231).

pi_info
Returns a PiBoardInfo (page 219) instance representing the Pi that instances generated by
this factory will be attached to.

If the pins represented by this class are not directly attached to a Pi (e.g. the pin is attached
to a board attached to the Pi, or the pins are not on a Pi at all), this may return None995.

class gpiozero.Pin
Abstract base class representing a pin attached to some form of controller, be it GPIO, SPI, ADC,
etc.

Descendents should override property getters and setters to accurately represent the capabilities of
pins. Descendents must override the following methods:

• _get_function()

• _set_function()

• _get_state()

Descendents may additionally override the following methods, if applicable:

• close() (page 232)

• output_with_state() (page 232)

• input_with_pull() (page 232)

• _set_state()

• _get_frequency()

• _set_frequency()

• _get_pull()
995 https://docs.python.org/3.7/library/constants.html#None

23.3. Base classes 231

https://docs.python.org/3.7/library/constants.html#None


GPIO Zero Documentation, Release 1.6.1

• _set_pull()

• _get_bounce()

• _set_bounce()

• _get_edges()

• _set_edges()

• _get_when_changed()

• _set_when_changed()

close()
Cleans up the resources allocated to the pin. After this method is called, this Pin (page 231)
instance may no longer be used to query or control the pin’s state.

input_with_pull(pull)
Sets the pin’s function to “input” and specifies an initial pull-up for the pin. By default this
is equivalent to performing:

pin.function = 'input'
pin.pull = pull

However, descendents may override this order to provide the smallest possible delay between
configuring the pin for input and pulling the pin up/down (which can be important for avoiding
“blips” in some configurations).

output_with_state(state)
Sets the pin’s function to “output” and specifies an initial state for the pin. By default this
is equivalent to performing:

pin.function = 'output'
pin.state = state

However, descendents may override this in order to provide the smallest possible delay between
configuring the pin for output and specifying an initial value (which can be important for
avoiding “blips” in active-low configurations).

bounce
The amount of bounce detection (elimination) currently in use by edge detection, measured
in seconds. If bounce detection is not currently in use, this is None996.

For example, if edges (page 233) is currently “rising”, bounce (page 232) is currently 5/1000
(5ms), then the waveform below will only fire when_changed (page 234) on two occasions
despite there being three rising edges:

TIME 0...1...2...3...4...5...6...7...8...9...10..11..12 ms

bounce elimination |===================| |==============

HIGH - - - - > ,--. ,--------------. ,--.
| | | | | |
| | | | | |

LOW ----------------' `-' `-' `-----------
: :
: :

when_changed when_changed
fires fires

996 https://docs.python.org/3.7/library/constants.html#None

232 Chapter 23. API - Pins

https://docs.python.org/3.7/library/constants.html#None


GPIO Zero Documentation, Release 1.6.1

If the pin does not support edge detection, attempts to set this property will raise
PinEdgeDetectUnsupported (page 248). If the pin supports edge detection, the class must
implement bounce detection, even if only in software.

edges
The edge that will trigger execution of the function or bound method assigned to
when_changed (page 234). This can be one of the strings “both” (the default), “rising”,
“falling”, or “none”:

HIGH - - - - > ,--------------.
| |
| |

LOW --------------------' `--------------
: :
: :

Fires when_changed "both" "both"
when edges is ... "rising" "falling"

If the pin does not support edge detection, attempts to set this property will raise
PinEdgeDetectUnsupported (page 248).

frequency
The frequency (in Hz) for the pin’s PWM implementation, or None997 if PWM is not currently
in use. This value always defaults to None998 and may be changed with certain pin types to
activate or deactivate PWM.

If the pin does not support PWM, PinPWMUnsupported (page 249) will be raised when at-
tempting to set this to a value other than None999.

function
The function of the pin. This property is a string indicating the current function or purpose
of the pin. Typically this is the string “input” or “output”. However, in some circumstances
it can be other strings indicating non-GPIO related functionality.

With certain pin types (e.g. GPIO pins), this attribute can be changed to configure the
function of a pin. If an invalid function is specified, for this attribute, PinInvalidFunction
(page 248) will be raised.

pull
The pull-up state of the pin represented as a string. This is typically one of the strings “up”,
“down”, or “floating” but additional values may be supported by the underlying hardware.

If the pin does not support changing pull-up state (for example because of a fixed pull-up
resistor), attempts to set this property will raise PinFixedPull (page 248). If the specified
value is not supported by the underlying hardware, PinInvalidPull (page 248) is raised.

state
The state of the pin. This is 0 for low, and 1 for high. As a low level view of the pin, no
swapping is performed in the case of pull ups (see pull (page 233) for more information):

HIGH - - - - > ,----------------------
|
|

LOW ----------------'

Descendents which implement analog, or analog-like capabilities can return values between 0
and 1. For example, pins implementing PWM (where frequency (page 233) is not None1000)
return a value between 0.0 and 1.0 representing the current PWM duty cycle.

997 https://docs.python.org/3.7/library/constants.html#None
998 https://docs.python.org/3.7/library/constants.html#None
999 https://docs.python.org/3.7/library/constants.html#None

1000 https://docs.python.org/3.7/library/constants.html#None

23.3. Base classes 233

https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None


GPIO Zero Documentation, Release 1.6.1

If a pin is currently configured for input, and an attempt is made to set this attribute,
PinSetInput (page 248) will be raised. If an invalid value is specified for this attribute,
PinInvalidState (page 248) will be raised.

when_changed
A function or bound method to be called when the pin’s state changes (more specifically
when the edge specified by edges (page 233) is detected on the pin). The function or bound
method must accept two parameters: the first will report the ticks (from Factory.ticks()
(page 231)) when the pin’s state changed, and the second will report the pin’s current state.

Warning: Depending on hardware support, the state is not guaranteed to be accurate.
For instance, many GPIO implementations will provide an interrupt indicating when a
pin’s state changed but not what it changed to. In this case the pin driver simply reads
the pin’s current state to supply this parameter, but the pin’s state may have changed
since the interrupt. Exercise appropriate caution when relying upon this parameter.

If the pin does not support edge detection, attempts to set this property will raise
PinEdgeDetectUnsupported (page 248).

class gpiozero.SPI(**kwargs)
Abstract interface for Serial Peripheral Interface1001 (SPI) implementations. Descendents must
override the following methods:

• transfer() (page 234)

• _get_clock_mode()

Descendents may override the following methods, if applicable:

• read() (page 234)

• write() (page 234)

• _set_clock_mode()

• _get_lsb_first()

• _set_lsb_first()

• _get_select_high()

• _set_select_high()

• _get_bits_per_word()

• _set_bits_per_word()

read(n)
Read n words of data from the SPI interface, returning them as a sequence of unsigned ints,
each no larger than the configured bits_per_word (page 235) of the interface.

This method is typically used with read-only devices that feature half-duplex communication.
See transfer() (page 234) for full duplex communication.

transfer(data)
Write data to the SPI interface. data must be a sequence of unsigned integer words each of
which will fit within the configured bits_per_word (page 235) of the interface. The method
returns the sequence of words read from the interface while writing occurred (full duplex
communication).

The length of the sequence returned dictates the number of words of data written to the
interface. Each word in the returned sequence will be an unsigned integer no larger than the
configured bits_per_word (page 235) of the interface.

1001 https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

234 Chapter 23. API - Pins

https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus


GPIO Zero Documentation, Release 1.6.1

write(data)
Write data to the SPI interface. data must be a sequence of unsigned integer words each of
which will fit within the configured bits_per_word (page 235) of the interface. The method
returns the number of words written to the interface (which may be less than or equal to the
length of data).

This method is typically used with write-only devices that feature half-duplex communication.
See transfer() (page 234) for full duplex communication.

bits_per_word
Controls the number of bits that make up a word, and thus where the word boundaries appear
in the data stream, and the maximum value of a word. Defaults to 8 meaning that words are
effectively bytes.

Several implementations do not support non-byte-sized words.

clock_mode
Presents a value representing the clock_polarity (page 236) and clock_phase (page 235)
attributes combined according to the following table:

mode polarity (CPOL) phase (CPHA)
0 False False
1 False True
2 True False
3 True True

Adjusting this value adjusts both the clock_polarity (page 236) and clock_phase
(page 235) attributes simultaneously.

clock_phase
The phase of the SPI clock pin. If this is False1002 (the default), data will be read from the
MISO pin when the clock pin activates. Setting this to True1003 will cause data to be read
from the MISO pin when the clock pin deactivates. On many data sheets this is documented
as the CPHA value. Whether the clock edge is rising or falling when the clock is considered
activated is controlled by the clock_polarity (page 236) attribute (corresponding to CPOL).

The following diagram indicates when data is read when clock_polarity (page 236) is
False1004, and clock_phase (page 235) is False1005 (the default), equivalent to CPHA 0:

,---. ,---. ,---. ,---. ,---. ,---. ,---.
CLK | | | | | | | | | | | | | |

| | | | | | | | | | | | | |
----' `---' `---' `---' `---' `---' `---' `-------

: : : : : : :
MISO---. ,---. ,---. ,---. ,---. ,---. ,---.
/ \ / \ / \ / \ / \ / \ / \

-{ Bit X Bit X Bit X Bit X Bit X Bit X Bit }------
\ / \ / \ / \ / \ / \ / \ /
`---' `---' `---' `---' `---' `---' `---'

The following diagram indicates when data is read when clock_polarity (page 236) is
False1006, but clock_phase (page 235) is True1007, equivalent to CPHA 1:

1002 https://docs.python.org/3.7/library/constants.html#False
1003 https://docs.python.org/3.7/library/constants.html#True
1004 https://docs.python.org/3.7/library/constants.html#False
1005 https://docs.python.org/3.7/library/constants.html#False
1006 https://docs.python.org/3.7/library/constants.html#False
1007 https://docs.python.org/3.7/library/constants.html#True

23.3. Base classes 235

https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#True


GPIO Zero Documentation, Release 1.6.1

,---. ,---. ,---. ,---. ,---. ,---. ,---.
CLK | | | | | | | | | | | | | |

| | | | | | | | | | | | | |
----' `---' `---' `---' `---' `---' `---' `-------

: : : : : : :
MISO ,---. ,---. ,---. ,---. ,---. ,---. ,---.

/ \ / \ / \ / \ / \ / \ / \
-----{ Bit X Bit X Bit X Bit X Bit X Bit X Bit }--

\ / \ / \ / \ / \ / \ / \ /
`---' `---' `---' `---' `---' `---' `---'

clock_polarity
The polarity of the SPI clock pin. If this is False1008 (the default), the clock pin will idle
low, and pulse high. Setting this to True1009 will cause the clock pin to idle high, and pulse
low. On many data sheets this is documented as the CPOL value.

The following diagram illustrates the waveform when clock_polarity (page 236) is False1010

(the default), equivalent to CPOL 0:

on on on on on on on
,---. ,---. ,---. ,---. ,---. ,---. ,---.

CLK | | | | | | | | | | | | | |
| | | | | | | | | | | | | |

------' `---' `---' `---' `---' `---' `---' `------
idle off off off off off off idle

The following diagram illustrates the waveform when clock_polarity (page 236) is True1011,
equivalent to CPOL 1:

idle off off off off off off idle
------. ,---. ,---. ,---. ,---. ,---. ,---. ,------

| | | | | | | | | | | | | |
CLK | | | | | | | | | | | | | |

`---' `---' `---' `---' `---' `---' `---'
on on on on on on on

lsb_first
Controls whether words are read and written LSB in (Least Significant Bit first) order. The
default is False1012 indicating that words are read and written in MSB (Most Significant Bit
first) order. Effectively, this controls the Bit endianness1013 of the connection.

The following diagram shows the a word containing the number 5 (binary 0101) transmitted
on MISO with bits_per_word (page 235) set to 4, and clock_mode (page 235) set to 0, when
lsb_first (page 236) is False1014 (the default):

,---. ,---. ,---. ,---.
CLK | | | | | | | |

| | | | | | | |
----' `---' `---' `---' `-----

: ,-------. : ,-------.
MISO: | : | : | : |

: | : | : | : |
(continues on next page)

1008 https://docs.python.org/3.7/library/constants.html#False
1009 https://docs.python.org/3.7/library/constants.html#True
1010 https://docs.python.org/3.7/library/constants.html#False
1011 https://docs.python.org/3.7/library/constants.html#True
1012 https://docs.python.org/3.7/library/constants.html#False
1013 https://en.wikipedia.org/wiki/Endianness#Bit_endianness
1014 https://docs.python.org/3.7/library/constants.html#False

236 Chapter 23. API - Pins

https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://en.wikipedia.org/wiki/Endianness#Bit_endianness
https://docs.python.org/3.7/library/constants.html#False


GPIO Zero Documentation, Release 1.6.1

(continued from previous page)

----------' : `-------' : `----
: : : :
MSB LSB

And now with lsb_first (page 236) set to True1015 (and all other parameters the same):

,---. ,---. ,---. ,---.
CLK | | | | | | | |

| | | | | | | |
----' `---' `---' `---' `-----
,-------. : ,-------. :

MISO: | : | : | :
| : | : | : | :

--' : `-------' : `-----------
: : : :
LSB MSB

rate
Controls the speed of the SPI interface in Hz (or baud).

Note that most software SPI implementations ignore this property, and will raise
SPIFixedRate if an attempt is made to set it, as they have no rate control (they simply
bit-bang as fast as possible because typically this isn’t very fast anyway, and introducing
measures to limit the rate would simply slow them down to the point of being useless).

select_high
If False1016 (the default), the chip select line is considered active when it is pulled low. When
set to True1017, the chip select line is considered active when it is driven high.

The following diagram shows the waveform of the chip select line, and the clock when
clock_polarity (page 236) is False1018, and select_high (page 237) is False1019 (the
default):

---. ,------
__ | |
CS | chip is selected, and will react to clock | idle

`-----------------------------------------------------'

,---. ,---. ,---. ,---. ,---. ,---. ,---.
CLK | | | | | | | | | | | | | |

| | | | | | | | | | | | | |
----' `---' `---' `---' `---' `---' `---' `-------

And when select_high (page 237) is True1020:

,-----------------------------------------------------.
CS | chip is selected, and will react to clock | idle

| |
---' `------

,---. ,---. ,---. ,---. ,---. ,---. ,---.
CLK | | | | | | | | | | | | | |

(continues on next page)

1015 https://docs.python.org/3.7/library/constants.html#True
1016 https://docs.python.org/3.7/library/constants.html#False
1017 https://docs.python.org/3.7/library/constants.html#True
1018 https://docs.python.org/3.7/library/constants.html#False
1019 https://docs.python.org/3.7/library/constants.html#False
1020 https://docs.python.org/3.7/library/constants.html#True

23.3. Base classes 237

https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#True
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#False
https://docs.python.org/3.7/library/constants.html#True


GPIO Zero Documentation, Release 1.6.1

(continued from previous page)

| | | | | | | | | | | | | |
----' `---' `---' `---' `---' `---' `---' `-------

class gpiozero.pins.pi.PiFactory
Extends Factory (page 230). Abstract base class representing hardware attached to a Raspberry
Pi. This forms the base of LocalPiFactory (page 239).

close()
Closes the pin factory. This is expected to clean up all resources manipulated by the factory.
It it typically called at script termination.

pin(spec)
Creates an instance of a Pin descendent representing the specified pin.

Warning: Descendents must ensure that pin instances representing the same hardware
are identical; i.e. two separate invocations of pin() (page 238) for the same pin specifica-
tion must return the same object.

release_pins(reserver, *pins)
Releases the reservation of reserver against pins. This is typically called during close()
(page 201) to clean up reservations taken during construction. Releasing a reservation that is
not currently held will be silently ignored (to permit clean-up after failed / partial construc-
tion).

reserve_pins(requester, *pins)
Called to indicate that the device reserves the right to use the specified pins. This should be
done during device construction. If pins are reserved, you must ensure that the reservation is
released by eventually called release_pins() (page 238).

spi(**spi_args)
Returns an SPI interface, for the specified SPI port and device, or for the specified pins
(clock_pin, mosi_pin, miso_pin, and select_pin). Only one of the schemes can be used;
attempting to mix port and device with pin numbers will raise SPIBadArgs (page 247).

If the pins specified match the hardware SPI pins (clock on GPIO11, MOSI on GPIO10, MISO
on GPIO9, and chip select on GPIO8 or GPIO7), and the spidev module can be imported, a
hardware based interface (using spidev) will be returned. Otherwise, a software based interface
will be returned which will use simple bit-banging to communicate.

Both interfaces have the same API, support clock polarity and phase attributes, and can
handle half and full duplex communications, but the hardware interface is significantly faster
(though for many simpler devices this doesn’t matter).

class gpiozero.pins.pi.PiPin(factory, number)
Extends Pin (page 231). Abstract base class representing a multi-function GPIO pin attached to
a Raspberry Pi. Descendents must override the following methods:

• _get_function()

• _set_function()

• _get_state()

• _call_when_changed()

• _enable_event_detect()

• _disable_event_detect()

Descendents may additionally override the following methods, if applicable:

• close()

238 Chapter 23. API - Pins



GPIO Zero Documentation, Release 1.6.1

• output_with_state()

• input_with_pull()

• _set_state()

• _get_frequency()

• _set_frequency()

• _get_pull()

• _set_pull()

• _get_bounce()

• _set_bounce()

• _get_edges()

• _set_edges()

class gpiozero.pins.local.LocalPiFactory
Extends PiFactory (page 238). Abstract base class representing pins attached locally to a Pi. This
forms the base class for local-only pin interfaces (RPiGPIOPin (page 240), RPIOPin (page 241), and
NativePin (page 242)).

static ticks()
Return the current ticks, according to the factory. The reference point is undefined and thus
the result of this method is only meaningful when compared to another value returned by this
method.

The format of the time is also arbitrary, as is whether the time wraps after a certain duration.
Ticks should only be compared using the ticks_diff() (page 239) method.

static ticks_diff(later, earlier)
Return the time in seconds between two ticks() (page 239) results. The arguments are
specified in the same order as they would be in the formula later - earlier but the result is
guaranteed to be in seconds, and to be positive even if the ticks “wrapped” between calls to
ticks() (page 239).

class gpiozero.pins.local.LocalPiPin(factory, number)
Extends PiPin (page 238). Abstract base class representing a multi-function GPIO pin attached
to the local Raspberry Pi.

23.4 RPi.GPIO

class gpiozero.pins.rpigpio.RPiGPIOFactory
Extends LocalPiFactory (page 239). Uses the RPi.GPIO1021 library to interface to the Pi’s
GPIO pins. This is the default pin implementation if the RPi.GPIO library is installed. Supports
all features including PWM (via software).

Because this is the default pin implementation you can use it simply by specifying an integer
number for the pin in most operations, e.g.:

from gpiozero import LED

led = LED(12)

However, you can also construct RPi.GPIO pins manually if you wish:

1021 https://pypi.python.org/pypi/RPi.GPIO

23.4. RPi.GPIO 239

https://pypi.python.org/pypi/RPi.GPIO


GPIO Zero Documentation, Release 1.6.1

from gpiozero.pins.rpigpio import RPiGPIOFactory
from gpiozero import LED

factory = RPiGPIOFactory()
led = LED(12, pin_factory=factory)

class gpiozero.pins.rpigpio.RPiGPIOPin(factory, number)
Extends LocalPiPin (page 239). Pin implementation for the RPi.GPIO1022 library. See
RPiGPIOFactory (page 239) for more information.

23.5 lgpio

class gpiozero.pins.lgpio.LGPIOFactory(chip=0)
Extends LocalPiFactory (page 239). Uses the lgpio1023 library to interface to the local computer’s
GPIO pins. The lgpio library simply talks to Linux gpiochip devices; it is not specific to the
Raspberry Pi although this class is currently constructed under the assumption that it is running
on a Raspberry Pi.

You can construct lgpio pins manually like so:

from gpiozero.pins.lgpio import LGPIOFactory
from gpiozero import LED

factory = LGPIOFactory(chip=0)
led = LED(12, pin_factory=factory)

The chip parameter to the factory constructor specifies which gpiochip device to attempt to open.
It defaults to 0 and thus doesn’t normally need to be specified (the example above only includes it
for completeness).

The lgpio library relies on access to the /dev/gpiochip* devices. If you run into issues, please
check that your user has read/write access to the specific gpiochip device you are attempting to
open (0 by default).

class gpiozero.pins.lgpio.LGPIOPin(factory, number)
Extends LocalPiPin (page 239). Pin implementation for the lgpio1024 library. See LGPIOFactory
(page 240) for more information.

23.6 RPIO

class gpiozero.pins.rpio.RPIOFactory
Extends LocalPiFactory (page 239). Uses the RPIO1025 library to interface to the Pi’s GPIO
pins. This is the default pin implementation if the RPi.GPIO library is not installed, but RPIO is.
Supports all features including PWM (hardware via DMA).

Note: Please note that at the time of writing, RPIO is only compatible with Pi 1’s; the Raspberry
Pi 2 Model B is not supported. Also note that root access is required so scripts must typically be
run with sudo.

You can construct RPIO pins manually like so:
1022 https://pypi.python.org/pypi/RPi.GPIO
1023 http://abyz.me.uk/lg/py_lgpio.html
1024 http://abyz.me.uk/lg/py_lgpio.html
1025 https://pythonhosted.org/RPIO/

240 Chapter 23. API - Pins

https://pypi.python.org/pypi/RPi.GPIO
http://abyz.me.uk/lg/py_lgpio.html
http://abyz.me.uk/lg/py_lgpio.html
https://pythonhosted.org/RPIO/


GPIO Zero Documentation, Release 1.6.1

from gpiozero.pins.rpio import RPIOFactory
from gpiozero import LED

factory = RPIOFactory()
led = LED(12, pin_factory=factory)

class gpiozero.pins.rpio.RPIOPin(factory, number)
Extends LocalPiPin (page 239). Pin implementation for the RPIO1026 library. See RPIOFactory
(page 240) for more information.

23.7 PiGPIO

class gpiozero.pins.pigpio.PiGPIOFactory(host=None, port=None)
Extends PiFactory (page 238). Uses the pigpio1027 library to interface to the Pi’s GPIO pins. The
pigpio library relies on a daemon (pigpiod) to be running as root to provide access to the GPIO
pins, and communicates with this daemon over a network socket.

While this does mean only the daemon itself should control the pins, the architecture does have
several advantages:

• Pins can be remote controlled from another machine (the other machine doesn’t even have to
be a Raspberry Pi; it simply needs the pigpio1028 client library installed on it)

• The daemon supports hardware PWM via the DMA controller

• Your script itself doesn’t require root privileges; it just needs to be able to communicate with
the daemon

You can construct pigpio pins manually like so:

from gpiozero.pins.pigpio import PiGPIOFactory
from gpiozero import LED

factory = PiGPIOFactory()
led = LED(12, pin_factory=factory)

This is particularly useful for controlling pins on a remote machine. To accomplish this simply
specify the host (and optionally port) when constructing the pin:

from gpiozero.pins.pigpio import PiGPIOFactory
from gpiozero import LED

factory = PiGPIOFactory(host='192.168.0.2')
led = LED(12, pin_factory=factory)

Note: In some circumstances, especially when playing with PWM, it does appear to be possible
to get the daemon into “unusual” states. We would be most interested to hear any bug reports
relating to this (it may be a bug in our pin implementation). A workaround for now is simply to
restart the pigpiod daemon.

class gpiozero.pins.pigpio.PiGPIOPin(factory, number)
Extends PiPin (page 238). Pin implementation for the pigpio1029 library. See PiGPIOFactory
(page 241) for more information.

1026 https://pythonhosted.org/RPIO/
1027 http://abyz.me.uk/rpi/pigpio/
1028 http://abyz.me.uk/rpi/pigpio/
1029 http://abyz.me.uk/rpi/pigpio/

23.7. PiGPIO 241

https://pythonhosted.org/RPIO/
http://abyz.me.uk/rpi/pigpio/
http://abyz.me.uk/rpi/pigpio/
http://abyz.me.uk/rpi/pigpio/


GPIO Zero Documentation, Release 1.6.1

23.8 Native

class gpiozero.pins.native.NativeFactory
Extends LocalPiFactory (page 239). Uses a built-in pure Python implementation to interface to
the Pi’s GPIO pins. This is the default pin implementation if no third-party libraries are discovered.

Warning: This implementation does not currently support PWM. Attempting to use any
class which requests PWM will raise an exception.

You can construct native pin instances manually like so:

from gpiozero.pins.native import NativeFactory
from gpiozero import LED

factory = NativeFactory()
led = LED(12, pin_factory=factory)

class gpiozero.pins.native.NativePin(factory, number)
Extends LocalPiPin (page 239). Native pin implementation. See NativeFactory (page 242) for
more information.

class gpiozero.pins.native.Native2835Pin(factory, number)
Extends NativePin (page 242) for Pi hardware prior to the Pi 4 (Pi 0, 1, 2, 3, and 3+).

class gpiozero.pins.native.Native2711Pin(factory, number)
Extends NativePin (page 242) for Pi 4 hardware (Pi 4, CM4, Pi 400 at the time of writing).

23.9 Mock

class gpiozero.pins.mock.MockFactory(revision=None, pin_class=None)
Factory for generating mock pins. The revision parameter specifies what revision of Pi the mock
factory pretends to be (this affects the result of the pi_info (page 231) attribute as well as
where pull-ups are assumed to be). The pin_class attribute specifies which mock pin class will be
generated by the pin() (page 242) method by default. This can be changed after construction by
modifying the pin_class (page 242) attribute.

pin_class
This attribute stores the MockPin (page 242) class (or descendent) that will be used when con-
structing pins with the pin() (page 242) method (if no pin_class parameter is used to override
it). It defaults on construction to the value of the pin_class parameter in the constructor, or
MockPin (page 242) if that is unspecified.

pin(spec, pin_class=None, **kwargs)
The pin method for MockFactory (page 242) additionally takes a pin_class attribute which
can be used to override the class’ pin_class (page 242) attribute. Any additional keyword ar-
guments will be passed along to the pin constructor (useful with things like MockConnectedPin
(page 242) which expect to be constructed with another pin).

reset()
Clears the pins and reservations sets. This is primarily useful in test suites to ensure the pin
factory is back in a “clean” state before the next set of tests are run.

class gpiozero.pins.mock.MockPin(factory, number)
A mock pin used primarily for testing. This class does not support PWM.

class gpiozero.pins.mock.MockPWMPin(factory, number)
This derivative of MockPin (page 242) adds PWM support.

242 Chapter 23. API - Pins



GPIO Zero Documentation, Release 1.6.1

class gpiozero.pins.mock.MockConnectedPin(factory, number, input_pin=None)
This derivative of MockPin (page 242) emulates a pin connected to another mock pin. This is used
in the “real pins” portion of the test suite to check that one pin can influence another.

class gpiozero.pins.mock.MockChargingPin(factory, number, charge_time=0.01)
This derivative of MockPin (page 242) emulates a pin which, when set to input, waits a predeter-
mined length of time and then drives itself high (as if attached to, e.g. a typical circuit using an
LDR and a capacitor to time the charging rate).

class gpiozero.pins.mock.MockTriggerPin(factory, number, echo_pin=None,
echo_time=0.04)

This derivative of MockPin (page 242) is intended to be used with another MockPin (page 242)
to emulate a distance sensor. Set echo_pin to the corresponding pin instance. When this pin is
driven high it will trigger the echo pin to drive high for the echo time.

23.9. Mock 243



GPIO Zero Documentation, Release 1.6.1

244 Chapter 23. API - Pins



CHAPTER 24

API - Exceptions

The following exceptions are defined by GPIO Zero. Please note that multiple inheritance is heavily used
in the exception hierarchy to make testing for exceptions easier. For example, to capture any exception
generated by GPIO Zero’s code:

from gpiozero import *

led = PWMLED(17)
try:

led.value = 2
except GPIOZeroError:

print('A GPIO Zero error occurred')

Since all GPIO Zero’s exceptions descend from GPIOZeroError (page 245), this will work. However,
certain specific errors have multiple parents. For example, in the case that an out of range value is
passed to OutputDevice.value (page 143) you would expect a ValueError1030 to be raised. In fact,
a OutputDeviceBadValue (page 248) error will be raised. However, note that this descends from both
GPIOZeroError (page 245) (indirectly) and from ValueError1031 so you can still do the obvious:

from gpiozero import *

led = PWMLED(17)
try:

led.value = 2
except ValueError:

print('Bad value specified')

24.1 Errors

exception gpiozero.GPIOZeroError
Bases: Exception1032

Base class for all exceptions in GPIO Zero
1030 https://docs.python.org/3.7/library/exceptions.html#ValueError
1031 https://docs.python.org/3.7/library/exceptions.html#ValueError
1032 https://docs.python.org/3.7/library/exceptions.html#Exception

245

https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/exceptions.html#Exception


GPIO Zero Documentation, Release 1.6.1

exception gpiozero.DeviceClosed
Bases: gpiozero.exc.GPIOZeroError

Error raised when an operation is attempted on a closed device

exception gpiozero.BadEventHandler
Bases: gpiozero.exc.GPIOZeroError, ValueError1033

Error raised when an event handler with an incompatible prototype is specified

exception gpiozero.BadWaitTime
Bases: gpiozero.exc.GPIOZeroError, ValueError1034

Error raised when an invalid wait time is specified

exception gpiozero.BadQueueLen
Bases: gpiozero.exc.GPIOZeroError, ValueError1035

Error raised when non-positive queue length is specified

exception gpiozero.BadPinFactory
Bases: gpiozero.exc.GPIOZeroError, ImportError1036

Error raised when an unknown pin factory name is specified

exception gpiozero.ZombieThread
Bases: gpiozero.exc.GPIOZeroError, RuntimeError1037

Error raised when a thread fails to die within a given timeout

exception gpiozero.CompositeDeviceError
Bases: gpiozero.exc.GPIOZeroError

Base class for errors specific to the CompositeDevice hierarchy

exception gpiozero.CompositeDeviceBadName
Bases: gpiozero.exc.CompositeDeviceError, ValueError1038

Error raised when a composite device is constructed with a reserved name

exception gpiozero.CompositeDeviceBadOrder
Bases: gpiozero.exc.CompositeDeviceError, ValueError1039

Error raised when a composite device is constructed with an incomplete order

exception gpiozero.CompositeDeviceBadDevice
Bases: gpiozero.exc.CompositeDeviceError, ValueError1040

Error raised when a composite device is constructed with an object that doesn’t inherit from Device
(page 201)

exception gpiozero.EnergenieSocketMissing
Bases: gpiozero.exc.CompositeDeviceError, ValueError1041

Error raised when socket number is not specified

exception gpiozero.EnergenieBadSocket
Bases: gpiozero.exc.CompositeDeviceError, ValueError1042

Error raised when an invalid socket number is passed to Energenie (page 179)
1033 https://docs.python.org/3.7/library/exceptions.html#ValueError
1034 https://docs.python.org/3.7/library/exceptions.html#ValueError
1035 https://docs.python.org/3.7/library/exceptions.html#ValueError
1036 https://docs.python.org/3.7/library/exceptions.html#ImportError
1037 https://docs.python.org/3.7/library/exceptions.html#RuntimeError
1038 https://docs.python.org/3.7/library/exceptions.html#ValueError
1039 https://docs.python.org/3.7/library/exceptions.html#ValueError
1040 https://docs.python.org/3.7/library/exceptions.html#ValueError
1041 https://docs.python.org/3.7/library/exceptions.html#ValueError
1042 https://docs.python.org/3.7/library/exceptions.html#ValueError

246 Chapter 24. API - Exceptions

https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/exceptions.html#ImportError
https://docs.python.org/3.7/library/exceptions.html#RuntimeError
https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/exceptions.html#ValueError


GPIO Zero Documentation, Release 1.6.1

exception gpiozero.SPIError
Bases: gpiozero.exc.GPIOZeroError

Base class for errors related to the SPI implementation

exception gpiozero.SPIBadArgs
Bases: gpiozero.exc.SPIError, ValueError1043

Error raised when invalid arguments are given while constructing SPIDevice (page 152)

exception gpiozero.SPIBadChannel
Bases: gpiozero.exc.SPIError, ValueError1044

Error raised when an invalid channel is given to an AnalogInputDevice (page 151)

exception gpiozero.SPIFixedClockMode
Bases: gpiozero.exc.SPIError, AttributeError1045

Error raised when the SPI clock mode cannot be changed

exception gpiozero.SPIInvalidClockMode
Bases: gpiozero.exc.SPIError, ValueError1046

Error raised when an invalid clock mode is given to an SPI implementation

exception gpiozero.SPIFixedBitOrder
Bases: gpiozero.exc.SPIError, AttributeError1047

Error raised when the SPI bit-endianness cannot be changed

exception gpiozero.SPIFixedSelect
Bases: gpiozero.exc.SPIError, AttributeError1048

Error raised when the SPI select polarity cannot be changed

exception gpiozero.SPIFixedWordSize
Bases: gpiozero.exc.SPIError, AttributeError1049

Error raised when the number of bits per word cannot be changed

exception gpiozero.SPIInvalidWordSize
Bases: gpiozero.exc.SPIError, ValueError1050

Error raised when an invalid (out of range) number of bits per word is specified

exception gpiozero.GPIODeviceError
Bases: gpiozero.exc.GPIOZeroError

Base class for errors specific to the GPIODevice hierarchy

exception gpiozero.GPIODeviceClosed
Bases: gpiozero.exc.GPIODeviceError, gpiozero.exc.DeviceClosed

Deprecated descendent of DeviceClosed (page 245)

exception gpiozero.GPIOPinInUse
Bases: gpiozero.exc.GPIODeviceError

Error raised when attempting to use a pin already in use by another device

exception gpiozero.GPIOPinMissing
Bases: gpiozero.exc.GPIODeviceError, ValueError1051

1043 https://docs.python.org/3.7/library/exceptions.html#ValueError
1044 https://docs.python.org/3.7/library/exceptions.html#ValueError
1045 https://docs.python.org/3.7/library/exceptions.html#AttributeError
1046 https://docs.python.org/3.7/library/exceptions.html#ValueError
1047 https://docs.python.org/3.7/library/exceptions.html#AttributeError
1048 https://docs.python.org/3.7/library/exceptions.html#AttributeError
1049 https://docs.python.org/3.7/library/exceptions.html#AttributeError
1050 https://docs.python.org/3.7/library/exceptions.html#ValueError
1051 https://docs.python.org/3.7/library/exceptions.html#ValueError

24.1. Errors 247

https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/exceptions.html#AttributeError
https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/exceptions.html#AttributeError
https://docs.python.org/3.7/library/exceptions.html#AttributeError
https://docs.python.org/3.7/library/exceptions.html#AttributeError
https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/exceptions.html#ValueError


GPIO Zero Documentation, Release 1.6.1

Error raised when a pin specification is not given

exception gpiozero.InputDeviceError
Bases: gpiozero.exc.GPIODeviceError

Base class for errors specific to the InputDevice hierarchy

exception gpiozero.OutputDeviceError
Bases: gpiozero.exc.GPIODeviceError

Base class for errors specified to the OutputDevice hierarchy

exception gpiozero.OutputDeviceBadValue
Bases: gpiozero.exc.OutputDeviceError, ValueError1052

Error raised when value is set to an invalid value

exception gpiozero.PinError
Bases: gpiozero.exc.GPIOZeroError

Base class for errors related to pin implementations

exception gpiozero.PinInvalidFunction
Bases: gpiozero.exc.PinError, ValueError1053

Error raised when attempting to change the function of a pin to an invalid value

exception gpiozero.PinInvalidState
Bases: gpiozero.exc.PinError, ValueError1054

Error raised when attempting to assign an invalid state to a pin

exception gpiozero.PinInvalidPull
Bases: gpiozero.exc.PinError, ValueError1055

Error raised when attempting to assign an invalid pull-up to a pin

exception gpiozero.PinInvalidEdges
Bases: gpiozero.exc.PinError, ValueError1056

Error raised when attempting to assign an invalid edge detection to a pin

exception gpiozero.PinInvalidBounce
Bases: gpiozero.exc.PinError, ValueError1057

Error raised when attempting to assign an invalid bounce time to a pin

exception gpiozero.PinSetInput
Bases: gpiozero.exc.PinError, AttributeError1058

Error raised when attempting to set a read-only pin

exception gpiozero.PinFixedPull
Bases: gpiozero.exc.PinError, AttributeError1059

Error raised when attempting to set the pull of a pin with fixed pull-up

exception gpiozero.PinEdgeDetectUnsupported
Bases: gpiozero.exc.PinError, AttributeError1060

Error raised when attempting to use edge detection on unsupported pins
1052 https://docs.python.org/3.7/library/exceptions.html#ValueError
1053 https://docs.python.org/3.7/library/exceptions.html#ValueError
1054 https://docs.python.org/3.7/library/exceptions.html#ValueError
1055 https://docs.python.org/3.7/library/exceptions.html#ValueError
1056 https://docs.python.org/3.7/library/exceptions.html#ValueError
1057 https://docs.python.org/3.7/library/exceptions.html#ValueError
1058 https://docs.python.org/3.7/library/exceptions.html#AttributeError
1059 https://docs.python.org/3.7/library/exceptions.html#AttributeError
1060 https://docs.python.org/3.7/library/exceptions.html#AttributeError

248 Chapter 24. API - Exceptions

https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/exceptions.html#AttributeError
https://docs.python.org/3.7/library/exceptions.html#AttributeError
https://docs.python.org/3.7/library/exceptions.html#AttributeError


GPIO Zero Documentation, Release 1.6.1

exception gpiozero.PinUnsupported
Bases: gpiozero.exc.PinError, NotImplementedError1061

Error raised when attempting to obtain a pin interface on unsupported pins

exception gpiozero.PinSPIUnsupported
Bases: gpiozero.exc.PinError, NotImplementedError1062

Error raised when attempting to obtain an SPI interface on unsupported pins

exception gpiozero.PinPWMError
Bases: gpiozero.exc.PinError

Base class for errors related to PWM implementations

exception gpiozero.PinPWMUnsupported
Bases: gpiozero.exc.PinPWMError, AttributeError1063

Error raised when attempting to activate PWM on unsupported pins

exception gpiozero.PinPWMFixedValue
Bases: gpiozero.exc.PinPWMError, AttributeError1064

Error raised when attempting to initialize PWM on an input pin

exception gpiozero.PinUnknownPi
Bases: gpiozero.exc.PinError, RuntimeError1065

Error raised when gpiozero doesn’t recognize a revision of the Pi

exception gpiozero.PinMultiplePins
Bases: gpiozero.exc.PinError, RuntimeError1066

Error raised when multiple pins support the requested function

exception gpiozero.PinNoPins
Bases: gpiozero.exc.PinError, RuntimeError1067

Error raised when no pins support the requested function

exception gpiozero.PinInvalidPin
Bases: gpiozero.exc.PinError, ValueError1068

Error raised when an invalid pin specification is provided

24.2 Warnings

exception gpiozero.GPIOZeroWarning
Bases: Warning1069

Base class for all warnings in GPIO Zero

exception gpiozero.DistanceSensorNoEcho
Bases: gpiozero.exc.GPIOZeroWarning

Warning raised when the distance sensor sees no echo at all
1061 https://docs.python.org/3.7/library/exceptions.html#NotImplementedError
1062 https://docs.python.org/3.7/library/exceptions.html#NotImplementedError
1063 https://docs.python.org/3.7/library/exceptions.html#AttributeError
1064 https://docs.python.org/3.7/library/exceptions.html#AttributeError
1065 https://docs.python.org/3.7/library/exceptions.html#RuntimeError
1066 https://docs.python.org/3.7/library/exceptions.html#RuntimeError
1067 https://docs.python.org/3.7/library/exceptions.html#RuntimeError
1068 https://docs.python.org/3.7/library/exceptions.html#ValueError
1069 https://docs.python.org/3.7/library/exceptions.html#Warning

24.2. Warnings 249

https://docs.python.org/3.7/library/exceptions.html#NotImplementedError
https://docs.python.org/3.7/library/exceptions.html#NotImplementedError
https://docs.python.org/3.7/library/exceptions.html#AttributeError
https://docs.python.org/3.7/library/exceptions.html#AttributeError
https://docs.python.org/3.7/library/exceptions.html#RuntimeError
https://docs.python.org/3.7/library/exceptions.html#RuntimeError
https://docs.python.org/3.7/library/exceptions.html#RuntimeError
https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/exceptions.html#Warning


GPIO Zero Documentation, Release 1.6.1

exception gpiozero.SPIWarning
Bases: gpiozero.exc.GPIOZeroWarning

Base class for warnings related to the SPI implementation

exception gpiozero.SPISoftwareFallback
Bases: gpiozero.exc.SPIWarning

Warning raised when falling back to the SPI software implementation

exception gpiozero.PinWarning
Bases: gpiozero.exc.GPIOZeroWarning

Base class for warnings related to pin implementations

exception gpiozero.PinFactoryFallback
Bases: gpiozero.exc.PinWarning

Warning raised when a default pin factory fails to load and a fallback is tried

exception gpiozero.PinNonPhysical
Bases: gpiozero.exc.PinWarning

Warning raised when a non-physical pin is specified in a constructor

exception gpiozero.ThresholdOutOfRange
Bases: gpiozero.exc.GPIOZeroWarning

Warning raised when a threshold is out of range specified by min and max values

exception gpiozero.CallbackSetToNone
Bases: gpiozero.exc.GPIOZeroWarning

Warning raised when a callback is set to None when its previous value was None

250 Chapter 24. API - Exceptions



CHAPTER 25

Changelog

25.1 Release 1.6.1 (2021-03-17)

• Fix missing font files for 7-segment displays

25.2 Release 1.6.0 (2021-03-14)

• Added RotaryEncoder (page 114) class (thanks to Paulo Mateus) (#4821070, #9281071)

• Added support for multi-segment character displays with LEDCharDisplay (page 160) and
LEDMultiCharDisplay (page 162) along with “font” support using LEDCharFont (page 163) (thanks
to Martin O’Hanlon) (#3571072, #4851073, #4881074, #4931075, #9301076)

• Added Pibrella (page 174) class (thanks to Carl Monk) (#7731077, #7981078)

• Added TrafficpHat (page 172) class (thanks to Ryan Walmsley) (#8451079, #8461080)

• Added support for the lgpio1081 library as a pin factory (LGPIOFactory (page 240)) (thanks to
Joan for lg) (#9271082)

• Allow Motor (page 132) to pass pin_factory (page 201) to its child OutputDevice (page 142)
objects (thanks to Yisrael Dov Lebow) (#7921083)

• Small SPI exception fix (thanks to Maksim Levental) (#7621084)
1070 https://github.com/gpiozero/gpiozero/issues/482
1071 https://github.com/gpiozero/gpiozero/issues/928
1072 https://github.com/gpiozero/gpiozero/issues/357
1073 https://github.com/gpiozero/gpiozero/issues/485
1074 https://github.com/gpiozero/gpiozero/issues/488
1075 https://github.com/gpiozero/gpiozero/issues/493
1076 https://github.com/gpiozero/gpiozero/issues/930
1077 https://github.com/gpiozero/gpiozero/issues/773
1078 https://github.com/gpiozero/gpiozero/issues/798
1079 https://github.com/gpiozero/gpiozero/issues/845
1080 https://github.com/gpiozero/gpiozero/issues/846
1081 http://abyz.me.uk/lg/py_lgpio.html
1082 https://github.com/gpiozero/gpiozero/issues/927
1083 https://github.com/gpiozero/gpiozero/issues/792
1084 https://github.com/gpiozero/gpiozero/issues/762

251

https://github.com/gpiozero/gpiozero/issues/482
https://github.com/gpiozero/gpiozero/issues/928
https://github.com/gpiozero/gpiozero/issues/357
https://github.com/gpiozero/gpiozero/issues/485
https://github.com/gpiozero/gpiozero/issues/488
https://github.com/gpiozero/gpiozero/issues/493
https://github.com/gpiozero/gpiozero/issues/930
https://github.com/gpiozero/gpiozero/issues/773
https://github.com/gpiozero/gpiozero/issues/798
https://github.com/gpiozero/gpiozero/issues/845
https://github.com/gpiozero/gpiozero/issues/846
http://abyz.me.uk/lg/py_lgpio.html
https://github.com/gpiozero/gpiozero/issues/927
https://github.com/gpiozero/gpiozero/issues/792
https://github.com/gpiozero/gpiozero/issues/762


GPIO Zero Documentation, Release 1.6.1

• Warn users when using default pin factory for Servos and Distance Sensors (thanks to Sofiia Kosovan
and Daniele Procida at the EuroPython sprints) (#7801085, #7811086)

• Added pulse_width (page 136) property to Servo (page 135) (suggested by Daniele Procida at
the PyCon UK sprints) (#7951087, #7971088)

• Added event-driven functionality to internal devices (page 189) (#9411089)

• Allowed Energenie (page 179) sockets preserve their state on construction (thanks to Jack Wear-
den) (#8651090)

• Added source tools scaled_half() and scaled_full()

• Added complete Pi 4 support to NativeFactory (page 242) (thanks to Andrew Scheller) (#9201091,
#9291092, #9401093)

• Updated add-on boards to use BOARD numbering (#3491094, #8601095)

• Fixed ButtonBoard (page 163) release events (#7611096)

• Add ASCII art diagrams to pinout for Pi 400 and CM4 (#9321097)

• Cleaned up software SPI (thanks to Andrew Scheller and Kyle Morgan) (#7771098, #8951099,
#9001100)

• Added USB3 and Ethernet speed attributes to pi_info() (page 219)

• Various docs updates

Warning: This is the last release to support Python 2

25.3 Release 1.5.1 (2019-06-24)

• Added Raspberry Pi 4 data for pi_info() (page 219) and pinout

• Minor docs updates

25.4 Release 1.5.0 (2019-02-12)

• Introduced pin event timing to increase accuracy of certain devices such as the HC-SR04
DistanceSensor (page 111). (#6641101, #6651102)

• Further improvements to DistanceSensor (page 111) (ignoring missed edges). (#7191103)
1085 https://github.com/gpiozero/gpiozero/issues/780
1086 https://github.com/gpiozero/gpiozero/issues/781
1087 https://github.com/gpiozero/gpiozero/issues/795
1088 https://github.com/gpiozero/gpiozero/issues/797
1089 https://github.com/gpiozero/gpiozero/issues/941
1090 https://github.com/gpiozero/gpiozero/issues/865
1091 https://github.com/gpiozero/gpiozero/issues/920
1092 https://github.com/gpiozero/gpiozero/issues/929
1093 https://github.com/gpiozero/gpiozero/issues/940
1094 https://github.com/gpiozero/gpiozero/issues/349
1095 https://github.com/gpiozero/gpiozero/issues/860
1096 https://github.com/gpiozero/gpiozero/issues/761
1097 https://github.com/gpiozero/gpiozero/issues/932
1098 https://github.com/gpiozero/gpiozero/issues/777
1099 https://github.com/gpiozero/gpiozero/issues/895
1100 https://github.com/gpiozero/gpiozero/issues/900
1101 https://github.com/gpiozero/gpiozero/issues/664
1102 https://github.com/gpiozero/gpiozero/issues/665
1103 https://github.com/gpiozero/gpiozero/issues/719

252 Chapter 25. Changelog

https://github.com/gpiozero/gpiozero/issues/780
https://github.com/gpiozero/gpiozero/issues/781
https://github.com/gpiozero/gpiozero/issues/795
https://github.com/gpiozero/gpiozero/issues/797
https://github.com/gpiozero/gpiozero/issues/941
https://github.com/gpiozero/gpiozero/issues/865
https://github.com/gpiozero/gpiozero/issues/920
https://github.com/gpiozero/gpiozero/issues/929
https://github.com/gpiozero/gpiozero/issues/940
https://github.com/gpiozero/gpiozero/issues/349
https://github.com/gpiozero/gpiozero/issues/860
https://github.com/gpiozero/gpiozero/issues/761
https://github.com/gpiozero/gpiozero/issues/932
https://github.com/gpiozero/gpiozero/issues/777
https://github.com/gpiozero/gpiozero/issues/895
https://github.com/gpiozero/gpiozero/issues/900
https://github.com/gpiozero/gpiozero/issues/664
https://github.com/gpiozero/gpiozero/issues/665
https://github.com/gpiozero/gpiozero/issues/719


GPIO Zero Documentation, Release 1.6.1

• Allow source to take a device object as well as values or other values. See Source/Values
(page 65). (#6401104)

• Added internal device classes LoadAverage (page 194) and DiskUsage (page 195) (thanks to Jeevan
M R for the latter). (#5321105, #7141106)

• Added support for colorzero1107 with RGBLED (page 127) (this adds a new dependency). (#6551108)

• Added TonalBuzzer (page 131) with Tone (page 217) API for specifying frequencies raw or via
MIDI or musical notes. (#6811109, #7171110)

• Added PiHutXmasTree (page 167). (#5021111)

• Added PumpkinPi (page 183) and JamHat (page 173) (thanks to Claire Pollard). (#6801112,
#6811113, #7171114)

• Ensured gpiozero can be imported without a valid pin factory set. (#5911115, #7131116)

• Reduced import time by not computing default pin factory at the point of import. (#6751117,
#7221118)

• Added support for various pin numbering mechanisms. (#4701119)

• Motor (page 132) instances now use DigitalOutputDevice (page 139) for non-PWM pins.

• Allow non-PWM use of Robot (page 175). (#4811120)

• Added optional enable init param to Motor (page 132). (#3661121)

• Added --xyz option to pinout command line tool to open pinout.xyz1122 in a web browser.
(#6041123)

• Added 3B+, 3A+ and CM3+ to Pi model data. (#6271124, #7041125)

• Minor improvements to Energenie (page 179), thanks to Steve Amor. (#6291126, #6341127)

• Allow SmoothedInputDevice (page 119), LightSensor (page 109) and MotionSensor (page 108)
to have pull-up configured. (#6521128)

• Allow input devices to be pulled up or down externally, thanks to Philippe Muller. (#5931129,
#6581130)

1104 https://github.com/gpiozero/gpiozero/issues/640
1105 https://github.com/gpiozero/gpiozero/issues/532
1106 https://github.com/gpiozero/gpiozero/issues/714
1107 https://colorzero.readthedocs.io/en/stable
1108 https://github.com/gpiozero/gpiozero/issues/655
1109 https://github.com/gpiozero/gpiozero/issues/681
1110 https://github.com/gpiozero/gpiozero/issues/717
1111 https://github.com/gpiozero/gpiozero/issues/502
1112 https://github.com/gpiozero/gpiozero/issues/680
1113 https://github.com/gpiozero/gpiozero/issues/681
1114 https://github.com/gpiozero/gpiozero/issues/717
1115 https://github.com/gpiozero/gpiozero/issues/591
1116 https://github.com/gpiozero/gpiozero/issues/713
1117 https://github.com/gpiozero/gpiozero/issues/675
1118 https://github.com/gpiozero/gpiozero/issues/722
1119 https://github.com/gpiozero/gpiozero/issues/470
1120 https://github.com/gpiozero/gpiozero/issues/481
1121 https://github.com/gpiozero/gpiozero/issues/366
1122 https://pinout.xyz
1123 https://github.com/gpiozero/gpiozero/issues/604
1124 https://github.com/gpiozero/gpiozero/issues/627
1125 https://github.com/gpiozero/gpiozero/issues/704
1126 https://github.com/gpiozero/gpiozero/issues/629
1127 https://github.com/gpiozero/gpiozero/issues/634
1128 https://github.com/gpiozero/gpiozero/issues/652
1129 https://github.com/gpiozero/gpiozero/issues/593
1130 https://github.com/gpiozero/gpiozero/issues/658

25.4. Release 1.5.0 (2019-02-12) 253

https://github.com/gpiozero/gpiozero/issues/640
https://github.com/gpiozero/gpiozero/issues/532
https://github.com/gpiozero/gpiozero/issues/714
https://colorzero.readthedocs.io/en/stable
https://github.com/gpiozero/gpiozero/issues/655
https://github.com/gpiozero/gpiozero/issues/681
https://github.com/gpiozero/gpiozero/issues/717
https://github.com/gpiozero/gpiozero/issues/502
https://github.com/gpiozero/gpiozero/issues/680
https://github.com/gpiozero/gpiozero/issues/681
https://github.com/gpiozero/gpiozero/issues/717
https://github.com/gpiozero/gpiozero/issues/591
https://github.com/gpiozero/gpiozero/issues/713
https://github.com/gpiozero/gpiozero/issues/675
https://github.com/gpiozero/gpiozero/issues/722
https://github.com/gpiozero/gpiozero/issues/470
https://github.com/gpiozero/gpiozero/issues/481
https://github.com/gpiozero/gpiozero/issues/366
https://pinout.xyz
https://github.com/gpiozero/gpiozero/issues/604
https://github.com/gpiozero/gpiozero/issues/627
https://github.com/gpiozero/gpiozero/issues/704
https://github.com/gpiozero/gpiozero/issues/629
https://github.com/gpiozero/gpiozero/issues/634
https://github.com/gpiozero/gpiozero/issues/652
https://github.com/gpiozero/gpiozero/issues/593
https://github.com/gpiozero/gpiozero/issues/658


GPIO Zero Documentation, Release 1.6.1

• Minor changes to support Python 3.7, thanks to Russel Winder and Rick Ansell. (#6661131,
#6681132, #6691133, #6711134, #6731135)

• Added zip_values() (page 210) source tool.

• Correct row/col numbering logic in PinInfo (page 223). (#6741136)

• Many additional tests, and other improvements to the test suite.

• Many documentation corrections, additions and clarifications.

• Automatic documentation class hierarchy diagram generation.

• Automatic copyright attribution in source files.

25.5 Release 1.4.1 (2018-02-20)

This release is mostly bug-fixes, but a few enhancements have made it in too:

• Added curve_left and curve_right parameters to Robot.forward() (page 176) and Robot.
backward() (page 175). (#3061137 and #6191138)

• Fixed DistanceSensor (page 111) returning incorrect readings after a long pause, and added a
lock to ensure multiple distance sensors can operate simultaneously in a single project. (#5841139,
#5951140, #6171141, #6181142)

• Added support for phase/enable motor drivers with PhaseEnableMotor (page 134),
PhaseEnableRobot (page 177), and descendants, thanks to Ian Harcombe! (#3861143)

• A variety of other minor enhancements, largely thanks to Andrew Scheller! (#4791144, #4891145,
#4911146, #4921147)

25.6 Release 1.4.0 (2017-07-26)

• Pin factory is now configurable from device constructors (page 227) as well as command line.
NOTE: this is a backwards incompatible change for manual pin construction but it’s hoped this
is (currently) a sufficiently rare use case that this won’t affect too many people and the benefits
of the new system warrant such a change, i.e. the ability to use remote pin factories with HAT
classes that don’t accept pin assignations (#2791148)

• Major work on SPI, primarily to support remote hardware SPI (#4211149, #4591150, #4651151,
1131 https://github.com/gpiozero/gpiozero/issues/666
1132 https://github.com/gpiozero/gpiozero/issues/668
1133 https://github.com/gpiozero/gpiozero/issues/669
1134 https://github.com/gpiozero/gpiozero/issues/671
1135 https://github.com/gpiozero/gpiozero/issues/673
1136 https://github.com/gpiozero/gpiozero/issues/674
1137 https://github.com/gpiozero/gpiozero/issues/306
1138 https://github.com/gpiozero/gpiozero/issues/619
1139 https://github.com/gpiozero/gpiozero/issues/584
1140 https://github.com/gpiozero/gpiozero/issues/595
1141 https://github.com/gpiozero/gpiozero/issues/617
1142 https://github.com/gpiozero/gpiozero/issues/618
1143 https://github.com/gpiozero/gpiozero/issues/386
1144 https://github.com/gpiozero/gpiozero/issues/479
1145 https://github.com/gpiozero/gpiozero/issues/489
1146 https://github.com/gpiozero/gpiozero/issues/491
1147 https://github.com/gpiozero/gpiozero/issues/492
1148 https://github.com/gpiozero/gpiozero/issues/279
1149 https://github.com/gpiozero/gpiozero/issues/421
1150 https://github.com/gpiozero/gpiozero/issues/459
1151 https://github.com/gpiozero/gpiozero/issues/465

254 Chapter 25. Changelog

https://github.com/gpiozero/gpiozero/issues/666
https://github.com/gpiozero/gpiozero/issues/668
https://github.com/gpiozero/gpiozero/issues/669
https://github.com/gpiozero/gpiozero/issues/671
https://github.com/gpiozero/gpiozero/issues/673
https://github.com/gpiozero/gpiozero/issues/674
https://github.com/gpiozero/gpiozero/issues/306
https://github.com/gpiozero/gpiozero/issues/619
https://github.com/gpiozero/gpiozero/issues/584
https://github.com/gpiozero/gpiozero/issues/595
https://github.com/gpiozero/gpiozero/issues/617
https://github.com/gpiozero/gpiozero/issues/618
https://github.com/gpiozero/gpiozero/issues/386
https://github.com/gpiozero/gpiozero/issues/479
https://github.com/gpiozero/gpiozero/issues/489
https://github.com/gpiozero/gpiozero/issues/491
https://github.com/gpiozero/gpiozero/issues/492
https://github.com/gpiozero/gpiozero/issues/279
https://github.com/gpiozero/gpiozero/issues/421
https://github.com/gpiozero/gpiozero/issues/459
https://github.com/gpiozero/gpiozero/issues/465


GPIO Zero Documentation, Release 1.6.1

#4681152, #5751153)

• Pin reservation now works properly between GPIO and SPI devices (#4591154, #4681155)

• Lots of work on the documentation: source/values chapter (page 65), better charts, more recipes, re-
mote GPIO configuration (page 49), mock pins, better PDF output (#4841156, #4691157, #5231158,
#5201159, #4341160, #5651161, #5761162)

• Support for StatusZero (page 180) and StatusBoard (page 181) HATs (#5581163)

• Added pinout command line tool to provide a simple reference to the GPIO layout and information
about the associated Pi (#4971164, #5041165) thanks to Stewart Adcock for the initial work

• pi_info() (page 219) made more lenient for new (unknown) Pi models (#5291166)

• Fixed a variety of packaging issues (#5351167, #5181168, #5191169)

• Improved text in factory fallback warnings (#5721170)

25.7 Release 1.3.2 (2017-03-03)

• Added new Pi models to stop pi_info() (page 219) breaking

• Fix issue with pi_info() (page 219) breaking on unknown Pi models

25.8 Release 1.3.1 (2016-08-31 … later)

• Fixed hardware SPI support which Dave broke in 1.3.0. Sorry!

• Some minor docs changes

25.9 Release 1.3.0 (2016-08-31)

• Added ButtonBoard (page 163) for reading multiple buttons in a single class (#3401171)

• Added Servo (page 135) and AngularServo (page 137) classes for controlling simple servo motors
(#2481172)

• Lots of work on supporting easier use of internal and third-party pin implementations (#3591173)
1152 https://github.com/gpiozero/gpiozero/issues/468
1153 https://github.com/gpiozero/gpiozero/issues/575
1154 https://github.com/gpiozero/gpiozero/issues/459
1155 https://github.com/gpiozero/gpiozero/issues/468
1156 https://github.com/gpiozero/gpiozero/issues/484
1157 https://github.com/gpiozero/gpiozero/issues/469
1158 https://github.com/gpiozero/gpiozero/issues/523
1159 https://github.com/gpiozero/gpiozero/issues/520
1160 https://github.com/gpiozero/gpiozero/issues/434
1161 https://github.com/gpiozero/gpiozero/issues/565
1162 https://github.com/gpiozero/gpiozero/issues/576
1163 https://github.com/gpiozero/gpiozero/issues/558
1164 https://github.com/gpiozero/gpiozero/issues/497
1165 https://github.com/gpiozero/gpiozero/issues/504
1166 https://github.com/gpiozero/gpiozero/issues/529
1167 https://github.com/gpiozero/gpiozero/issues/535
1168 https://github.com/gpiozero/gpiozero/issues/518
1169 https://github.com/gpiozero/gpiozero/issues/519
1170 https://github.com/gpiozero/gpiozero/issues/572
1171 https://github.com/gpiozero/gpiozero/issues/340
1172 https://github.com/gpiozero/gpiozero/issues/248
1173 https://github.com/gpiozero/gpiozero/issues/359

25.7. Release 1.3.2 (2017-03-03) 255

https://github.com/gpiozero/gpiozero/issues/468
https://github.com/gpiozero/gpiozero/issues/575
https://github.com/gpiozero/gpiozero/issues/459
https://github.com/gpiozero/gpiozero/issues/468
https://github.com/gpiozero/gpiozero/issues/484
https://github.com/gpiozero/gpiozero/issues/469
https://github.com/gpiozero/gpiozero/issues/523
https://github.com/gpiozero/gpiozero/issues/520
https://github.com/gpiozero/gpiozero/issues/434
https://github.com/gpiozero/gpiozero/issues/565
https://github.com/gpiozero/gpiozero/issues/576
https://github.com/gpiozero/gpiozero/issues/558
https://github.com/gpiozero/gpiozero/issues/497
https://github.com/gpiozero/gpiozero/issues/504
https://github.com/gpiozero/gpiozero/issues/529
https://github.com/gpiozero/gpiozero/issues/535
https://github.com/gpiozero/gpiozero/issues/518
https://github.com/gpiozero/gpiozero/issues/519
https://github.com/gpiozero/gpiozero/issues/572
https://github.com/gpiozero/gpiozero/issues/340
https://github.com/gpiozero/gpiozero/issues/248
https://github.com/gpiozero/gpiozero/issues/359


GPIO Zero Documentation, Release 1.6.1

• Robot (page 175) now has a proper value (page 176) attribute (#3051174)

• Added CPUTemperature (page 192) as another demo of “internal” devices (#2941175)

• A temporary work-around for an issue with DistanceSensor (page 111) was included but a full
fix is in the works (#3851176)

• More work on the documentation (#3201177, #2951178, #2891179, etc.)

Not quite as much as we’d hoped to get done this time, but we’re rushing to make a Raspbian freeze.
As always, thanks to the community - your suggestions and PRs have been brilliant and even if we don’t
take stuff exactly as is, it’s always great to see your ideas. Onto 1.4!

25.10 Release 1.2.0 (2016-04-10)

• Added Energenie (page 179) class for controlling Energenie plugs (#691180)

• Added LineSensor (page 106) class for single line-sensors (#1091181)

• Added DistanceSensor (page 111) class for HC-SR04 ultra-sonic sensors (#1141182)

• Added SnowPi (page 182) class for the Ryanteck Snow-pi board (#1301183)

• Added when_held (page 105) (and related properties) to Button (page 103) (#1151184)

• Fixed issues with installing GPIO Zero for python 3 on Raspbian Wheezy releases (#1401185)

• Added support for lots of ADC chips (MCP3xxx family) (#1621186) - many thanks to pcopa and
lurch!

• Added support for pigpiod as a pin implementation with PiGPIOPin (page 241) (#1801187)

• Many refinements to the base classes mean more consistency in composite devices and several bugs
squashed (#1641188, #1751189, #1821190, #1891191, #1931192, #2291193)

• GPIO Zero is now aware of what sort of Pi it’s running on via pi_info() (page 219) and has a
fairly extensive database of Pi information which it uses to determine when users request impossible
things (like pull-down on a pin with a physical pull-up resistor) (#2221194)

• The source/values system was enhanced to ensure normal usage doesn’t stress the CPU and lots
of utilities were added (#1811195, #2511196)

And I’ll just add a note of thanks to the many people in the community who contributed to this release:
we’ve had some great PRs, suggestions, and bug reports in this version. Of particular note:
1174 https://github.com/gpiozero/gpiozero/issues/305
1175 https://github.com/gpiozero/gpiozero/issues/294
1176 https://github.com/gpiozero/gpiozero/issues/385
1177 https://github.com/gpiozero/gpiozero/issues/320
1178 https://github.com/gpiozero/gpiozero/issues/295
1179 https://github.com/gpiozero/gpiozero/issues/289
1180 https://github.com/gpiozero/gpiozero/issues/69
1181 https://github.com/gpiozero/gpiozero/issues/109
1182 https://github.com/gpiozero/gpiozero/issues/114
1183 https://github.com/gpiozero/gpiozero/issues/130
1184 https://github.com/gpiozero/gpiozero/issues/115
1185 https://github.com/gpiozero/gpiozero/issues/140
1186 https://github.com/gpiozero/gpiozero/issues/162
1187 https://github.com/gpiozero/gpiozero/issues/180
1188 https://github.com/gpiozero/gpiozero/issues/164
1189 https://github.com/gpiozero/gpiozero/issues/175
1190 https://github.com/gpiozero/gpiozero/issues/182
1191 https://github.com/gpiozero/gpiozero/issues/189
1192 https://github.com/gpiozero/gpiozero/issues/193
1193 https://github.com/gpiozero/gpiozero/issues/229
1194 https://github.com/gpiozero/gpiozero/issues/222
1195 https://github.com/gpiozero/gpiozero/issues/181
1196 https://github.com/gpiozero/gpiozero/issues/251

256 Chapter 25. Changelog

https://github.com/gpiozero/gpiozero/issues/305
https://github.com/gpiozero/gpiozero/issues/294
https://github.com/gpiozero/gpiozero/issues/385
https://github.com/gpiozero/gpiozero/issues/320
https://github.com/gpiozero/gpiozero/issues/295
https://github.com/gpiozero/gpiozero/issues/289
https://github.com/gpiozero/gpiozero/issues/69
https://github.com/gpiozero/gpiozero/issues/109
https://github.com/gpiozero/gpiozero/issues/114
https://github.com/gpiozero/gpiozero/issues/130
https://github.com/gpiozero/gpiozero/issues/115
https://github.com/gpiozero/gpiozero/issues/140
https://github.com/gpiozero/gpiozero/issues/162
https://github.com/gpiozero/gpiozero/issues/180
https://github.com/gpiozero/gpiozero/issues/164
https://github.com/gpiozero/gpiozero/issues/175
https://github.com/gpiozero/gpiozero/issues/182
https://github.com/gpiozero/gpiozero/issues/189
https://github.com/gpiozero/gpiozero/issues/193
https://github.com/gpiozero/gpiozero/issues/229
https://github.com/gpiozero/gpiozero/issues/222
https://github.com/gpiozero/gpiozero/issues/181
https://github.com/gpiozero/gpiozero/issues/251


GPIO Zero Documentation, Release 1.6.1

• Schelto van Doorn was instrumental in adding support for numerous ADC chips

• Alex Eames generously donated a RasPiO Analog board which was extremely useful in developing
the software SPI interface (and testing the ADC support)

• Andrew Scheller squashed several dozen bugs (usually a day or so after Dave had introduced them
;)

As always, many thanks to the whole community - we look forward to hearing from you more in 1.3!

25.11 Release 1.1.0 (2016-02-08)

• Documentation converted to reST and expanded to include generic classes and several more recipes
(#801197, #821198, #1011199, #1191200, #1351201, #1681202)

• New CamJamKitRobot (page 178) class with the pre-defined motor pins for the new CamJam EduKit

• New LEDBarGraph (page 158) class (many thanks to Martin O’Hanlon!) (#1261203, #1761204)

• New Pin (page 231) implementation abstracts out the concept of a GPIO pin paving the way for
alternate library support and IO extenders in future (#1411205)

• New LEDBoard.blink() (page 156) method which works properly even when background is set to
False (#941206, #1611207)

• New RGBLED.blink() (page 128) method which implements (rudimentary) color fading too!
(#1351208, #1741209)

• New initial_value attribute on OutputDevice (page 142) ensures consistent behaviour on con-
struction (#1181210)

• New active_high attribute on PWMOutputDevice (page 140) and RGBLED (page 127) allows use of
common anode devices (#1431211, #1541212)

• Loads of new ADC chips supported (many thanks to GitHub user pcopa!) (#1501213)

25.12 Release 1.0.0 (2015-11-16)

• Debian packaging added (#441214)

• PWMLED (page 125) class added (#581215)

• TemperatureSensor removed pending further work (#931216)
1197 https://github.com/gpiozero/gpiozero/issues/80
1198 https://github.com/gpiozero/gpiozero/issues/82
1199 https://github.com/gpiozero/gpiozero/issues/101
1200 https://github.com/gpiozero/gpiozero/issues/119
1201 https://github.com/gpiozero/gpiozero/issues/135
1202 https://github.com/gpiozero/gpiozero/issues/168
1203 https://github.com/gpiozero/gpiozero/issues/126
1204 https://github.com/gpiozero/gpiozero/issues/176
1205 https://github.com/gpiozero/gpiozero/issues/141
1206 https://github.com/gpiozero/gpiozero/issues/94
1207 https://github.com/gpiozero/gpiozero/issues/161
1208 https://github.com/gpiozero/gpiozero/issues/135
1209 https://github.com/gpiozero/gpiozero/issues/174
1210 https://github.com/gpiozero/gpiozero/issues/118
1211 https://github.com/gpiozero/gpiozero/issues/143
1212 https://github.com/gpiozero/gpiozero/issues/154
1213 https://github.com/gpiozero/gpiozero/issues/150
1214 https://github.com/gpiozero/gpiozero/issues/44
1215 https://github.com/gpiozero/gpiozero/issues/58
1216 https://github.com/gpiozero/gpiozero/issues/93

25.11. Release 1.1.0 (2016-02-08) 257

https://github.com/gpiozero/gpiozero/issues/80
https://github.com/gpiozero/gpiozero/issues/82
https://github.com/gpiozero/gpiozero/issues/101
https://github.com/gpiozero/gpiozero/issues/119
https://github.com/gpiozero/gpiozero/issues/135
https://github.com/gpiozero/gpiozero/issues/168
https://github.com/gpiozero/gpiozero/issues/126
https://github.com/gpiozero/gpiozero/issues/176
https://github.com/gpiozero/gpiozero/issues/141
https://github.com/gpiozero/gpiozero/issues/94
https://github.com/gpiozero/gpiozero/issues/161
https://github.com/gpiozero/gpiozero/issues/135
https://github.com/gpiozero/gpiozero/issues/174
https://github.com/gpiozero/gpiozero/issues/118
https://github.com/gpiozero/gpiozero/issues/143
https://github.com/gpiozero/gpiozero/issues/154
https://github.com/gpiozero/gpiozero/issues/150
https://github.com/gpiozero/gpiozero/issues/44
https://github.com/gpiozero/gpiozero/issues/58
https://github.com/gpiozero/gpiozero/issues/93


GPIO Zero Documentation, Release 1.6.1

• Buzzer.beep() (page 130) alias method added (#751217)

• Motor (page 132) PWM devices exposed, and Robot (page 175) motor devices exposed (#1071218)

25.13 Release 0.9.0 (2015-10-25)

Fourth public beta

• Added source and values properties to all relevant classes (#761219)

• Fix names of parameters in Motor (page 132) constructor (#791220)

• Added wrappers for LED groups on add-on boards (#811221)

25.14 Release 0.8.0 (2015-10-16)

Third public beta

• Added generic AnalogInputDevice (page 151) class along with specific classes for the MCP3008
(page 147) and MCP3004 (page 147) (#411222)

• Fixed DigitalOutputDevice.blink() (page 140) (#571223)

25.15 Release 0.7.0 (2015-10-09)

Second public beta

25.16 Release 0.6.0 (2015-09-28)

First public beta

25.17 Release 0.5.0 (2015-09-24)

25.18 Release 0.4.0 (2015-09-23)

25.19 Release 0.3.0 (2015-09-22)

25.20 Release 0.2.0 (2015-09-21)

Initial release

1217 https://github.com/gpiozero/gpiozero/issues/75
1218 https://github.com/gpiozero/gpiozero/issues/107
1219 https://github.com/gpiozero/gpiozero/issues/76
1220 https://github.com/gpiozero/gpiozero/issues/79
1221 https://github.com/gpiozero/gpiozero/issues/81
1222 https://github.com/gpiozero/gpiozero/issues/41
1223 https://github.com/gpiozero/gpiozero/issues/57

258 Chapter 25. Changelog

https://github.com/gpiozero/gpiozero/issues/75
https://github.com/gpiozero/gpiozero/issues/107
https://github.com/gpiozero/gpiozero/issues/76
https://github.com/gpiozero/gpiozero/issues/79
https://github.com/gpiozero/gpiozero/issues/81
https://github.com/gpiozero/gpiozero/issues/41
https://github.com/gpiozero/gpiozero/issues/57


CHAPTER 26

License

Copyright © 2015-2020 Ben Nuttall <ben@bennuttall.com> and contributors; see gpiozero (page 1) for
current list

SPDX-License-Identifier: BSD-3-Clause

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the dis-
tribution.

• Neither the name of the copyright holder nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS
IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIB-
UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB-
STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-
RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBIL-
ITY OF SUCH DAMAGE.

259

mailto:ben@bennuttall.com


GPIO Zero Documentation, Release 1.6.1

260 Chapter 26. License



Python Module Index

g
gpiozero, 3
gpiozero.boards, 155
gpiozero.devices, 199
gpiozero.exc, 245
gpiozero.fonts, 213
gpiozero.input_devices, 103
gpiozero.internal_devices, 189
gpiozero.output_devices, 123
gpiozero.pins, 225
gpiozero.pins.data, 219
gpiozero.pins.lgpio, 240
gpiozero.pins.local, 239
gpiozero.pins.mock, 242
gpiozero.pins.native, 242
gpiozero.pins.pi, 238
gpiozero.pins.pigpio, 241
gpiozero.pins.rpigpio, 239
gpiozero.pins.rpio, 240
gpiozero.spi_devices, 145
gpiozero.tones, 217
gpiozero.tools, 205

261



GPIO Zero Documentation, Release 1.6.1

262 Python Module Index



Index

Symbols
-c, --color

pinout command line option, 77
-h, --help

pinout command line option, 77
-m, --monochrome

pinout command line option, 77
-r REVISION, --revision REVISION

pinout command line option, 77
-x, --xyz

pinout command line option, 77
_shared_key() (gpiozero.SharedMixin class

method), 202

A
absoluted() (in module gpiozero.tools), 205
active_high (gpiozero.OutputDevice attribute),

143
active_time (gpiozero.DigitalInputDevice at-

tribute), 118
active_time (gpiozero.EventsMixin attribute), 203
all_values() (in module gpiozero.tools), 209
alternating_values() (in module gpiozero.tools),

211
amber (gpiozero.TrafficLights attribute), 166
AnalogInputDevice (class in gpiozero), 151
angle (gpiozero.AngularServo attribute), 138
AngularServo (class in gpiozero), 137
any_values() (in module gpiozero.tools), 209
arms (gpiozero.SnowPi attribute), 182
averaged() (in module gpiozero.tools), 209

B
backward() (gpiozero.Motor method), 133
backward() (gpiozero.PhaseEnableMotor method),

134
backward() (gpiozero.PhaseEnableRobot method),

177
backward() (gpiozero.Robot method), 175
BadEventHandler, 246
BadPinFactory, 246
BadQueueLen, 246
BadWaitTime, 246

beep() (gpiozero.Buzzer method), 130
bits (gpiozero.AnalogInputDevice attribute), 152
bits_per_word (gpiozero.SPI attribute), 235
blink() (gpiozero.DigitalOutputDevice method),

140
blink() (gpiozero.LED method), 124
blink() (gpiozero.LEDBoard method), 156
blink() (gpiozero.PWMLED method), 125
blink() (gpiozero.PWMOutputDevice method),

141
blink() (gpiozero.RGBLED method), 128
blue (gpiozero.RGBLED attribute), 129
bluetooth (gpiozero.PiBoardInfo attribute), 222
board (gpiozero.PiBoardInfo attribute), 222
booleanized() (in module gpiozero.tools), 205
bounce (gpiozero.Pin attribute), 232
Button (class in gpiozero), 103
button (gpiozero.Pibrella attribute), 174
button (gpiozero.StatusBoard attribute), 182
button (gpiozero.TrafficLightsBuzzer attribute),

167
ButtonBoard (class in gpiozero), 163
Buzzer (class in gpiozero), 130
buzzer (gpiozero.JamHat attribute), 173
buzzer (gpiozero.Pibrella attribute), 174
buzzer (gpiozero.TrafficLightsBuzzer attribute),

167

C
CallbackSetToNone, 250
CamJamKitRobot (class in gpiozero), 178
channel (gpiozero.MCP3002 attribute), 146
channel (gpiozero.MCP3004 attribute), 147
channel (gpiozero.MCP3008 attribute), 147
channel (gpiozero.MCP3202 attribute), 148
channel (gpiozero.MCP3204 attribute), 148
channel (gpiozero.MCP3208 attribute), 149
channel (gpiozero.MCP3302 attribute), 149
channel (gpiozero.MCP3304 attribute), 150
clamped() (in module gpiozero.tools), 206
clock_mode (gpiozero.SPI attribute), 235
clock_phase (gpiozero.SPI attribute), 235
clock_polarity (gpiozero.SPI attribute), 236
close() (gpiozero.CompositeDevice method), 186

263



GPIO Zero Documentation, Release 1.6.1

close() (gpiozero.Device method), 201
close() (gpiozero.Factory method), 230
close() (gpiozero.GPIODevice method), 121
close() (gpiozero.Pin method), 232
close() (gpiozero.pins.pi.PiFactory method), 238
close() (gpiozero.SPIDevice method), 152
closed (gpiozero.CompositeDevice attribute), 187
closed (gpiozero.Device attribute), 201
closed (gpiozero.GPIODevice attribute), 122
closed (gpiozero.SPIDevice attribute), 153
col (gpiozero.PinInfo attribute), 223
color (gpiozero.RGBLED attribute), 129
columns (gpiozero.HeaderInfo attribute), 223
CompositeDevice (class in gpiozero), 185
CompositeDeviceBadDevice, 246
CompositeDeviceBadName, 246
CompositeDeviceBadOrder, 246
CompositeDeviceError, 246
CompositeOutputDevice (class in gpiozero), 185
cos_values() (in module gpiozero.tools), 211
CPUTemperature (class in gpiozero), 192
csi (gpiozero.PiBoardInfo attribute), 222

D
detach() (gpiozero.Servo method), 136
Device (class in gpiozero), 201
DeviceClosed, 245
differential (gpiozero.MCP3002 attribute), 146
differential (gpiozero.MCP3004 attribute), 147
differential (gpiozero.MCP3008 attribute), 147
differential (gpiozero.MCP3202 attribute), 148
differential (gpiozero.MCP3204 attribute), 148
differential (gpiozero.MCP3208 attribute), 149
differential (gpiozero.MCP3302 attribute), 149
differential (gpiozero.MCP3304 attribute), 150
DigitalInputDevice (class in gpiozero), 117
DigitalOutputDevice (class in gpiozero), 139
DiskUsage (class in gpiozero), 195
distance (gpiozero.DistanceSensor attribute), 113
DistanceSensor (class in gpiozero), 111
DistanceSensorNoEcho, 249
down() (gpiozero.tones.Tone method), 218
dsi (gpiozero.PiBoardInfo attribute), 222

E
echo (gpiozero.DistanceSensor attribute), 113
edges (gpiozero.Pin attribute), 233
end_time (gpiozero.TimeOfDay attribute), 191
Energenie (class in gpiozero), 179
EnergenieBadSocket, 246
EnergenieSocketMissing, 246
environment variable

GPIOZERO_PIN_FACTORY, 52, 62, 80, 83, 227,
228

GPIOZERO_TEST_INPUT_PIN, 100
GPIOZERO_TEST_PIN, 100
PIGPIO_ADDR, 52, 62, 80, 228
PIGPIO_PORT, 80

eth_speed (gpiozero.PiBoardInfo attribute), 221
ethernet (gpiozero.PiBoardInfo attribute), 221
EventsMixin (class in gpiozero), 203
eyes (gpiozero.PumpkinPi attribute), 183
eyes (gpiozero.SnowPi attribute), 182

F
Factory (class in gpiozero), 230
FishDish (class in gpiozero), 171
font (gpiozero.LEDCharDisplay attribute), 161
forward() (gpiozero.Motor method), 133
forward() (gpiozero.PhaseEnableMotor method),

134
forward() (gpiozero.PhaseEnableRobot method),

177
forward() (gpiozero.Robot method), 176
frame_width (gpiozero.Servo attribute), 136
frequency (gpiozero.Pin attribute), 233
frequency (gpiozero.PWMOutputDevice at-

tribute), 142
frequency (gpiozero.tones.Tone attribute), 218
from_frequency() (gpiozero.tones.Tone class

method), 218
from_midi() (gpiozero.tones.Tone class method),

218
from_note() (gpiozero.tones.Tone class method),

218
function (gpiozero.Pin attribute), 233
function (gpiozero.PinInfo attribute), 223

G
GPIODevice (class in gpiozero), 121
GPIODeviceClosed, 247
GPIODeviceError, 247
GPIOPinInUse, 247
GPIOPinMissing, 247
gpiozero (module), 3
gpiozero.boards (module), 155
gpiozero.devices (module), 199
gpiozero.exc (module), 245
gpiozero.fonts (module), 213
gpiozero.input_devices (module), 103
gpiozero.internal_devices (module), 189
gpiozero.output_devices (module), 123
gpiozero.pins (module), 225
gpiozero.pins.data (module), 219
gpiozero.pins.lgpio (module), 240
gpiozero.pins.local (module), 239
gpiozero.pins.mock (module), 242
gpiozero.pins.native (module), 242
gpiozero.pins.pi (module), 238
gpiozero.pins.pigpio (module), 241
gpiozero.pins.rpigpio (module), 239
gpiozero.pins.rpio (module), 240
gpiozero.spi_devices (module), 145
gpiozero.tones (module), 217
gpiozero.tools (module), 205
GPIOZERO_PIN_FACTORY, 52, 62, 83, 227, 228

264 Index



GPIO Zero Documentation, Release 1.6.1

GPIOZERO_TEST_INPUT_PIN, 100
GPIOZERO_TEST_PIN, 100
GPIOZeroError, 245
GPIOZeroWarning, 249
green (gpiozero.RGBLED attribute), 129
green (gpiozero.StatusBoard attribute), 182
green (gpiozero.StatusZero attribute), 181
green (gpiozero.TrafficLights attribute), 166

H
HeaderInfo (class in gpiozero), 222
headers (gpiozero.PiBoardInfo attribute), 222
held_time (gpiozero.Button attribute), 104
held_time (gpiozero.HoldMixin attribute), 204
hold_repeat (gpiozero.Button attribute), 105
hold_repeat (gpiozero.HoldMixin attribute), 204
hold_time (gpiozero.Button attribute), 105
hold_time (gpiozero.HoldMixin attribute), 204
HoldMixin (class in gpiozero), 204
host (gpiozero.PingServer attribute), 192

I
inactive_time (gpiozero.DigitalInputDevice at-

tribute), 118
inactive_time (gpiozero.EventsMixin attribute),

203
input_with_pull() (gpiozero.Pin method), 232
InputDevice (class in gpiozero), 120
InputDeviceError, 248
inputs (gpiozero.Pibrella attribute), 174
InternalDevice (class in gpiozero), 197
inverted() (in module gpiozero.tools), 206
is_active (gpiozero.AngularServo attribute), 138
is_active (gpiozero.Buzzer attribute), 131
is_active (gpiozero.CompositeDevice attribute),

187
is_active (gpiozero.CPUTemperature attribute),

193
is_active (gpiozero.Device attribute), 201
is_active (gpiozero.DiskUsage attribute), 196
is_active (gpiozero.InputDevice attribute), 121
is_active (gpiozero.LoadAverage attribute), 195
is_active (gpiozero.Motor attribute), 134
is_active (gpiozero.PhaseEnableMotor attribute),

135
is_active (gpiozero.PingServer attribute), 192
is_active (gpiozero.PWMOutputDevice at-

tribute), 142
is_active (gpiozero.Servo attribute), 136
is_active (gpiozero.SmoothedInputDevice at-

tribute), 120
is_active (gpiozero.TimeOfDay attribute), 191
is_active (gpiozero.TonalBuzzer attribute), 132
is_held (gpiozero.Button attribute), 105
is_held (gpiozero.HoldMixin attribute), 204
is_lit (gpiozero.LED attribute), 124
is_lit (gpiozero.LEDCollection attribute), 184
is_lit (gpiozero.PWMLED attribute), 126

is_lit (gpiozero.RGBLED attribute), 129
is_pressed (gpiozero.Button attribute), 105
is_pressed (gpiozero.ButtonBoard attribute), 165

J
JamHat (class in gpiozero), 173

L
LED (class in gpiozero), 123
LEDBarGraph (class in gpiozero), 158
LEDBoard (class in gpiozero), 155
LedBorg (class in gpiozero), 168
LEDCharDisplay (class in gpiozero), 160
LEDCharFont (class in gpiozero), 163
LEDCollection (class in gpiozero), 184
LEDMultiCharDisplay (class in gpiozero), 162
leds (gpiozero.LEDCollection attribute), 184
left() (gpiozero.PhaseEnableRobot method), 177
left() (gpiozero.Robot method), 176
left_motor (gpiozero.PhaseEnableRobot at-

tribute), 177
left_motor (gpiozero.Robot attribute), 175
LGPIOFactory (class in gpiozero.pins.lgpio), 240
LGPIOPin (class in gpiozero.pins.lgpio), 240
light_detected (gpiozero.LightSensor attribute),

111
lights (gpiozero.Pibrella attribute), 174
lights (gpiozero.StatusBoard attribute), 181
lights (gpiozero.TrafficLightsBuzzer attribute),

167
LightSensor (class in gpiozero), 109
LineSensor (class in gpiozero), 106
lit_count (gpiozero.LEDBarGraph attribute), 159
load_average (gpiozero.LoadAverage attribute),

195
load_font_14seg() (in module gpiozero.fonts),

214
load_font_7seg() (in module gpiozero.fonts), 213
load_segment_font() (in module gpiozero.fonts),

214
LoadAverage (class in gpiozero), 194
LocalPiFactory (class in gpiozero.pins.local), 239
LocalPiPin (class in gpiozero.pins.local), 239
lsb_first (gpiozero.SPI attribute), 236

M
manufacturer (gpiozero.PiBoardInfo attribute),

221
max() (gpiozero.AngularServo method), 138
max() (gpiozero.Servo method), 136
max_angle (gpiozero.AngularServo attribute), 138
max_distance (gpiozero.DistanceSensor attribute),

113
max_pulse_width (gpiozero.Servo attribute), 136
max_steps (gpiozero.RotaryEncoder attribute), 115
max_tone (gpiozero.TonalBuzzer attribute), 132
max_voltage (gpiozero.AnalogInputDevice at-

tribute), 152

Index 265



GPIO Zero Documentation, Release 1.6.1

MCP3001 (class in gpiozero), 146
MCP3002 (class in gpiozero), 146
MCP3004 (class in gpiozero), 147
MCP3008 (class in gpiozero), 147
MCP3201 (class in gpiozero), 148
MCP3202 (class in gpiozero), 148
MCP3204 (class in gpiozero), 148
MCP3208 (class in gpiozero), 149
MCP3301 (class in gpiozero), 149
MCP3302 (class in gpiozero), 149
MCP3304 (class in gpiozero), 150
memory (gpiozero.PiBoardInfo attribute), 221
mid() (gpiozero.AngularServo method), 138
mid() (gpiozero.Servo method), 136
mid_tone (gpiozero.TonalBuzzer attribute), 132
midi (gpiozero.tones.Tone attribute), 218
min() (gpiozero.AngularServo method), 138
min() (gpiozero.Servo method), 136
min_angle (gpiozero.AngularServo attribute), 138
min_pulse_width (gpiozero.Servo attribute), 136
min_tone (gpiozero.TonalBuzzer attribute), 132
MockChargingPin (class in gpiozero.pins.mock),

243
MockConnectedPin (class in gpiozero.pins.mock),

242
MockFactory (class in gpiozero.pins.mock), 242
MockPin (class in gpiozero.pins.mock), 242
MockPWMPin (class in gpiozero.pins.mock), 242
MockTriggerPin (class in gpiozero.pins.mock), 243
model (gpiozero.PiBoardInfo attribute), 221
motion_detected (gpiozero.MotionSensor at-

tribute), 109
MotionSensor (class in gpiozero), 108
Motor (class in gpiozero), 132
multiplied() (in module gpiozero.tools), 210

N
name (gpiozero.HeaderInfo attribute), 223
namedtuple (gpiozero.CompositeDevice attribute),

187
Native2711Pin (class in gpiozero.pins.native), 242
Native2835Pin (class in gpiozero.pins.native), 242
NativeFactory (class in gpiozero.pins.native), 242
NativePin (class in gpiozero.pins.native), 242
negated() (in module gpiozero.tools), 206
nose (gpiozero.SnowPi attribute), 182
note (gpiozero.tones.Tone attribute), 218
number (gpiozero.PinInfo attribute), 223

O
octaves (gpiozero.TonalBuzzer attribute), 132
off() (gpiozero.Buzzer method), 131
off() (gpiozero.CompositeOutputDevice method),

185
off() (gpiozero.DigitalOutputDevice method), 140
off() (gpiozero.Energenie method), 180
off() (gpiozero.JamHat method), 173
off() (gpiozero.LED method), 124

off() (gpiozero.LEDBoard method), 157
off() (gpiozero.OutputDevice method), 143
off() (gpiozero.Pibrella method), 175
off() (gpiozero.PWMLED method), 126
off() (gpiozero.PWMOutputDevice method), 141
off() (gpiozero.RGBLED method), 128
on() (gpiozero.Buzzer method), 131
on() (gpiozero.CompositeOutputDevice method),

185
on() (gpiozero.DigitalOutputDevice method), 140
on() (gpiozero.Energenie method), 180
on() (gpiozero.JamHat method), 173
on() (gpiozero.LED method), 124
on() (gpiozero.LEDBoard method), 157
on() (gpiozero.OutputDevice method), 143
on() (gpiozero.Pibrella method), 175
on() (gpiozero.PWMLED method), 126
on() (gpiozero.PWMOutputDevice method), 141
on() (gpiozero.RGBLED method), 128
output_with_state() (gpiozero.Pin method), 232
OutputDevice (class in gpiozero), 142
OutputDeviceBadValue, 248
OutputDeviceError, 248
outputs (gpiozero.Pibrella attribute), 175

P
partial (gpiozero.SmoothedInputDevice attribute),

120
pcb_revision (gpiozero.PiBoardInfo attribute),

221
PhaseEnableMotor (class in gpiozero), 134
PhaseEnableRobot (class in gpiozero), 177
physical_pin() (gpiozero.PiBoardInfo method),

220
physical_pins() (gpiozero.PiBoardInfo method),

220
pi_info (gpiozero.Factory attribute), 231
pi_info() (in module gpiozero), 219
PiBoardInfo (class in gpiozero), 219
Pibrella (class in gpiozero), 174
PiFactory (class in gpiozero.pins.pi), 238
PIGPIO_ADDR, 52, 62, 228
PiGPIOFactory (class in gpiozero.pins.pigpio), 241
PiGPIOPin (class in gpiozero.pins.pigpio), 241
PiHutXmasTree (class in gpiozero), 167
PiLiter (class in gpiozero), 169
PiLiterBarGraph (class in gpiozero), 169
Pin (class in gpiozero), 231
pin (gpiozero.Button attribute), 105
pin (gpiozero.Buzzer attribute), 131
pin (gpiozero.GPIODevice attribute), 122
pin (gpiozero.LED attribute), 124
pin (gpiozero.LightSensor attribute), 111
pin (gpiozero.LineSensor attribute), 107
pin (gpiozero.MotionSensor attribute), 109
pin (gpiozero.PWMLED attribute), 126
pin() (gpiozero.Factory method), 230

266 Index



GPIO Zero Documentation, Release 1.6.1

pin() (gpiozero.pins.mock.MockFactory method),
242

pin() (gpiozero.pins.pi.PiFactory method), 238
pin_class (gpiozero.pins.mock.MockFactory at-

tribute), 242
pin_factory (gpiozero.Device attribute), 201
PinEdgeDetectUnsupported, 248
PinError, 248
PinFactoryFallback, 250
PinFixedPull, 248
PingServer (class in gpiozero), 191
PinInfo (class in gpiozero), 223
PinInvalidBounce, 248
PinInvalidEdges, 248
PinInvalidFunction, 248
PinInvalidPin, 249
PinInvalidPull, 248
PinInvalidState, 248
PinMultiplePins, 249
PinNonPhysical, 250
PinNoPins, 249
pinout command line option

-c, --color, 77
-h, --help, 77
-m, --monochrome, 77
-r REVISION, --revision REVISION, 77
-x, --xyz, 77

PinPWMError, 249
PinPWMFixedValue, 249
PinPWMUnsupported, 249
pins (gpiozero.HeaderInfo attribute), 223
PinSetInput, 248
PinSPIUnsupported, 249
PinUnknownPi, 249
PinUnsupported, 248
PinWarning, 250
PiPin (class in gpiozero.pins.pi), 238
PiStop (class in gpiozero), 171
PiTraffic (class in gpiozero), 170
play() (gpiozero.TonalBuzzer method), 132
plex_delay (gpiozero.LEDMultiCharDisplay at-

tribute), 162
PolledInternalDevice (class in gpiozero), 197
PololuDRV8835Robot (class in gpiozero), 179
post_delayed() (in module gpiozero.tools), 207
post_periodic_filtered() (in module gpi-

ozero.tools), 207
pprint() (gpiozero.HeaderInfo method), 222
pprint() (gpiozero.PiBoardInfo method), 220
pre_delayed() (in module gpiozero.tools), 207
pre_periodic_filtered() (in module gpi-

ozero.tools), 207
pressed_time (gpiozero.ButtonBoard attribute),

165
pull (gpiozero.Pin attribute), 233
pull_up (gpiozero.Button attribute), 105
pull_up (gpiozero.InputDevice attribute), 121
pull_up (gpiozero.PinInfo attribute), 223

pulled_up() (gpiozero.PiBoardInfo method), 220
pulse() (gpiozero.LEDBoard method), 157
pulse() (gpiozero.PWMLED method), 126
pulse() (gpiozero.PWMOutputDevice method),

141
pulse() (gpiozero.RGBLED method), 128
pulse_width (gpiozero.Servo attribute), 136
PumpkinPi (class in gpiozero), 183
PWMLED (class in gpiozero), 125
PWMOutputDevice (class in gpiozero), 140

Q
quantized() (in module gpiozero.tools), 207
queue_len (gpiozero.SmoothedInputDevice at-

tribute), 120
queued() (in module gpiozero.tools), 208

R
ramping_values() (in module gpiozero.tools), 211
random_values() (in module gpiozero.tools), 212
rate (gpiozero.SPI attribute), 237
raw_value (gpiozero.AnalogInputDevice attribute),

152
read() (gpiozero.SPI method), 234
red (gpiozero.RGBLED attribute), 129
red (gpiozero.StatusBoard attribute), 181
red (gpiozero.StatusZero attribute), 181
red (gpiozero.TrafficLights attribute), 166
release_all() (gpiozero.Factory method), 230
release_pins() (gpiozero.Factory method), 230
release_pins() (gpiozero.pins.pi.PiFactory

method), 238
released (gpiozero.PiBoardInfo attribute), 221
reserve_pins() (gpiozero.Factory method), 231
reserve_pins() (gpiozero.pins.pi.PiFactory

method), 238
reset() (gpiozero.pins.mock.MockFactory

method), 242
reverse() (gpiozero.Motor method), 133
reverse() (gpiozero.PhaseEnableMotor method),

135
reverse() (gpiozero.PhaseEnableRobot method),

178
reverse() (gpiozero.Robot method), 176
revision (gpiozero.PiBoardInfo attribute), 221
RGBLED (class in gpiozero), 127
right() (gpiozero.PhaseEnableRobot method), 178
right() (gpiozero.Robot method), 176
right_motor (gpiozero.PhaseEnableRobot at-

tribute), 177
right_motor (gpiozero.Robot attribute), 175
Robot (class in gpiozero), 175
RotaryEncoder (class in gpiozero), 114
row (gpiozero.PinInfo attribute), 223
rows (gpiozero.HeaderInfo attribute), 223
RPiGPIOFactory (class in gpiozero.pins.rpigpio),

239
RPiGPIOPin (class in gpiozero.pins.rpigpio), 240

Index 267



GPIO Zero Documentation, Release 1.6.1

RPIOFactory (class in gpiozero.pins.rpio), 240
RPIOPin (class in gpiozero.pins.rpio), 241
RyanteckRobot (class in gpiozero), 178

S
scaled() (in module gpiozero.tools), 208
select_high (gpiozero.SPI attribute), 237
Servo (class in gpiozero), 135
SharedMixin (class in gpiozero), 202
sides (gpiozero.PumpkinPi attribute), 183
sin_values() (in module gpiozero.tools), 212
smoothed() (in module gpiozero.tools), 208
SmoothedInputDevice (class in gpiozero), 119
SnowPi (class in gpiozero), 182
soc (gpiozero.PiBoardInfo attribute), 221
socket (gpiozero.Energenie attribute), 180
source (gpiozero.LEDBarGraph attribute), 159
source (gpiozero.SourceMixin attribute), 202
source_delay (gpiozero.SourceMixin attribute),

202
SourceMixin (class in gpiozero), 202
SPI (class in gpiozero), 234
spi() (gpiozero.Factory method), 231
spi() (gpiozero.pins.pi.PiFactory method), 238
SPIBadArgs, 247
SPIBadChannel, 247
SPIDevice (class in gpiozero), 152
SPIError, 246
SPIFixedBitOrder, 247
SPIFixedClockMode, 247
SPIFixedSelect, 247
SPIFixedWordSize, 247
SPIInvalidClockMode, 247
SPIInvalidWordSize, 247
SPISoftwareFallback, 250
SPIWarning, 249
star (gpiozero.PiHutXmasTree attribute), 168
start_time (gpiozero.TimeOfDay attribute), 191
state (gpiozero.Pin attribute), 233
StatusBoard (class in gpiozero), 181
StatusZero (class in gpiozero), 180
steps (gpiozero.RotaryEncoder attribute), 115
stop() (gpiozero.Motor method), 134
stop() (gpiozero.PhaseEnableMotor method), 135
stop() (gpiozero.PhaseEnableRobot method), 178
stop() (gpiozero.Robot method), 176
stop() (gpiozero.TonalBuzzer method), 132
storage (gpiozero.PiBoardInfo attribute), 221
summed() (in module gpiozero.tools), 210

T
temperature (gpiozero.CPUTemperature at-

tribute), 193
threshold (gpiozero.SmoothedInputDevice at-

tribute), 120
threshold_distance (gpiozero.DistanceSensor at-

tribute), 113

threshold_steps (gpiozero.RotaryEncoder at-
tribute), 116

ThresholdOutOfRange, 250
ticks() (gpiozero.Factory method), 231
ticks() (gpiozero.pins.local.LocalPiFactory static

method), 239
ticks_diff() (gpiozero.Factory method), 231
ticks_diff() (gpiozero.pins.local.LocalPiFactory

static method), 239
TimeOfDay (class in gpiozero), 190
to_gpio() (gpiozero.PiBoardInfo method), 220
toggle() (gpiozero.Buzzer method), 131
toggle() (gpiozero.CompositeOutputDevice

method), 185
toggle() (gpiozero.LED method), 124
toggle() (gpiozero.LEDBoard method), 158
toggle() (gpiozero.OutputDevice method), 143
toggle() (gpiozero.PWMLED method), 126
toggle() (gpiozero.PWMOutputDevice method),

142
toggle() (gpiozero.RGBLED method), 129
TonalBuzzer (class in gpiozero), 131
Tone (class in gpiozero.tones), 217
tone (gpiozero.TonalBuzzer attribute), 132
TrafficHat (class in gpiozero), 172
TrafficLights (class in gpiozero), 165
TrafficLightsBuzzer (class in gpiozero), 167
TrafficpHat (class in gpiozero), 172
transfer() (gpiozero.SPI method), 234
trigger (gpiozero.DistanceSensor attribute), 113

U
up() (gpiozero.tones.Tone method), 218
usage (gpiozero.DiskUsage attribute), 196
usb (gpiozero.PiBoardInfo attribute), 221
usb3 (gpiozero.PiBoardInfo attribute), 221
utc (gpiozero.TimeOfDay attribute), 191

V
value (gpiozero.AnalogInputDevice attribute), 152
value (gpiozero.AngularServo attribute), 138
value (gpiozero.Button attribute), 105
value (gpiozero.ButtonBoard attribute), 165
value (gpiozero.Buzzer attribute), 131
value (gpiozero.CompositeDevice attribute), 187
value (gpiozero.CompositeOutputDevice attribute),

185
value (gpiozero.CPUTemperature attribute), 193
value (gpiozero.Device attribute), 201
value (gpiozero.DigitalInputDevice attribute), 118
value (gpiozero.DigitalOutputDevice attribute),

140
value (gpiozero.DiskUsage attribute), 196
value (gpiozero.DistanceSensor attribute), 113
value (gpiozero.Energenie attribute), 180
value (gpiozero.GPIODevice attribute), 122
value (gpiozero.InputDevice attribute), 121
value (gpiozero.LED attribute), 125

268 Index



GPIO Zero Documentation, Release 1.6.1

value (gpiozero.LEDBarGraph attribute), 159
value (gpiozero.LEDCharDisplay attribute), 161
value (gpiozero.LEDMultiCharDisplay attribute),

162
value (gpiozero.LightSensor attribute), 111
value (gpiozero.LineSensor attribute), 107
value (gpiozero.LoadAverage attribute), 195
value (gpiozero.MCP3001 attribute), 146
value (gpiozero.MCP3002 attribute), 147
value (gpiozero.MCP3004 attribute), 147
value (gpiozero.MCP3008 attribute), 147
value (gpiozero.MCP3201 attribute), 148
value (gpiozero.MCP3202 attribute), 148
value (gpiozero.MCP3204 attribute), 148
value (gpiozero.MCP3208 attribute), 149
value (gpiozero.MCP3301 attribute), 149
value (gpiozero.MCP3302 attribute), 149
value (gpiozero.MCP3304 attribute), 150
value (gpiozero.MotionSensor attribute), 109
value (gpiozero.Motor attribute), 134
value (gpiozero.OutputDevice attribute), 143
value (gpiozero.PhaseEnableMotor attribute), 135
value (gpiozero.PhaseEnableRobot attribute), 178
value (gpiozero.PingServer attribute), 192
value (gpiozero.PWMLED attribute), 126
value (gpiozero.PWMOutputDevice attribute), 142
value (gpiozero.RGBLED attribute), 129
value (gpiozero.Robot attribute), 176
value (gpiozero.RotaryEncoder attribute), 116
value (gpiozero.Servo attribute), 136
value (gpiozero.SmoothedInputDevice attribute),

120
value (gpiozero.TimeOfDay attribute), 191
value (gpiozero.TonalBuzzer attribute), 132
values (gpiozero.LEDBarGraph attribute), 159
values (gpiozero.ValuesMixin attribute), 202
ValuesMixin (class in gpiozero), 202
voltage (gpiozero.AnalogInputDevice attribute),

152

W
wait_for_active() (gpiozero.DigitalInputDevice

method), 118
wait_for_active() (gpiozero.EventsMixin

method), 203
wait_for_dark() (gpiozero.LightSensor method),

110
wait_for_in_range() (gpiozero.DistanceSensor

method), 113
wait_for_inactive() (gpi-

ozero.DigitalInputDevice method), 118
wait_for_inactive() (gpiozero.EventsMixin

method), 203
wait_for_light() (gpiozero.LightSensor method),

110
wait_for_line() (gpiozero.LineSensor method),

107

wait_for_motion() (gpiozero.MotionSensor
method), 108

wait_for_no_line() (gpiozero.LineSensor
method), 107

wait_for_no_motion() (gpiozero.MotionSensor
method), 109

wait_for_out_of_range() (gpi-
ozero.DistanceSensor method), 113

wait_for_press() (gpiozero.Button method), 104
wait_for_press() (gpiozero.ButtonBoard

method), 165
wait_for_release() (gpiozero.Button method),

104
wait_for_release() (gpiozero.ButtonBoard

method), 165
wait_for_rotate() (gpiozero.RotaryEncoder

method), 115
wait_for_rotate_clockwise() (gpi-

ozero.RotaryEncoder method), 115
wait_for_rotate_counter_clockwise() (gpi-

ozero.RotaryEncoder method), 115
when_activated (gpiozero.CPUTemperature at-

tribute), 193
when_activated (gpiozero.DigitalInputDevice at-

tribute), 118
when_activated (gpiozero.DiskUsage attribute),

196
when_activated (gpiozero.EventsMixin attribute),

203
when_activated (gpiozero.LoadAverage attribute),

195
when_activated (gpiozero.PingServer attribute),

192
when_activated (gpiozero.TimeOfDay attribute),

191
when_changed (gpiozero.Pin attribute), 234
when_dark (gpiozero.LightSensor attribute), 111
when_deactivated (gpiozero.CPUTemperature at-

tribute), 194
when_deactivated (gpiozero.DigitalInputDevice

attribute), 118
when_deactivated (gpiozero.DiskUsage attribute),

196
when_deactivated (gpiozero.EventsMixin at-

tribute), 203
when_deactivated (gpiozero.LoadAverage at-

tribute), 195
when_deactivated (gpiozero.PingServer at-

tribute), 192
when_deactivated (gpiozero.TimeOfDay at-

tribute), 191
when_held (gpiozero.Button attribute), 105
when_held (gpiozero.HoldMixin attribute), 204
when_in_range (gpiozero.DistanceSensor at-

tribute), 113
when_light (gpiozero.LightSensor attribute), 111
when_line (gpiozero.LineSensor attribute), 107
when_motion (gpiozero.MotionSensor attribute),

Index 269



GPIO Zero Documentation, Release 1.6.1

109
when_no_line (gpiozero.LineSensor attribute), 107
when_no_motion (gpiozero.MotionSensor at-

tribute), 109
when_out_of_range (gpiozero.DistanceSensor at-

tribute), 114
when_pressed (gpiozero.Button attribute), 105
when_pressed (gpiozero.ButtonBoard attribute),

165
when_released (gpiozero.Button attribute), 105
when_released (gpiozero.ButtonBoard attribute),

165
when_rotated (gpiozero.RotaryEncoder attribute),

116
when_rotated_clockwise (gpi-

ozero.RotaryEncoder attribute), 116
when_rotated_counter_clockwise (gpi-

ozero.RotaryEncoder attribute), 116
wifi (gpiozero.PiBoardInfo attribute), 221
wrap (gpiozero.RotaryEncoder attribute), 116
write() (gpiozero.SPI method), 234

Y
yellow (gpiozero.TrafficLights attribute), 166

Z
zip_values() (in module gpiozero.tools), 210
ZombieThread, 246

270 Index


	Installing GPIO Zero
	Basic Recipes
	Advanced Recipes
	Configuring Remote GPIO
	Remote GPIO Recipes
	Pi Zero USB OTG
	Source/Values
	Command-line Tools
	Frequently Asked Questions
	Migrating from RPi.GPIO
	Contributing
	Development
	API - Input Devices
	API - Output Devices
	API - SPI Devices
	API - Boards and Accessories
	API - Internal Devices
	API - Generic Classes
	API - Device Source Tools
	API - Fonts
	API - Tones
	API - Pi Information
	API - Pins
	API - Exceptions
	Changelog
	License
	Python Module Index
	Index

